
 

 

  

 

Abstract —In this paper, the possibilities of using the Support 

Vector Machine (SVM) for the classification of a complex set of 

input data that define the problem of calculating the compressive 

strength of a wall in construction are analyzed. The compressive 

strength of the wall is determined by applying the empirical 

expression given by Euro Code 6 (EC 6), by the European 

Commission for Standardization, which fully defines the process 

of designing masonry structures. The aim of the work is to 

analyze the classification using SVM in relation to different 

kernels and to assess the quality of the prediction based on that 

solution. Finding an appropriate methodology for classification 

and prediction, an input vector of data that does not have a pre-

calculated compressive strength of the wall should be classified 

against a previously trained algorithm and as such clearly 

indicate to construction experts which set of input parameters 

gives the most favorable result in order to define the strength at 

wall pressure. 

 
Keywords — Classification, prediction, Support Vector 

Machine, EC 6, kernel, wall compressive strength.  

I. INTRODUCTION 

MASONRY constructions are represented today in the field 

of construction of individual, residential, business, 

administrative, public and industrial buildings and as such are 

an indispensable factor in construction engineering [1]. 

Evaluating the mechanical characteristics of the wall is not an 

easy task because it is observed as a simultaneous effect of the 

constituent materials of the wall [1], [2]. Such mechanical 
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characteristics can be calculated experimentally and 

numerically using empirical expressions. Euro-code 6 (EC 6) 

represents one of the European standards for the design of 

masonry structures and defines the method of determining the 

mechanical characteristics of masonry walls [1]. 

Research carried out so far, as well as regulations for the 

design of masonry structures, show that the compressive 

strength of the wall depends on various factors such as: 

compressive strength of the masonry elements, the shape of 

the masonry element, the thickness of the binding material 

and its strength.  

The compressive strength of a masonry wall in the general 

case can be defined by the following function [1]: 

( ), , ,k m mf F f f h K=          (1) 

where: 

f – compressive strength of the masonry element, 

fm – compressive strength of the applied binder, 

hm – thickness of the applied binder  

K – empirical coefficient defined based on the element for 

masonry, belonging to the group of the element, type of 

applied binding material. 

 

As this kind of calculation is quite complex, based on a 

large number of empirical indicators and knowledge, in 

practice there is a need to find this solution faster, even at the 

cost of a smaller error when calculating the compressive 

strength of the wall [1]. As such a problem, this can be seen as 

a classification problem based on an input vector that has a 

larger number of elements, and additionally as a prediction 

problem [3], [4]. Classification can ensure that, based on pre-

calculated strengths, in relation to the input data set, a model 

is created that will be trained for such classifications, and then 

classification of the input vector with unknown strength can 

be attempted [4]. In the case of a good classification, 

construction experts would get a framework in which certain 

rules for masonry should be applied without extensive 

calculations [2], [4]. 

Starting from the general formula given by Eq. 1, and 

observing the input K, it should be emphasized that it depends 

on the minimum width and height of the masonry elements, 

but this coefficient is constant for a certain masonry element. 

Given that the proposed solution takes into account different 

possibilities of dimensions, the number of input parameters 

increases for the width and height of the elements. In addition, 

the normalized compressive strength of the masonry element 

is added to the input data set, which is the product of the 

shape coefficient and the mean compressive strength of the 
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element. Thus, the number of input parameters compared to 

the mentioned four in the general formula is increased to 

seven in the proposed solution. 

Considering that Support Vector Machines (SVM) have 

shown good characteristics in solving classification problems 

[3], [5], and that they can be used to transform the input data 

set into multidimensional spaces, if linear classification is not 

possible in two-dimensional spaces, this paper will investigate 

the possibility of applying SVM with the use of different 

kernels [6] for the purpose of mapping data into a space where 

a hyper curve for linear separation of classes can be found [7]. 

As an upgrade to such a model, the prediction of data in 

relation to the input set, which represents a complex vector of 

several mutually uncorrelated data, can be considered [4], [8]. 

This paper is organized through five chapters: After the 

introduction, the second chapter presents the basic principles 

of SVM operation and the use of kernels. The third chapter 

defines the proposed model for the classification of data used 

to calculate the compressive strength of the wall. After that, 

the results of the proposed model for real data in the observed 

construction area are presented. At the end, the conclusion and 

further guidelines in the research of this matter are given, as 

well as the literature used. 

II. SUPPORT VECTOR MACHINE (SVM) 

Support Vector Machine (SVM) represents a linear model 

of machine learning for the purpose of classification and 

regression [3], [8]. SVM has proven to be a quality tool for 

solving both linear and non-linear problems. Suppose there 

are N elements of a set Q whose elements are linearly 

separable. Let the elements of the set Q be denoted by the 

binary elements ±1, defined by 

{(xi,yi), yi=±1, i=1…N} . (2)  

By classifying elements, sets or classes of elements that have 

some common characteristics are obtained. If  xi is a feature 

vector of the object of the observed problem, then yi defines 

whether an element of the set Q belongs to one or to the other 

subset, i.e. class. Figure 1 shows a graphical interpretation of 

the set Q, which has two classes of elements (triangles and 

squares). The goal of SVM is to find a line or hyper-plane 

that separates given elements into classes [7]. 

 
Fig. 1.  A set Q with two groups of elements. 

Mathematically, one can find a greater number of lines that 

can separate the elements of a given set, Fig. 2. This means 

that there are variables w and b with which linear type 

classification can be performed 

f(x) = wTx + b (3) 
 

 
Fig. 2.  Linear separation of the set Q in several possible ways. 

According to the SVM algorithm, it is necessary to first find 

the closest elements from each class to the potential dividing 

line [3]. The distance between the dividing line and the 

selected elements is called the margin, Fig. 3. In the case 

when the margin is the largest possible, the optimal line or 

hyper-plane of separation is defined [8]. 

 
Fig. 3.  A set Q with an optimal dividing line with respect to margins. 

 

Starting from relation (3), it is necessary to find the 

parameters of the vector w and the variable b so that it 

optimizes the function 
2

1 2 w             (4) 

with the condition: 

y (wT x + b)  1,    i .        

This solution should find the global minimum in the 

problem which is defined in order of complexity O(N3) [3], 

[7]. The decision function defined in this way can also be 

written in the form 

 ( )( ) T

i i if x sign y b b= + + x x       (5) 

where αi is a set of coefficients and x is a set of input 

vectors. 

In practice, individual elements of the set often have noise, 

that is, they are not correctly represented, or the problem is 

such that it is not possible to perform a linear separation of the 

set. In this case, special "slack" variables are introduced to 

correct elements of the set that are not correctly classified. 

Formally, we need to minimize the parameters of the vectors 

w and b [4] in the function  

 

        
2 21 2 i

i

w C +           (6) 

with the condition: 
y (wT x + b)  1 − i,       i  0, i  

In the event that the vector space in which the training 

set is such that it is not linearly separable, the possibility 

of transformation using mapping is introduced [5], Fig. 4.  

PROCEEDINGS, X INTERNATIONAL CONFERENCE IcETRAN, East Sarajevo, B&H, 05 - 08.06.2023

IcETRAN 2023 VII1.2 - Page 2 of 6 ISBN 978-86-7466-970-9



 

 
Fig. 4.  Nonlinear separation of the set Q. 

This is realized by using a suitable kernel that achieves 

this [9]. By mapping to some higher dimensional space in 

which the training set can be linearly separated, it is 

realized as : ( ) →x x . 

In that case, there is no longer a scalar product, as a 

measure of the similarity of two vectors, but a kernel 

function is introduced which, mapped into a 

multidimensional space, indicates the required measure of 

similarity [9], Fig. 5. As each point is mapped into 

multidimensional space using  , the aforementioned 

scalar product becomes 

( , ) ( ) ( )T

i j i jK =x x x x        (7) 

which amounts to calculating the scalar product in the 

newly obtained space. A special type of problem is the 

selection of an appropriate kernel [8], [9] i.e. way of 

mapping K.  

 
Fig. 5.  Linear separation of the set Q after applying the kernel. 

For the purposes of this paper, two types of kernels, 

polynomial and RBF, will be used [9]. The structure of the 

polynomial kernel is defined by  

( , ) (- )i j i jK g c = +x x x x        (8) 

where g, c and γ are kernel parameters that are greater 

than 0. The structure of the RBF kernel is defined by 
2

( , ) exp(- - )i j i jK g =x x x x              (9) 

where g and γ are kernel parameters that are greater 

than 0. 

III. PROPOSED CLASSIFICATION SYSTEM BASED ON  SUPPORT 

VECTOR MACHINE 

Considering the good results of SVM in data classification 

[4], this method was also applied for the purposes of 

classification of wall compressive strength, which is in 

accordance with the EC 6 standard [7]. The proposed system 

aims to classify the unknown input vector into one of the 

defined classes based on the data describing the input vector 

SVM. For these purposes, a data set was used for which the 

characteristic compressive strength of the wall was pre-

calculated in accordance with EC 6. This was done on an 

initial set of 6965 samples.  

The working principle is based on the block diagram shown 

in Fig. 6. 

 
Fig. 6.  Block diagram of the proposed system. 

The Orange software package was used for the entire work. 

According to the observed problem, the input vector has seven 

elements: 

1. Minimum width of the masonry element 

2. Minimum height of the masonry element 

3. Form factor in relation to points 1 and 2 

4. Compressive strength of the masonry element 

5. Normalized mean compressive strength 

6. Characteristic compressive strength of the binder after 28 

days 

7. Group of masonry elements. 

 

The group of masonry elements is categorized as I, II, III or 

IV, where the geometrical requirements for the groups of 

masonry elements are defined in EC 6 [10]. 

This input set is first processed by the data sampler. The 

data sampler is configured to randomly sample 70% of the 

input data set and forward it to the SVM for classification, 

while the remaining 30 percent of the labeled data is used for 

the SVM quality check and result prediction process. In this 

way, a set of 4872 instances with seven elements of the input 

vector was obtained, which were used for the work of SVM 

and 2088 instances for testing the work and checking the 

prediction of the results. 

This defined set of input data x comes to the input of the 

SVM. According to (6) the SVM is configured to have a 

numerical tolerance of 0.001, a limitation in iterations with a 

value of 100, while the parameters are C=1.0 and =0.1. In 

RBF, defined in (9), we used kernel parameters g=1 and γ=1, 

as well as the polynomial defined in (8) where the parameters 

c=1 and γ=3 were used. 

Realized results are based on the use of the LIBSVM 

library. All values of coefficients that are not specified in the 

paper are taken as default values of this library. This also 

applies to parameters nr_weight, weight_label, and weight, 

which define the penalty for some classes, ie the influence of 

false positive and false negative classified values. These 

parameters were used with a value of 1, so the impact of 

wrong values was interpreted in an identical way. 

After the classification obtained by SVM, the second part 

of the labeled training set from the data sampler was used to 

check the quality of the classification. The part for prediction 

was analyzed separately, to which the data from the data 

sampler and from the SVM were comparatively inputted. 

The goal of the proposed SVM is to check the quality of the 

data classification with the aim of finding the appropriate 
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class for the unlabeled data without first calculating the 

characteristic strength of the wall under pressure, and in this 

way, based on the input vector and the classification that was 

realized by means of the SVM, the output receives a classified 

input data which clearly indicates to construction experts 

which is the recommended way of using materials for the best 

strength. 

IV. RESULTS 

In accordance with the methodology described in Fig. 6, the 

input data set is formed. In the input data set with a total of 

6965 samples, the data based on the types of binder and 

masonry elements were evenly distributed. 

The following types of binder were used: general-purpose 

mortar, thin-layer mortar, light-aggregate mortar (two types 

depending on volume). Masonry elements of different width, 

length and height were considered:  

Brick (12/26/6.5),  

Giter block (19/25/19),  

Porotherm 20-50 Profi (20/50/24.9),  

Porotherm 25 Profi (25/37.5/24.9),  

Porotherm 25-38 IZO Profi (25/37.5/24.9),  

Porotherm 20 S P+E (20/37.5/23.8),  

Porotherm 250 S P+E (25/37.5/23.8), and  

Porotherm 25 AKU (20/37.5/23.8).  

 

 Combinations of elements observed in this way form the 

input data set x. Each vector xi describing one input data for 

one combination of binder and type of masonry element used 

is described by seven data points, with the order of these data 

points in the vector being the same as stated in Section III. 

SVM is primarily considered for two types of kernels: 

polynomial and RBF, with applied parameters defined in 

Section III. In addition to these two kernels, for the purposes 

of a comparison, a sigmoid-type kernel was used in order to 

see more clearly the differences in the quality of the 

polynomial and RBF types. 

The data sampler is defined to use 70% of the input data in 

the training set, which is initialized with a random function 

with each new start. Thus, the results shown are based on the 

same set obtained in a single run to be comparable. 

First, the method of classifying the input data set using 

SVM was analyzed. Due to the relatively large volume of the 

input number of elements in the vector xi, only some of the 

most important results will be indicated here. 

 
Fig. 7.  Dependence of wall compressive strength versus normalized mean 

compressive strength at the SVM output when using the RBF kernel. 

If the SVM output is observed in relation to the element i=5, 

i.e. normalized mean compressive strength, for the kernel type 

RBF the distribution is obtained as in Fig. 7, while for the 

kernel of the polynomial type, the distribution is obtained as 

in Fig. 8. In Fig. 7 and Fig. 8, a relatively good classification 

can be observed, which can be seen by the colors of the 

grouped elements. 

 
Fig. 8.  Dependence of wall compressive strength versus normalized mean 
compressive strength at the SVM output when using a polynomial kernel. 

 

What is noticeable is the more elaborate structure and 

slightly more "flexible" way of classification in the case of the 

polynomial type. If we look at the SVM output in relation to 

element i=6, i.e. characteristic compressive strength of the 

binder after 28 days, for the kernel type RBF the distribution 

is obtained as in Fig. 9, while for the kernel of the polynomial 

type, the distribution is obtained as in Fig. 10. 

 

 
Fig. 9.  Dependence of wall compressive strength versus characteristic 

compressive strength of binder after 28 days at the output of SVM when 

using kernel RBF. 

 

 
Fig. 10.  Dependence of wall compressive strength versus characteristic 
compressive strength of binder after 28 days at the output of SVM when 

using the polynomial kernel. 

 

Observing this parameter as well, it can be seen that 

"globally observed" the classification of elements of the same 

or similar color is clearly visible, which confirms that the 
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SVM did a relatively good classification according to this 

parameter as well. When comparing the two kernels, it is 

observed that with the RBF type kernel, for this input data set, 

there are fewer points that are poorly classified in relation to 

color and that the concentration of points of the same color is 

higher, which indicates a better form of classification. 

Viewed individually, all other elements of the input vector 

xi show a very similar way of inference and the advantage can 

be seen slightly in favor of the RBF kernel. 

A completely different approach is the analysis obtained on 

the basis of prediction. For this purpose, the Prediction 

component was used to evaluate the data in the Orange 

package.  

Four standard parameters of the Prediction component were 

observed: Mean Square Error (MSE), Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE) and degree of 

determination (coefficient of determination - R2). 

These values are created on the basis of the difference of 

the value obtained from the prediction in relation to the value 

of the calculated (correct) data based on the exact formulas for 

calculating the characteristic compressive strength of the wall. 

These results are shown in Fig.11. 

The obtained results show a significant difference in the 

size of the error obtained with these two kernels and a 

significant advantage in this case is in favor of the RBF 

kernel. If the distribution of output values, which are 

empirically calculated values, is additionally observed, it can 

be visualized as in Fig. 11. 

 
Fig. 11.  Display of the distribution of manually calculated values for wall 

compressive strength. 

If we now compare the obtained distributions for the same 

input vectors at the output of the prediction block, for the 

sigmoidal, RBF and polynomial kernels, the graphs in Figures 

12-14 are obtained, respectively. 

 
Fig. 12.  Display of the distribution of values at the output of the prediction 

block for wall compressive strength when using the sigmoidal kernel. 

 
Fig. 13.  Display of the distribution of values at the output of the prediction 

block for wall compressive strength when using the RBF kernel. 

 

These distributions show that in such an input set, the 

sigmoidal kernel has a completely different shape and values 

compared to the exactly calculated values. In contrast, the 

RBF and polynomial kernels are much more similar, more 

accurate, and more consistent with the expected data set. 

Although the shape of the polynomial is closer to the shape of 

the distribution of the exact set, the RBF is more precise in 

terms of the distribution of values. 

 
Fig. 14.  Display of the distribution of values at the output of the prediction 

block for wall compressive strength when using the polynomial kernel. 

 

If, on the basis of everything shown, it is concluded that 

SVM is suitable for classifications with such input structures, 

and that for the same structure the RBF type kernel showed 

better results, it remains to compare the final distributions of 

the output data in relation to several parameters, starting from 

the chosen kernel.  

 
Fig. 15.  Display of the distribution of the exact data obtained by the 

calculation depending on the seven elements of the input vector. 

 

For this purpose, the Violin Plot was used, which enables 

the display of the distribution of quantitative data for several 
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levels of the observed variables from the input vector set, so 

that the data distributions can be compared more easily. 

Fig. 15 shows the data distribution of empirically calculated 

data obtained by mathematical calculation depending on all 

seven observed elements of the input vector. On the other 

hand, Fig. 16 shows the distribution for the same input set as 

the effect of including SVM and the applied classification 

with the RBF kernel.  

 

 
Fig. 16.  Display of the distribution of the data obtained at the output of the 

SVM depending on the seven elements of the input vector. 

 

It can be seen that the shape of the distribution is good in 

principle, but that the distribution after classification on 

certain parts of the graphic is less obscured, which means that 

certain parts of the original set would not be classified well. 

On the other hand, the shape and surface of the curve does not 

significantly exceed the original surface, which means that no 

new forms of classes would appear in the classification, only 

some of the elements of the input set would not be correctly 

classified. As this is also confirmed by the size of the error, 

which is within the acceptable limits for the observed problem 

of the construction profession (errors were considered to be 

within the allowed range if they were programmatically 

obtained with +/- 10% of the values obtained by empirical 

calculation), it can be concluded that this form of 

classification with prediction is satisfactory for this type of 

input vector.  

 

V. CONCLUSION 

The paper presents one implementation of the Support 

Vector Machine in solving a real problem that exists in 

construction and is related to the method of calculating the 

compressive strength of a wall. This matter is defined by the 

European standard EC 6. The method of calculation is a 

consequence of a larger number of input parameters that are 

used for experimental and numerical calculation using 

empirical expressions. As such methodology is complicated, 

especially for applications on construction sites, there is a 

need for an algorithm that can classify the input data set in 

relation to existing classes in a faster way and without 

mathematical relations. Since SVMs have shown very good 

results in the process of classifying complex input data, this 

paper analyzes the possibility of applying SVMs for automatic 

classification of the input vector, which describes the 

technical aspect of all elements that participate in the design 

and construction of walls. As the input vector is comprised of 

seven different parameters that, according to EC 6, participate 

in the calculation of the compressive strength of the wall, 

linear classification requires the transformation of the input 

data space into a multidimensional space. For these purposes, 

two types of kernels (RBF and polynomial) were tested and a 

comparison with the third type (sigmoidal) was additionally 

performed. A large input data set was used, for which wall 

compressive strengths were manually calculated, and based on 

that data set, one part of the data was used to train the SVM 

and the other to test the proposed solution. It was concluded 

that the SVM can perform a quality classification of the input 

data set observed in this way and that the RBF type kernel 

gives better results than others. In relation to such a structure, 

the prediction of results for the training data set was also 

observed and it was shown that this result was also obtained 

within acceptable frameworks for the needs of the profession. 

Further development is focused on the application of other 

artificial intelligence tools for classification and comparison 

with the results obtained in this paper. In addition to the good 

results, shortcomings related to the wrong classification in the 

limit values of individual elements were observed, especially 

for those whose finally calculated value is numerically 

similar, but according to empirical calculation, it is known 

that they belong to a different class in the division of masonry 

elements. The further course of research will be directed 

towards increasing the precision for these borderline cases. 
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