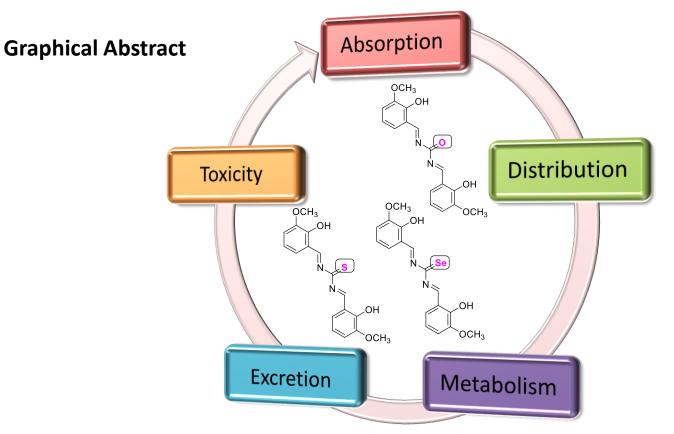


01–30 November 2023 | Online

ADME/drug-likeness properties of three vanillin-based Schiff bases

Chaired by **Dr. Alfredo Berzal-Herranz** and **Prof. Dr. Maria Emília Sousa**

Marina D. Kostić¹, Vera M. Divac², and Jovana Marjanović^{2*}


- ¹ Institute for Information technologies, University of Kragujevac, Jovana Cvijića bb, Kragujevac, Serbia
- ² Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, Serbia
- * Corresponding author: jovana.marjanovic@pmf.kg.ac.rs

01-30 November 2023 | Online

ADME/drug-likeness properties of three vanilinbased Schiff bases

01-30 November 2023 | Online

Abstract: Herein we present the results obtained in the *in silico* ADME screening and drug-likeness evaluation of three Schiff bases based on vanillin aldehyde. As an amine counterpart, the selenourea, urea and thiourea were used. According to the obtained results, all three compounds have demonstrated optimal lipophilicity and moderate solubility necessary for the achievement of good bioavailability when administrated orally. If was also observed that all compounds have potential to be well absorbed into systematic circulation in the GIT (gastrointestinal tract), without possibility to cross blood-brain barrier. Taking into consideration the fact that the candidate drug should have limited inhibitory activity against CYP enzyme isoforms, the urea-based compound shown no potential to inhibit any of the five P450 isoforms. The target screening has indicated that the family of cytosolic proteins and enzymes were the most probable physiological targets for the screened compounds.

Keywords: ADME; Schiff bases; vanillin

01-30 November 2023 | Online

Introduction

Schiff bases represent the condensation products of amines and aldehydes with an imine functionality present in their molecular scaffolds. They have been recognised as a molecules with broad range of promising biological properties, such as antimicrobial, antiviral and antibacterial¹. In addition, they are also known as common enzyme intermediates. Taking into account the fact that the design and synthesis of potential drug candidates can be a time and cost process, the use of the application of different predictors for the determination of a potential drug's in vivo studies and properties necessary for the administration under physiological conditions, is today recognizable concept for the successful drug design and synthesis.

¹A. Kajal, S. Bala, S. Kamboj, N. Sharma, V. Saini, Schiff Bases: A Versatile Pharmacophore, Journal of Catalysts, vol. 2013, https://doi.org/10.1155/2013/893512

01-30 November 2023 | Online

Results and discussion

Herein we present the results obtained *in silico* ADME screening and drug-likeness evaluation of three Schiff bases based on vanillin aldehyde (Figure 1). As an amine counterpart, the urea (1), thiourea (2) and selenourea (3) were used.

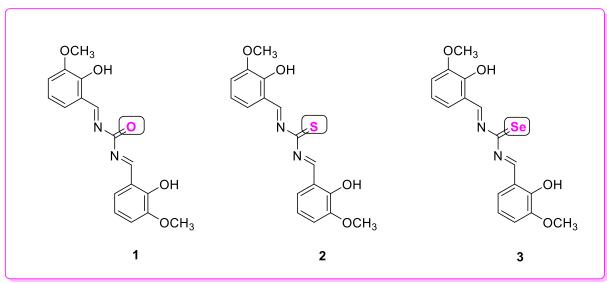


Figure 1. Vanilin-based Schiff bases

MDPI

01-30 November 2023 | Online

The SwissADME² online tool was used to evaluate pharmacokinetics, druglikeness and other ADME properties and the obtained data are presented in Tables 1, 2 and 3.

	Compou	nd 1	
Physicochemical Properties		Pharmacokinetics	
Formula	C ₁₇ H ₁₆ N ₂ O ₅	GI absorption	High
Molecular weight	328.32 g/mol	BBB permeant	No
Fraction Csp3	0.12	P-gp substrate	No
Num. rotatable bonds	6	CYP1A2 inhibitor	No
Num. H-bond accepto	rs 7	CYP2C19 inhibitor	No
Num. H-bond donors	2	CYP2C9 inhibitor	No
Molar Refractivity	90.5	CYP2D6 inhibitor	No
		CYP3A4 inhibitor	No
		Log Kp (skin permeation)	-6.59 cm/s
Lipophilicity		Druglikeness	
Log Po/w (iLOGP)	3.09	Lipinski	Yes; 0 violation
Log Po/w (XLOGP3)	2.41	Ghose	Yes
Log Po/w (WLOGP)	2.77	Veber	Yes
Log Po/w (MLOGP)	1.45	Egan	Yes
Log Po/w (SILICOS-IT)	3.27	Muegge	Yes
Log Po/w ^{b)}	2.6	Bioavailability Score	0.55
Water Solubility		Medicinal Chemistry	
Log S (ESOL)	-3.37	PAINS	0 alert
Solubility	1.41e-01 mg/ml ; 4.29e-04 mol/l	Brenk	1 alert: imine
Class	Soluble	Leadlikeness	Yes
Log S (Ali)	-4.17	Synthetic accessibility	2.97
Solubility	2.24e-02 mg/ml ; 6.81e-05 mol/l		
Class	Moderately soluble		
Log S (SILICOS-IT)	-4.13		
Solubility	2.43e-02 mg/ml ; 7.41e-05 mol/l		
Class	Moderately soluble		

Table 1. Predicted Drug-Likeness,Pharmacokinetic and otherADME properties calculated bySwissADME web tool for compound 1

01-30 November 2023 | Online

Compound 2 **Physicochemical Properties** Pharmacokinetics Formula C₁₇H₁₆N₂O₄S GI absorption High 344.38 g/mol **BBB** permeant Molecular weight No 0.12662 Fraction Csp3 P-gp substrate No Num. rotatable bonds 6 CYP1A2 inhibitor Yes Num, H-bond acceptors 6 CYP2C19 inhibitor No 2 Num. H-bond donors CYP2C9 inhibitor Yes Molar Refractivity 97.7 CYP2D6 inhibitor No CYP3A4 inhibitor Yes Log Kp (skin

Table 2. Predicted Drug-Likeness,Pharmacokinetic and otherADME properties calculated bySwissADME web tool for compound 2

Lipophilicity		Druglikeness		
Log Po/w (iLOGP)	3.03	Lipinski	Yes; 0 violation	
Log Po/w (XLOGP3)	3.01	Ghose	Yes	
Log Po/w (WLOGP)	2.94	Veber	Yes	
Log Po/w (MLOGP)	1.44	Egan	Yes	
Log Po/w (SILICOS-IT)	4.73	Muegge	Yes	
Log Po/w ^{b)}	3.03	Bioavailability Score	0.55	

permeation)

-6.26 cm/s

Water Solubility		Medicinal Chemistry	
Log S (ESOL)	-3.85	PAINS	0 alert
	4.92e-02 mg/mL ; 1.43e-04		2alerts: imine, 1 thiocarbonyl
Solubility	mol/L	Brenk	group
Class	Soluble	Leadlikeness	Yes
Log S (Ali)	-5.11	Synthetic accessibility	2.87
	2.70e-03 mg/mL ; 7.85e-06		
Solubility	mol/L		
Class	Moderately soluble		
Log S (SILICOS-IT)	-4.32		
	1.64e-02 mg/mL ; 4.75e-05		
Solubility	mol/L		
Class	Moderately soluble		

01-30 November 2023 | Online

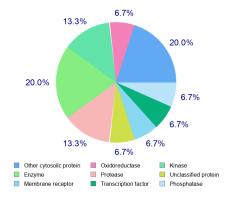
Compound 3				
Physicochemical Properties		Pharma	Pharmacokinetics	
Formula	$C_{17}H_{16}N_2O_4Se$	GI absorption	High	
Molecular weight	391.28 g/mol	BBB permeant	No	
Fraction Csp3	0.12	P-gp substrate	No	
Num. rotatable bonds	6	CYP1A2 inhibitor	No	
Num. H-bond acceptors	6	CYP2C19 inhibitor	No	
Num. H-bond donors	2	CYP2C9 inhibitor	No	
Molar Refractivity	95.86	CYP2D6 inhibitor	No	
		CYP3A4 inhibitor	Yes	

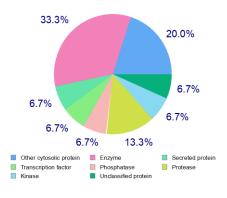
Log Kp (skin permeation)

-7.43 cm/s

Table 3. Predicted Drug-Likeness,Pharmacokinetic and otherADME properties calculated bySwissADME web tool for compound 3

Lipophilicity		Druglikeness	
Log Po/w (iLOGP)	0	Lipinski	Yes; 0 violation
Log Po/w (XLOGP3)	1.77	Ghose	Yes
Log Po/w (WLOGP)	1.91	Veber	Yes
Log Po/w (MLOGP)	1.44	Egan	Yes
Log Po/w (SILICOS-IT)	2.58	Muegge	Yes
Log Po/w ^{b)}	1.54	Bioavailability Score	0.55


Water Solubility		Medicinal Chemistry	
Log S (ESOL)	-3.36	PAINS	0 alert
Solubility	1.73e-01 mg/ml ; 4.42e-04 mol/l	Brenk	2 alerta heavy metal: imine
Class	Soluble	Leadlikeness	No; 1 violation
Log S (Ali)	-3.14	Synthetic accessibility	3.2
Solubility	2.81e-01 mg/ml ; 7.17e-04 mol/l		
Class	Soluble		
Log S (SILICOS-IT)	-4.45		
Solubility	1.38e-02 mg/ml ; 3.53e-05 mol/l		
Class	Moderately soluble		



01-30 November 2023 | Online

a)

b)

C)

Figure 2. Target prediction of compounds: a)1, b)2 and c)3

01-30 November 2023 | Online

Conclusions

According to the obtained results, all three compounds have demonstrated optimal lipophilicity and moderate solubility necessary for the achievement of good bioavailability when administrated orally. It was also observed that all compounds have potential to be well absorbed into systematic circulation in GIT (gastrointestinal tract), without possibility of crossing bloodbrain barrier. Taking into consideration the fact that the candidate drugs should have limited inhibitory activity against CYP enzyme isoforms, the urea-based compound 1 shown no potential to inhibit any of the five P450 isoforms. The target screening has indicated that the family of cytosolic proteins and enzymes were the most probable physiological targets for the screened compounds.

01-30 November 2023 | Online

Acknowledgments

This research is funded by the Ministry of Education and Ministry of Science, Technological Development and Innovation, Republic of Serbia, Grants: (Agreement No. 451-03-47/2023-01/ 200122 and 451-03-47/2023-01/200378).