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Abstract - This is a second part for robust parameters estimation. Here 

we shell consider the case of time-varying parameters. First is consi-

dered parameters as deterministic which are modeled as random walk. 

As an estimator the robust Kalman filter is used. As an input signal is 

considered 1/f signal with corresponding autocovariance function. This 

signal is suitable for system identification, especially for the case of 

robust experiment design. In this part the some modifications for 

robust Kalman filter, as in part 1, are used. The simulations show good 

behavior of robust real-time identification algorithms. 
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I. INTRODUCTION 

The standard approach to control system design is to de-

velop a linear model for the process for some operating 

condition and to design a controller having constant para-

meters. While linear, time invariant models no doubt form 

the most common way of a describing a dynamical system, 

it is also quite, often useful or necessary to employ other 

descriptions. 

A specific, but common, case is when the systems prop-

erties vary with time. In this case, the task of the identifica-

tion algorithm is to adapt itself so that it can approximately 

track the system dynamics, and it leads to the recursive 

identification. This is widely studied subject, and among 

the main references in this area of system identification we 

find the books [1-4]. 

One of the problems that appears in the area of identifi-

cation of industrial processes is the identification in the 

presence of stochastic disturbance. Practical studies show 

that disturbance, in general, has non-Gaussian distribution. 

It is an especially important case when appears inconsistent, 

in relation to the main part of population, observations 

(outliers). Probability distributions for this case are approx-

imately normal ( -contaminated) and they are the subject 

of intense research in mathematical statistics. For such a 

case, we consider the robust procedures for parameters 

estimation. 

We used output error (OE) type predictor for parametric 

identification of the dynamic system with time-varying 

parameters. Output error predictors can provide good per-

formance when the plant output measurement is disturbed 

by noise. This can be explained by the fact that the output 

of this predictor does not directly depend upon the meas-

ured variables disturbed by noise, as the case with predic-

tion error type predictor. The output of this predictor de-

pends indirectly upon the measurements through the adap-

tation algorithm but this dependence can decrease in time 

by using a decreasing adaptation gain [4-5]. 

In this paper, we will apply the robust filter theory for 

solving problem of the robust parameter estimation of time-

varying system. The Kalman filter works well, but it as-

sumes that the system model and noise statistics are known. 

If any of these assumptions are violated then the filter esti-

mates can degrade, [6-7]. 

Although the Kalman filter is the optimal linear filter, it 

is not the optimal filter in general for non-Gaussian noise. 

Noise in nature is often approximately Gaussian but with 

heavier tails, and the Kalman filter can be modified to ac-

commodate these types of density functions [8-10]. 

Because of some disadvantages which are associated 

with the robust Masreliez-Martin‟s filter, we have decided 

to make some modification of the robust filter proposed by 

Masreliez and Martin, [11]. 

Since modificated Masreliez-Martin‟s robust filter 

showed satisfactory properties in the case of constant para-

meters, we will use this robust Kalman filter as parameter 

estimator in the case of time-varying system. 

The generation of input signal is inspired by recent work 

on experiment design where it was shown that a bandli-

mited „1/f‟ noise has good properties in robust identifica-

tion, [12]. As in [11], the theory of experiment design is 

used in order to reduce the time needed for identification. 

Recall that the aim was to create the input signal for identi-

fication (excited signal) through a recursive relation for 

autocovariance function. Synthesis of autocovariance func-

tion is based on the ideas of predictive control, [13]. 

II. PARAMETER ESTIMATION OF RANDOM WALK  

PROCESS 

If the system parameters vary according to the random 

walk model, then it can met next assumption, which yields 

unbounded parameter trajectories. 

There exists a constant 0 c   such that 

 2
( )E k c                                (1) 

Assumption (1) implies boundedness of the parameter 

trajectory in the mean square sense. 
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Let us consider a single-input/single-output linear dy-

namic system described by: 

( , ) ( ) ( ) ( )Ty k k k k                            (2) 

where ( )k represents vector of an unknown time-varying 

coefficients and ( )k is measurable regression vector. Simi-

larly as in [11] (but now for time-varying case), assume that 

( )k is observation noise with Non-Gaussian distribution. 

Unlike an explicit deterministic model of parameter vari-

ation, the statistical filtering approach assumes knowledge 

of a stochastic model of parameter changes. In general case, 

it can suppose that the variation of the parameter vector 

( )k can be described by the random walk model 

( 1) ( ) ( )k A k w k                           (3) 

in which A  represents known n n  stable matrix, 

 ( )w k denotes the parameter driving Gaussian noise with 

zero mean and the covariance ( )Q k , independent of the 

measurement noise  ( )k . Here,  serves as a scaling 

factor. 

We will mention agreed dynamic system whose 1n  

dimensional state vector ( ) ( 0)x k k   is estimated from 

scalar observations (1), , ( )y y k , in which ( )x k  and ( )y k  

satisfy the linear state and observation relations 

( 1) ( ) ( ) ( )x k F k x k w k                          (4) 

( ) ( ) ( ) ( )y k H k x k k                           (5) 

with n n  state transition matrix ( )F k , 1 n  observation 

matrix ( )H k , process noise with Gaussian distribution 

( )w k and the scalar measurement noise ( )k . As for the 

constant parameter case [11], the density for observation 

noise ( )k  is represented by the Gaussian mixture:    

2 2

1 2p( (k)) (1 ) ( 0, ) N( 0, ), 0 1                 (6) 

Regarding the parameter vector ( )k  as a “state ( )x k ” of 

a dynamic system with output governed by (2), one can 

formulate the problem of parameter estimation as a problem 

of filtering in the state space. The transposed regression 

vector ( )T k  in (2) can be interpreted as a vector of time-

varying, but known, output (measurement) coefficients 

( )H k , and matrix A  in (3) can be interpreted as a matrix of 

state transition coefficients ( )F k . 

The Kalman filtering approach allows one to incorporate 

into the process of system identification the prior know-

ledge about the estimated coefficients. If no such know-

ledge is available, one can adopt “noninformative” priors 

by setting  

1

0 O                                    (7) 

where n n  matrix 0  can be interpreted as initial cova-

riance matrix of the filtered state estimate ˆ( )t .  

The fact that the output vector in (2) is not only time de-

pendent but also data dependent is clearly a nonstandard 

feature of the state space description given by (2) and (3). It 

is known, however, that the Kalman filtering can be ex-

tended to the case where system coefficients are functions 

of past input and output variables, which is true in the case 

considered. 

Finally, we can apply modified robust Masreliez-

Martin’s filter, which is proposed in [11] , for robust output 

error parameter estimation of the time-varying system (2-3).  

Different from general case of random walk process (3), 

in this paper we consider the case without Gaussian 

noise ( )w k . It means that we solve the robust parameter 

estimation problem of the time-varying dynamic system in 

which the system parameters vary according to the determi-

nistic random walk model 

 ( 1) ( )k A k                              (8) 

Thus, the estimate of ( )k can be computed recursively 

using the robust filtering algorithm: 

ˆ( ) ( ) ( ) ( ) [ ( )]pk k M k k k                     (9) 

ˆ( ) ( 1)k A k                              (10) 

( ) ( ) ( )Tk y k k                          (11) 

  ( ) ( 1) TM k AP k A                        (12) 

where the filter covariance, ( )P k now satisfies 

'( ) ( ) ( ) ( ) ( ) ( ) [ ( )]T

pP k M k M k k k M k k     .     (13) 

As introduced in [11], [ ( )]p k   and ' [ ( )]p k   represent 

Huber‟s function and its derivative, respectively. 

Note that the output error adjustable predictor is used: 

ˆˆ( ) ( ) ( )Ty k k k                            (14) 

where ˆ( )y k denotes the a posteriori output of the predictor, 

in which: 

1 1

ˆ ˆ( ) [ ( 1), , ( ), ( 1), , ( )]

ˆ ˆˆ ˆ( ) [ ( ), , ( ), ( ), , ( )]

T

T

n m

k y k y k n u k u k m

k a k a k b k b k





      



 

 
 (15) 

III. GENERATION OF INPUT SIGNAL 

Optimal test signals are frequently specified in terms of 

their second order properties, e.g. autocovariance or spec-

trum. This leads to the problem of implementing a real 

signal with specified second order properties. Moreover, it 

is usual that the input should also be constrained in its am-

plitude, i.e. the amplitude must lie in an interval [a, b] 

R . 

As mentioned in introduction section, to generate a bi-

nary signals whose sampled autocovariance is as close as 

possible to some prescribed autocovariance, we apply a 

simple procedure, based on the use of the receding horizon 

concept commonly employed in Model Predictive Control, 

see [13]. The idea is to solve, for each time instant, a finite 

horizon optimisation problem to find the optimal set of the 
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next, say, T values of the sequence such that the sampled 

autocovariance sequence so obtained is as close as possible 

(in a prescribed sense) to the desired autocovariance. One 

then takes the first term of this optimal set for the sequence, 

advances time by one step and repeats the procedure. 

The generation of input signal is inspired by recent work 

on experiment design where it was shown that a bandli-

mited „1/f‟ noise has good properties in robust identifica-

tion, [12]. 

Bandlimited „1/f‟ noise is defined by the following spec-

trum: 

1

otherwise

1
[ , ]

ln( ) :

0

f


  

  




 



                 (16) 

where ,  R , ( )  . The autocovariance sequence of 

this signal is given by 

1

0

1 cos
: ,

ln

f

k

kx
r dx k N

x




 

 
                   (17) 

 

 
Fig. 1. Power spectral density of bandlimited „1/f‟ noise signal for  

 =1 and  = 2 

Figure 1 shows the ideal spectral density of bandlimited 

„1/f‟ noise signal for  =1 and  = 2. In Figure 2 we 

present the results obtained from the receding horizon algo-

rithm for 1  , 2  , m=1, N=10
6
 and n=50. This last 

figure verifies the ability of the algorithm to generate a 

binary non-white noise signal. The discrepancies between 

the desired and the achieved autocovariances seem to be 

due to the impossibility of generating a binary signal with a 

true bandlimited „1/f‟ spectrum, as the results do not appear 

to improve significantly by increasing m and n. For more 

details see [13].  

 
Fig. 2. Characteristics of the generated pseudo bandlimited „1/f‟ noise 

signal for m = 1, N = 106 and n = 50. 

 

IV. SIMULATION RESULTS 

To demonstrate the performance of proposed robust pro-

cedure for parameters estimation, we consider a single-

input/single-output (SISO) linear dynamic system, de-

scribed by: 

( , ) ( ) ( ) ( )Ty k k k k                            (18) 

( 1) ( )k A k                                  (19) 

where square matrix A is Schur stable: 

0.99 0.012 0.001 0.001

0.005 0.98 0.001 0.001

0.001 0.01 1 0.001

0.01 0.001 0.002 0.99

A

  
 
  
 
  
 

 

          (20) 

From (18), can be seen the dynamics of the time-varying 

process is involved in the noise process. We consider the 

case when the density for observation noise ( )k is Non-

Gaussian, with contamination  =0.1 and variances 2

1 =1 

and 2

2 =100, see (6). As input signal we utilize the generat-

ed bandlimited „1/f‟ noise, which frequencies lie in inter-

val [1, 2] . 

Figures 3 to 5 show identification results obtained using 

proposed modified robust Masreliez-Martin‟s filter as pa-

rameter estimator, for the time-varying output error process 

model. 
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Fig. 3. Estimates of parameters a1 and a2 

 

 

Fig. 4. Estimates of parameters b1 and b2 

 

 

Fig. 5. Mean Square Error 

 

 

 

 

 

 

V. CONCLUSION 

The basic objective of this paper is to consider how the 

proposed robust filter theory copes with the problem of the 

robust parameter estimation of the time-varying process. It 

assumed that the plant output measurement is disturbed by 

Non-Gaussian noise. We chose the output error predictor 

because it has naturally a better rejection of the effect of 

disturbances then prediction error type predictor. Because 

of its good properties in robust identification, bandlimited 

white noise is generated by proposed algorithm based on 

ideas from predictive control. 

Simulation results have demonstrated the efficiency of 

the proposed robust filtering method for solving problem of 

the parameter estimation of time-varying system in the 

presence of outliers. 
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