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Abstract: This research addresses the respiratory distress syndrome (RDS) in preterm newborns
caused by insufficient surfactant synthesis, which can lead to serious complications, including
pneumothorax, pulmonary hypertension, and pulmonary hemorrhage, increasing the risk of a fatal
outcome. By analyzing chest radiographs and blood gases, we specifically focus on the significant
contributions of these parameters to the diagnosis and analysis of the recovery of patients with RDS.
The study involved 32 preterm newborns, and the analysis of gas parameters before and after the
administration of surfactants and inhalation corticosteroid therapy revealed statistically significant
changes in values of parameters such as FiO2, pH, pCO2, HCO3, and BE (Sig. < 0.05), while the
pO2 parameter showed a potential change (Sig. = 0.061). Parallel to this, the research emphasizes
the development of a lung segmentation algorithm implemented in the MATLAB programming
environment. The key steps of the algorithm include preprocessing, segmentation, and visualization
for a more detailed understanding of the recovery dynamics after RDS. These algorithms have
achieved promising results, with a global accuracy of 0.93 ± 0.06, precision of 0.81 ± 0.16, and an F-
score of 0.82 ± 0.14. These results highlight the potential application of algorithms in the analysis and
monitoring of recovery in newborns with RDS, also underscoring the need for further development
of software solutions in medicine, particularly in neonatology, to enhance the diagnosis and treatment
of preterm newborns with respiratory distress syndrome.

Keywords: respiratory distress syndrome; chest X-ray; diagnostics; image segmentation; performance
evaluation

1. Introduction

Prematurely born infants, due to the immaturity of their organ systems, are exposed
to an increased risk of morbidity and mortality. Respiratory distress syndrome (RDS) is
characterized by alveolar collapse and the development of microatelectasis due to a lack
of surfactant. The frequency of this condition decreases as gestational age increases; all
infants born between the 22nd and 24th weeks of gestation will have respiratory distress
syndrome, while the incidence in infants with a body weight between 1250 and 1500 g will
be 25% [1]. RDS is considered the main cause of pneumothorax, pulmonary hypertension,
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and pulmonary hemorrhage in newborns. These complications increase the likelihood of
a fatal outcome as well as the development of bronchopulmonary dysplasia in surviving
newborns. Timely diagnosis and an appropriate therapeutic approach play a crucial role in
improving the prognosis of respiratory distress syndrome [2,3].

The clinical presentation of RDS is characterized by tachypnea, cyanosis, flaring of
the nostrils, intercostal retractions, subcostal retractions, and expiratory grunting. The
diagnosis of RDS is established based on typical anamnestic data, clinical findings, gas
analysis, and chest radiography. Chest radiography is often considered the “gold stan-
dard” for diagnosis. The X-ray may reveal the presence of diffuse microatelectasis and
characteristic changes indicating inadequately ventilated pulmonary alveoli. Depending on
the degree of progression, radiographic findings of RDS can be classified into five grades,
as follows [3–5]:

Grade I—Bilateral lung fields are generally non-translucent due to reduced aeration. On
the X-ray, diffuse fine granulations caused by collapsed alveoli are visible, as is the presence
of a reticular shadow, which is a result of air in the bronchioles;
Grade II—In addition to the characteristics of the first stage, there are also patchy and
streaky opacities;
Grade III—Opacity of lung parenchyma significantly increases. In addition to fine-grained,
patchy opacities, there is also a loss of clear heart boundaries;
Grade IV—Lung tissue appears hazy with a bronchogram over the cardiac shadow;
Grade V—Complete lung fields are covered with diffuse opacification (clinically manifest-
ing as “white lungs”), and the heart border is not visible on the X-ray.

Radiography, as an essential diagnostic technique, plays a crucial role in medicine,
enabling precise visualization of internal body structures. The efficiency of radiography
can be significantly enhanced by applying sophisticated image processing techniques,
with a particular focus on the segmentation of X-ray images. Segmentation, as a key
step in the analysis of radiological data, allows for the accurate isolation of regions of
interest, such as the lungs, for clearer and more detailed insights. This process is essential
for improving the accuracy of diagnosis and timely treatment, especially in situations
where anatomical variations, pathological changes, or other irregularities may complicate
traditional analysis methods [6–10].

With the development of neonatal intensive care units, the survival of more premature
and critically ill newborns has increased. Consequently, the frequency of complications
such as respiratory distress syndrome and, among them, bronchopulmonary dysplasia, one
of the most severe complications of preterm birth, has also risen. To prevent the most severe
respiratory complication of respiratory distress syndrome, bronchopulmonary dysplasia,
systemic corticosteroid therapy has been applied, which has had a positive effect on lung
function but has also been associated with numerous systemic complications. Long-term
follow-up studies indicate that the administration of high doses of dexamethasone in the
early neonatal period results in poorer neurodevelopmental outcomes [11]. In order to
induce favorable effects of corticosteroid therapy on the lungs while minimizing systemic
side effects, corticosteroids are increasingly administered locally. This is performed through
instillation with surfactant or through inhalation [12,13].

In the literature, a variety of algorithms for chest X-ray image segmentation and lung
boundary extraction can be found. Therefore, algorithms can be classified into the following
basic categories: (1) rule-based, (2) pixel classification-based, (3) model-based, hybrid, and
(4) deep learning-based algorithms [6].

Algorithms in the rule-based category employ sequential steps and heuristic assump-
tions to identify the lung region. They heavily rely on the concept of a level set, which
integrates global statistics, prior shape, and edge information. The initial level set is initi-
ated through a mask calculated using rule-based steps such as thresholding, morphological
operations, and connected component analysis [7]. Yang X. et al. chose to segment the
lungs using such an approach on CT images. They initially employed a threshold for
pre-segmentation to automatically select the starting point, facilitating the application of
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region growth. Subsequently, they applied morphological post-processing to enhance the
segmentation effects [8]. For early detection of breast cancer, a similar methodology was
applied by Mehmood M. et al. They isolated tumor regions through a segmentation process
using thresholding. Additionally, they improved the segmentation results by applying
morphological operations. Since these algorithms demonstrated effectiveness as a basis for
image classification, they subsequently applied machine learning techniques to enhance
the speed and efficiency of the classification process [9].

In the domain of pixel classification, algorithms rely on the analysis of low-level
visual features and prior shapes. An active shape model, as a paradigmatic representative
of this approach, shapes its representation through the distribution of landmark points
on training images. This model is then adapted to a test image through fine-tuning of
distribution parameters, making it relevant in the context of visual data analysis [10].
Hybrid approaches to segmentation integrate the advantages of different algorithms to
create an integrated method capable of overcoming challenges in lung detection [14]. In
their study, Medeiros A.G. et al. applied an innovative fast morphological geodesic active
contour method for lung segmentation. To achieve precise segmentation, they use an initial
contour that approximates the shape of the lungs and then adapts it to the actual lung
shape after defining the lung boundaries. To further enhance lung segmentation, they apply
morphological operations [15]. Vijh S et al. introduced an innovative approach for early
detection, diagnosis, and prediction aimed at improving patient treatment and preventive
measures. Their methodology emphasizes the segmentation of the region of interest based
on a global threshold and the application of morphological operations to achieve a more
precise representation of segmented lungs. They further optimized desired features by
combining two metaheuristic algorithms, specifically the Whale Optimization Algorithm
(WOA) and the Adaptive Particle Swarm Optimization (APSO) algorithm. The classification
was performed using a convolutional neural network (CNN) classification technique. [16].
These results also confirm the effectiveness of deep learning-based algorithms, which are
trained on large datasets and achieve the most accurate results compared to previous
approaches [17]. Notably, Demiroğlu U et al. underscored the importance of utilizing
deep learning in predicting and diagnosing lung cancer from CT scans, aiming to mitigate
potential human errors. For this purpose, they utilized pre-trained models, DarkNet-53
and DenseNet-201, to develop a highly accurate hybrid classification method [18].

Applied algorithms for lung detection are commonly used on X-ray images of adults
with an unchanged appearance of lung anatomy. However, in cases of pathology or
altered lung anatomy, this can affect the intensity distribution in lung regions and result
in unclear lung outlines, posing a challenge for segmentation algorithms. Besides the
lack of algorithms for detecting pathologically altered lung regions, research on pediatric
X-ray images of the chest is limited in the literature. The appearance of lungs in children,
especially in newborns, deviates from the appearance in adults due to the ongoing process
of incomplete alveolarization [7].

Given the current relevance of the topic and intensive research in the field of RDS, as
well as the potential for improving existing diagnostic procedures, the focus is directed with
particular attention to the analysis of chest X-rays and gas analysis. This approach aims to
investigate the key contributions of these parameters in the diagnosis of RDS, providing
a deeper insight into the complexity of the disease and opening space for innovations in
medical approaches.

2. Materials and Methods
2.1. Patients

Out of a total of 117 premature newborns who were hospitalized in the Neonatal
Intensive Care Unit of the Neonatology Center at the Clinic of Pediatrics, University
Clinical Center in Kragujevac, during the period from 1 February 2022 to 1 December 2022,
the study included 32 infants who met the inclusion criteria. Their gestational age ranged
from 25 to 36 weeks. Birth weight varied from 770 g to 3250 g. The diagnosis of RDS
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was established based on clinical indicators, X-ray images, and gas analysis of arterialized
capillary blood.

Parents of prematurely born children were informed about the examination procedure
in accordance with the rules of the Declaration of Helsinki and Good Clinical Practice. The
study had the approval of the local Ethics Committee (Approval Number 01/22/3/1 from
11 January 2022), and they voluntarily consented to the examination.

The criteria for including premature newborns in the study were as follows:

1. Premature newborns born before the completion of the 37th gestational week;
2. Premature newborns requiring the administration of exogenous surfactant and inva-

sive mechanical ventilation within the first 6 h of life;
3. Premature newborns requiring a second dose of surfactant by the end of the second

day of life at the latest;
4. X-ray images are classified as IV or V grade according to the BomseII classification;
5. Parents have signed informed consent to participate in the study.

The criteria excluding premature newborns from the study were as follows:

1. Premature newborns requiring systemic corticosteroid therapy according to the protocol;
2. Premature newborns with congenital anomalies;
3. Premature newborns require the administration of exogenous surfactant and non-

invasive respiratory support;
4. Premature newborns require only one dose of surfactant.

All patients included in the study were administered inhalations of 0.25 mg/kg/12 h
Budesonide from the third day of life for a duration of 14 days.

For all cases participating in the study, the following parameters were monitored:

1. Maternal history: age, parity, pregnancies, previous miscarriages, stillbirths, neonatal
deaths, as well as acute and/or chronic illnesses;

2. Newborn’s anthropometric measures at birth: body weight, body length, head cir-
cumference, chest circumference, and Apgar score;

3. Laboratory analyses: complete blood count, C-reactive protein, glucose levels, gas
analysis (pH-pCO2-pO2-HCO3-BE), and electrolyte levels (Na+, K+, Ca++) in arterial-
ized capillary blood;

4. Radiographic images: chest X-ray images were monitored.

2.2. Statistical Analysis

For the purpose of a detailed analysis of the results in newborns with RDS, descriptive
statistics were employed to provide insight into key parameters. This analysis serves as a
foundation for further interpretation and discussion of the results.

Additionally, a comparative analysis of gas measurements before and after the admin-
istration of surfactant and inhaled corticosteroids was conducted using a paired samples
t-test. This statistical approach enables the identification of significant changes in respi-
ratory parameters following surfactant and inhaled corticosteroid therapy. The paired
samples t-test was chosen because of its ability to detect statistically significant differ-
ences between related measurements, in this case, measurements before and after the
administration of surfactant and inhaled corticosteroids.

2.3. X-ray Image Processing

In an effort to better understand the recovery dynamics after RDS, this study focuses on
the development and application of lung segmentation algorithms. The goal is to provide a
more precise insight into structural changes in the lungs during the recovery phases.

All chest radiographic images were collected at the University Clinical Center Kragu-
jevac to ensure the consistency and accuracy of the results. The X-ray images were in .jpeg
format with a resolution of 1024 × 1024 pixels. The images used were two-dimensional
chest images in the anteroposterior projection. For each patient, we collected three images,
namely the following:
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I X-ray image: within the first 6 h after the newborn’s birth, before the first dose
of surfactant;

II X-ray image: on the second day of life before starting corticosteroid therapy;
III X-ray image: on the 16th day of life after the administration of inhaled corticosteroid

therapy.

The processing of X-ray images was conducted at the Center for Integrated Product
and Process Development at the Faculty of Engineering, University of Kragujevac. For
this purpose, the MATLAB programming environment “https://www.mathworks.com/
(accessed 15 November 2023)” was utilized. An algorithm for the segmentation of X-ray
images was developed, consisting of several key image processing steps, including prepro-
cessing, segmentation, and visualization. The lung segmentation algorithm is illustrated in
Figure 1.
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Figure 1. Lung segmentation algorithm.

The segmentation algorithm comprised several key steps. First, binary conversion
was performed using an appropriate threshold, transforming pixel values into a binary
representation. To address potential gaps in segmented regions, a dilation procedure was
applied to strengthen the contours of objects. Subsequently, smaller objects were removed
to retain larger, more relevant segments. The obtained binary image underwent lung
segmentation, and a mask was used to isolate the pulmonary region. Closing operations
were then applied to enhance the definition of lung regions, ensuring better representation.

Starting from the image loaded from the corresponding database, it is displayed on
the screen and treated mathematically (Figure 2). The image is denoted as [7,19]:

X ∈ R(MxN), where X(i, j) ∈ [0, 255] f or i = 1, 2, . . . , M and j = 1, 2, . . . , N, (1)

where

R—the set of real numbers;
M—the number of rows in the image;
N—the number of columns in the image;
X(i, j)—the pixel intensity at position (i, j).

https://www.mathworks.com/
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Figure 2. Mathematical representation of the X-ray image.

After this step, the image X(i,j) undergoes further processing by converting it into a
binary image Y(i,j) through the application of an appropriate threshold T (Figure 3). This
process enables the transformation of complex image data into binary values, where pixel
values above the threshold become white pixels (1), while values below the threshold be-
come black pixels (0). This conversion facilitates further analysis and extraction of relevant
information from the image. The mathematical expression describing this procedure is
as follows [7,9,19]:

Y(i, j) =

{
1, X(i, j) > T
0, X(i, j) ≤ T

, (2)

where

T—the threshold;
X(i, j)—the pixel intensity at position (i, j) in the original X-ray image;
Y(i, j)—the pixel value at position (i, j) in the binary image after applying the threshold T.
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In the segmentation process, there may be the formation of white regions that are not
completely closed or contain unwanted gaps. To address this issue, we apply the dilation
procedure (Figure 4). Dilation can be mathematically represented as the convolution of
the binary image Y with a structural element B, resulting in a new binary image Z. This
step plays a crucial role in strengthening the contours of objects, smoothing their edges,
and eliminating small interruptions within regions. The mathematical expression defining
dilation is written as follows [7,10,16]:

Z = Y⊕ B, (3)

where

Z—the resulting binary image after applying dilation;
Y—the original binary image;
B—the structural element used for dilation;
⊕—the convolution operation (or opening) between image Y and the structural element B.
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Figure 4. Enhancing object boundaries through image dilatation.

Removing smaller objects from the binary image aims to clean the image from minor
noise, unwanted artifacts, and other small objects that may be present [10]. This phase
is essential as it retains only larger segments or regions, which often represent the main
objects of interest in the image, while smaller and irrelevant objects are eliminated (Figure 5).
This ensures the preservation of essential information, reduces structural complexity, and
enhances accuracy.
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A binary matrix Z is defined to represent the original image with dimensions M × N,
where Z(i,j) can have a value of 0 (representing a black pixel) or 1 (representing a white
pixel). The set of regions in the image will be denoted as S, where each region R(i) in S has
its area (number of pixels) defined as P(R(i)). A threshold value representing a specific area
threshold is denoted as P(R(i)). A threshold value representing a specific area threshold is
denoted as U. The goal is to remove all regions R(i) from the set S whose area is not greater
than U. This procedure can be mathematically described as follows:

W = Z r {R(i) ∈ S : P(R(i))≤ U} (4)

where

W—the resulting binary image after removing smaller objects;
Z—the original binary image;
R(i)—the regions in the image Z;
S—the set of all regions in the image Z;
P(R(i))—the area of region R(i);
U—the threshold value for the region’s area.

After image processing, lung segmentation is conducted to accurately identify lung
regions necessary for analysis and diagnosis. The mask, which precisely defines the lung
area, plays a crucial role in this process. The segmentation algorithm is directed only to this
region, facilitating further processing and analysis [7,10]. This approach reduces processing
time and enhances result accuracy (Figure 6).
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Figure 6. Segmentation process and visualization.

The segmentation algorithm produces a binary image Xmask of dimensions M × N,
where Xmask(i,j) = 1 denotes the lung region, and Xmask(i,j) = 0 denotes the rest of the image.
The mask is defined as Q(i,j), where Q(i,j)ε{0,1}, represents the region of interest. Applying
the mask to the image is achieved through element-wise multiplication of the image W
with the mask Q:

Xmask(i, j) = W(i, j)·Q(i, j), (5)

where

Xmask(i,j)—the pixel value in the image after applying the mask at position (i,j);
W(i,j)—the pixel value in the image W at position (i,j);
Q(i,j)—the pixel value in the mask Q at position (i,j).

After successful segmentation, closing the segments becomes an important step. This
operation employs morphological transformations to enhance the definition of lung regions,
filling gaps and connecting partially interrupted contours. This results in better-defined
regions that more accurately represent the lungs. The combination of these steps achieves
high-quality results, which is crucial for further analysis, diagnostics, and research in
medical and other fields where image processing is essential. The mathematical definition
of the closing operation is as follows:

Xclosed(i, j) = morphological_closing_ f unction(Xmask(i, j), Bclosed(i, j)) (6)

where

Xclosed(i,j)—the pixel value at position (i,j) in the image resulting from the morphological
closing operation applied to the segmentation image;
Bclosed(i,j)—the structural element used in the closing process at pixel (i,j).

Visualization represents a crucial step in image processing, displaying the results of
lung segmentation in a way that facilitates understanding and interpretation (Figure 6).
This step involves presenting closed lung segments through a binary image clearly defined
lung regions. Visualization is carried out by overlaying closed segments onto the original
image through element-wise multiplication, specifically:

Xvisualization(i, j) = X(i, j)·Xclosed(i, j) (7)

where

Xvisualisation(i,j)—the pixel value at position (i,j) in the resulting image used for visualization;
X(i,j)—the pixel value at position (i,j) in the original X-ray image.

By overlaying these segments on the original image, lung regions are emphasized with
color in relation to the surrounding parts of the image, providing a visual representation
relevant for further analysis [7,10].
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2.4. Evaluation of Segmentation Performance

In the process of evaluating the performance of the proposed lung segmentation algo-
rithm, key images used include the ground truth (manually segmented by experts) and the
segmented image generated using our algorithm. To gain a comprehensive understanding,
we analyzed the confusion matrix and used a set of key indicators, including specificity,
sensitivity, accuracy, precision, F-measure, Matthew’s correlation coefficient (MCC), Dice
index, Jaccard index, and area under the curve (AUC) analysis [6,15]. Each of these indica-
tors provides specific information about the model’s capabilities, from sensitivity, which
measures the detection of true positives, to AUC, which assesses the overall performance
of the mode.

To calculate these performance indicators, we used elements of the confusion matrix,
namely True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).

Sensitivity evaluates the model’s ability to correctly identify actual positive instances:

Sensitivity =
TP

(TP + FN)
(8)

Specificity provides insights into the model’s ability to accurately identify the absence
of changes:

Speci f icity =
TN

(TN + FP)
(9)

Accuracy indicates the overall correctness of the model in labeling images, encompass-
ing both accurate identifications and accurate absences of the condition of interest:

Accuracy =
(TN + TP)

(TP + TP + FP + FN)
(10)

Precision measures the accuracy of the positive predictions:

Precision =
TP

(TP + FP)
(11)

The F-measure, also known as the F1 score, is calculated as the harmonic mean between
precision and recall (sensitivity):

F−measure =
2·Precision·Sensitivity
Precision + Sensitivity

(12)

The Dice coefficient is used to measure the similarity between the ground truth and
the segmented image. This coefficient provides information about the overlap between
detected and actual damages in the image, and a value closer to 1 indicates greater similarity
in segmentation. It is mathematically calculated according to the following formula:

Dice =
2TP

2TP + FP + FN
(13)

MCC considers all four values from the confusion matrix, providing a measure of
overall segmentation quality. It is calculated according to the following formula:

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(14)

Jaccard Index, also known as IoU (Intersection over Union), measures the similarity
between predicted and actual regions of interest and is calculated as the ratio of the
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intersection to the union of the two sets. The formula for the Jaccard Index is given using
the following equation:

Jaccard =
TP·TN

TP + FP + FN
(15)

AUC measures the model’s ability to distinguish between the presence and ab-
sence of damage, providing a value between 0 and 1, where higher values indicate
better performance.

These metrics together provide a comprehensive analysis, allowing us to gain a clear
insight into the effectiveness of the algorithm in the context of medical lung segmentation.

3. Results

In this section, we will present the results of our research on newborns with RDS. To
better understand the distribution of the data tracked in the study, Table 1 provides key
values for the clinical parameters we monitored.

Table 1. Clinical parameters in neonates with RDS.

Parameter Range Min Max Mean ± S.D. Skewness ± S.D.

Gestational week 11 25 36 32.5 ± 2.95 −1.05 ± 0.42

Weight, g 2480 770 3250 2033.75 ± 623.03 −0.21 ± 0.42

Before_FiO2, % 49 40 89 53.97 ± 12.71 1.19 ± 0.42

After_FiO2, % 19 21 40 20.09 ± 7.23 1.05 ± 0.42

Before_pH,/ 0.42 6.90 7.32 7.16 ± 0.11 −0.59 ± 0.42

After_pH,/ 0.26 7.25 7.51 7.39 ± 0.06 −0.17 ± 0.42

Before_pCO2, kPa 6.20 5.80 12 8.40 ± 1.52 0.47 ± 0.42

After_pCO2, kPa 5.20 3.20 8.40 5.93 ± 1.03 −0.33 ± 0.42

Before_pO2, kPa 10.20 2.30 12.50 5.79 ± 2.38 0.65 ± 0.42

After_pO2, kPa 5.10 4.30 9.40 6.66 ± 1.24 0.37 ± 0.42

Before_HCO3, mmol/L 26.10 2.20 28.30 17.93 ± 4.73 −1.07 ± 0.42

After_HCO3, mmol/L 11.20 22.10 33.30 26.29 ± 2.37 0.6 ± 0.42

Before_BE, mmol/L 31.60 −16.70 14.90 −5.42 ± 5.76 1.07 ± 0.42

After_BE, mmol/L 12.20 −3.10 9.10 2.55 ± 2.91 0.15 ± 0.42

Legend: FiO2—oxygen fraction; pCO2—partial pressure of carbon dioxide; pO2—partial pressure of oxygen;
HCO3—bicarbonate concentration; BE—base excess; and S.D.—standard deviation.

The average gestational week is 32.5, with a minimum value of 25 and a maximum
of 36, indicating relative stability in the sample. The weight varies from 770 g to 3250 g,
with an average of 2033.75 ± 623.03 g, suggesting wide variability. The fraction of inhaled
oxygen before surfactant and inhaled corticosteroid treatment averages 53.97 ± 12.71%,
decreasing to 20.09 ± 7.23% after treatment, indicating changes in oxygenation. The pH
value before treatment is close to neutral, at 7.16, with a small variation of 0.11. The
partial pressure of CO2 and HCO3 parameters shows appropriate average values and
variations. BE before surfactant and inhaled corticosteroid treatment has an average value
of −5.42 ± 5.76 mmol/L, while after treatment, it is 2.55 ± 2.91 mmol/L. Asymmetries of
parameters range from −1.05 to 1.19, indicating different data distributions.

The examination of the effects of surfactant and inhaled corticosteroid on the respi-
ratory parameters of newborns provided insights into significant changes in gas analyses
during therapy. A paired sample t-test analysis was applied. Basic statistics related to pairs,
as well as correlations, are presented in Table 2.
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Table 2. Paired sample t-test statistics and correlations.

Paired Parameters Mean ± S.D Correlation Sig.

FiO2
Before_FiO2 53.97 ± 12.71

0.19 0.29After_FiO2 26.09 ± 7.23

pH Before_pH 7.16 ± 0.11 −0.02 0.94After_pH 7.39 ± 0.06

pCO2
Before_pCO2 8.40 ± 1.52 −0.04 0.81After_pCO2 5.93 ± 0.18

pO2
Before_pO2 5.79 ± 2.38

0.15 0.42After_pO2 6.66 ± 1.24

HCO3
Before_HCO3 17.93 ± 4.73 −0.11 0.59After_HCO3 26.49 ± 2.31

BE
Before_BE −5.41 ± 5.76 −0.04 0.85After_BE 2.55 ± 2.91

Legend: FiO2—oxygen fraction; pCO2—partial pressure of carbon dioxide; pO2—partial pressure of oxygen;
HCO3—bicarbonate concentration; BE—base excess; S.D.—standard deviation; and Sig.—significance.

Before the administration of surfactant and inhaled corticosteroids, the average FiO2
value was 53.97 ± 12.71. After treatment, this value significantly decreased to 26.09 ± 7.23,
indicating a reduction in oxygen levels after surfactant and inhaled corticosteroid ther-
apy. The blood pH value before treatment (Before_pH) was 7.16 ± 0.11. After treatment
(After_pH), the pH value increased to 7.39 ± 0.06. This increase indicates a change in
blood acidity after the administration of surfactant and inhaled corticosteroids. In the
analysis of the pCO2 parameter, the average CO2 level remained similar before and after
treatment (Before_pCO2: 8.40± 1.52, After_pCO2: 5.93± 0.18), suggesting the preservation
of CO2 after surfactant administration. The HCO3 parameter showed a slight change from
17.93 ± 4.73 before treatment to 26.49 ± 2.31 after treatment. The analysis of the BE param-
eter showed a significant increase in the average base value (Before_BE: −5.41 ± 5.76 to
After_BE: 2.55 ± 2.91) after treatment with surfactant and inhaled corticosteroid, indicating
a positive impact on the body’s acid-base balance. Although we observed correlations
between certain parameters, they were not statistically significant.

Table 3 displays the differences between paired parameters with an assessment of
the mean difference, standard deviation, standard error, 95% confidence interval, t-values,
degrees of freedom, and p-values (two-tailed).

Table 3. Paired differences.

Paired
Parameters Mean ± S.D Std. Err.

95% Conf. Int. of the Diff.
t df

Sig.
(2-Tailed)Lower Upper

FiO2 27.88 ± 13.35 2.36 23.06 32.69 11.82 31 0.000
pH −0.24 ± 0.12 0.02 −0.29 −0.2 −11.35 31 0.000

pCO2 2.47 ± 1.86 0.33 1.79 3.14 7.45 31 0.000
pO2 −0.87 ± 2.52 0.45 −1.77 0.04 −1.95 31 0.061

HCO3 −8.56 ± 5.47 0.99 −10.61 −6.52 −8.57 29 0.000
BE −7.97 ± 6.55 1.16 −10.33 −5.61 −6.88 31 0.000

Legend: FiO2—oxygen fraction; pCO2—partial pressure of carbon dioxide; pO2—partial pressure of oxygen;
HCO3—bicarbonate concentration; BE—base excess; S.D.—standard deviation; and Sig.—significance.

For the FiO2 parameter, a significant average difference of 27.88 ± 13.35 was observed
between values before and after treatment with surfactant and inhaled corticosteroids, with
a narrow 95% confidence interval. Analysis of blood pH values reveals a mean difference
of −0.24 ± 0.12, also with a narrow confidence interval. Regarding the level of the pCO2
parameter, a difference of 2.47 ± 1.86 was noted, with a wider 95% confidence interval.
For the pO2 parameter, a registered difference of −0.87 ± 2.52 was observed, with a wider
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confidence interval. The concentration of the HCO3 parameter shows an average difference
of −8.56 ± 5.47, also with a wider confidence interval. For the BE parameter, the difference
is −7.97 ± 6.55, with a wider confidence interval.

The parameters FiO2, pH, pCO2, HCO3, and BE show statistically significant changes,
considering significance values less than 0.05. Although for the pO2 parameter, the sig-
nificance value is not strictly less than 0.05 (Sig. = 0.061), this difference may indicate a
potential change.

In order to analyze pathological changes in the lungs in more detail, we applied the
developed algorithm for precise segmentation of lung tissue. The segmentation results
for two characteristic cases, shown in Figure 7, provide a visual insight into characteristic
changes during the X-ray image analysis process. It is important to emphasize that lung
segmentation is performed depending on the degree of recovery, which can be identified in
the X-ray image, thereby facilitating the definition of the Bomsell degree. This approach
allows for a more precise analysis of pathology in terms of recovery, which plays a crucial
role in understanding the evolution of lung changes in newborns with RDS.

In the first case depicted in Figure 7a, the initial X-ray image clearly falls into the V
degree according to the Bomsell classification, evident through blurred lung tissues without
a visible boundary of the cardiac shadow. In the second case shown in Figure 7b, the initial
X-ray image clearly falls into the fourth degree according to the Bomsell classification, as
evident through blurred lung tissue with air bronchograms over the cardiac shadow. It is
important to note that the algorithm, in this specific case, does not perform image segmen-
tation due to challenges caused by similar color throughout the X-ray image, resulting in
unclear differentiation between soft tissues and bony structures. After the administration of
a certain dose of surfactants, an improvement in the lung tissue condition is observed with
the appearance of patchy-striped shadows above the segmented lung region and unclear
boundaries of the heart. Although the presence of these shadows does not compromise
the algorithm’s performance during segmentation, the overall lung structure becomes less
visible due to the loss of a clear boundary of the heart. These characteristic structures in
the X-ray image clearly indicate the III degree of lung damage according to the Bomsell
classification while simultaneously signaling recovery in the segmented lung region. It is
important to emphasize that the segmented parts of the lungs are incomplete, focusing
on the outer region, where recovery is most pronounced. On the 16th day, the lungs are
successfully depicted in their entirety, allowing the algorithm to perform uninterrupted
segmentation. This complete representation covers all five global lung regions, enabling an
overview of each region, including the upper, middle, lower, lateral, and mediastinal parts
of the lungs. This comprehensive visualization provides a holistic insight into the lung’s
condition, contributing to a thorough analysis of patient recovery.

Table 4 provides an overview of the performance evaluation indicator values for
segmentation algorithms.

The segmentation results highlight a high specificity of 0.95, indicating precision in
identifying negative instances. The algorithm’s sensitivity is 0.84, suggesting efficiency
in recognizing positive instances. The overall segmentation accuracy reaches 0.93, pro-
viding a balance between precision and recall in predictions. The algorithm’s precision
is 0.81, and the F-measure is 0.82, indicating a successful combination of accuracy and
completeness in classification. The MCC rises to 0.78, while the Dice and Jaccard indices
are 0.82 and 0.71, respectively, further confirming the algorithm’s effectiveness. An AUC
value of 0.89 emphasizes a high level of performance, particularly in situations with im-
balanced classes. These results serve as an indicator of the algorithm’s robustness in the
segmentation process.
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Table 4. Values of performance evaluation indicators for segmentation algorithms.

Indicator Value ± S.D.

Specificity 0.95 ± 0.05
Sensitivity 0.84 ± 0.16
Accuracy 0.93 ± 0.06
Precision 0.81 ± 0.16

F-measure 0.82 ± 0.14
MCC 0.78 ± 0.15
Dice 0.82 ± 0.14

Jaccard 0.71 ± 0.21
AUC 0.89 ± 0.09

S.D—standard deviation.

4. Discussion

In this study, which encompassed prematurely born infants treated with exogenous
surfactant and inhaled corticosteroids, we analyzed the parameters of gas analysis in the
arterial capillary blood of newborns before and after the implemented therapy. The results
demonstrated that prior to the therapy, infants required higher fractions of inhaled oxygen.
After the therapy, blood pH increased, the partial pressure of carbon dioxide decreased,
and the partial pressure of oxygen increased. Additionally, a significant contribution of this
study lies in the segmentation of radiographic chest images of newborns before, during,
and after the conducted therapy.

A recently published study aimed at preventing bronchopulmonary dysplasia ana-
lyzed the impact of the instillation of inhaled corticosteroids with surfactant on inflam-
matory mediators in tracheal aspirate. In contrast to our study, the mentioned study
did not show clinical benefits of the applied therapy but demonstrated an effective anti-
inflammatory effect [20]. Unlike the previous study, a study conducted in Tubingen investi-
gated the early use of inhaled corticosteroids in the prevention of bronchopulmonary dys-
plasia. The study included extremely premature infants (gestational age 23 weeks 0 days
to 27 weeks 6 days), and unlike this study, the administration of inhaled corticosteroids
continued until patients required oxygen therapy, respiratory support, or until reaching
the 32nd postmenstrual week. This study demonstrated that the isolated inhalation of
corticosteroids is considered responsible for reducing the incidence of bronchopulmonary
dysplasia. Additionally, the study showed that the use of Budesonide had a favorable
impact on the closure of the ductus arteriosus [13].

The research in this study clearly demonstrated that the application of surfactant in
combination with inhaled corticosteroids shows statistical significance in almost all gas
analysis parameters. Changes in FiO2, pH, pCO2, HCO3, and BE values showed statistically
significant differences before and after the applied therapy, indicating a positive impact
on respiratory function. After the administration of inhaled corticosteroids, the need for
FiO2 was significantly reduced, a finding that was corroborated by Claus C. et al. in their
research. Their study analyzed the impact of hydrocortisone administration on reducing
respiratory support in prematurely born infants with bronchopulmonary dysplasia [21].
Similar results in blood gas analysis before therapy, as we obtained, were also shown by
Moschino L et al. in their retrospective study analyzing the effects of two different types of
therapy on RDS in extremely premature newborns [22,23].

Chest radiography is considered the “gold standard” for diagnosing respiratory dis-
tress syndrome. The routine use of chest radiographs prompted the objectification of
this method, which we addressed in this study, all aimed at a more precise diagnosis of
respiratory distress and the evaluation of applied therapy. In contrast to this research, Perri
A. et al. recently analyzed the effectiveness of lung ultrasonography in prematurely born
infants treated with surfactant. Similar to this study, images were analyzed at three time
points: one before and two after surfactant therapy (before, 2 h after therapy, and 12 h after
surfactant administration). They demonstrated that the use of lung ultrasonography can
identify patients who will not require re-treatment with surfactant [24]. Debates on the
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superiority between lung ultrasonography and chest radiography remain current [25–28].
In one of the largest perinatal centers in Turkey, a prospective comparative analysis was
conducted on the effectiveness of lung ultrasonography and chest radiography. The pri-
mary goal of this research was to predict the need for the next dose of surfactant and
the therapeutic failure of continuous positive airway pressure applied [28]. As we have
already mentioned, research is largely dedicated to RDS in newborns, considering that this
syndrome represents a significant factor in neonatal mortality and morbidity. However, the
complete confirmation of RDS in prematurely born infants still requires the implementation
of radiological examinations, even though there is a growing trend towards the use of
ultrasonography [5,19,29,30]. With the aim of expediting the diagnostic procedure and ana-
lyzing the degree of recovery in patients with RDS, we have also developed an algorithm
for lung segmentation.

In general, research on lung region segmentation is often conducted in adults, applying
various algorithmic approaches. Hamad Y.A. et al. investigated a similarity-based approach,
focusing on the Otsu thresholding method, which facilitates the adjustment of the image
into two distinct regions. This approach assumes that the image contains a dark object on a
light background or vice versa, and in lung segmentation on X-ray images, the dark area
represents the lungs, while other parts represent the background [31].

In the development of our approach, we found inspiration in the work of
Mehmood M. et al. [9], who successfully applied a similar methodology for breast can-
cer segmentation and detection. Similarly, the work of Vijh S. et al. [16] further influenced
our approach, confirming the effectiveness of threshold-based segmentation for extracting
lung segments, along with the correction of imperfections using morphological operations
and successful lung cancer detection. This work represents a synthesis of these inspirations,
applying them to our research approach to achieve precise segmentation of the lung region
and enhance the understanding of medical diagnostic images in prematurely born infants
with RDS. Highlighting that this algorithm has significantly contributed to advancements in
research through carefully tailored lung region segmentation methods is essential. The com-
bination of a threshold-based approach and morphological operations has resulted in high
precision in lung region segmentation. The success achieved affirms the importance of this
research in the context of medical diagnostics in neonatology. Simultaneously, the obtained
results validate the applicability of our approach in a broader scientific context [7,10,19].
It is common practice to analyze confusion matrix indicators to evaluate the performance
of developed algorithms [6,12] providing insights. A value of 0.82 represents a significant
step towards accurate segmentation in terms of its effectiveness and validity in the context
of segmenting lung regions in newborns with RDS. Our algorithm stands out by achieving
exceptional results, making a significant contribution to the field of medical lung region
segmentation in newborns. With a specificity of 0.95, sensitivity of 0.84, global accuracy
of 0.93, precision of 0.81, F-measure of 0.82, Matthew’s correlation coefficient of 0.78, and
Dice and Jaccard indices of 0.82 and 0.71, it attests to the consistency and accuracy of
our algorithm.

The AUC value of 0.89 further emphasizes a high level of performance, especially
in situations with imbalanced classes, confirming the significance and relevance of this
work in medical research, with a focus on lung region segmentation in newborns with
RDS. While other researchers have achieved similar results in terms of analyzing the per-
formance of their algorithms [7,9,15], our algorithm stands out as a significant contribution
to medical diagnostics in this sensitive population segment. These results contribute to a
broader understanding and improvement of the field of medical segmentation in newborns
with RDS.

This study focuses on classical lung segmentation methods, standing out through
an approach based on traditional techniques. Direct comparison with widely used deep
learning techniques becomes challenging due to fundamental differences in methodologies.
However, analyzing algorithm performance through parameters like Dice coefficient, AUC,
sensitivity, and accuracy provides intriguing insights. Training deep learning algorithms
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often involves extensive datasets, leading to improved performances. For instance, Kim M.
and Lee B.-D., as well as Arsalan M. et al., achieved impressive results in deep learning
algorithms, especially in terms of Dice coefficient and sensitivity [32,33], which, compared
to ours, are slightly higher. It is important to note that all the studies mentioned were
focused on region segmentation in the lung and chest area, creating a common framework
for comparison. On the other hand, Khoiriyah S.A. et al. and Zhang J. et al. achieved
significantly lower results in terms of AUC and sensitivity in lung segmentation despite
having extensive data in their databases [34,35], while Siddiqi R achieved results similar
to ours [36].

The results of this study provide significant insights into the effectiveness of applied
therapeutic approaches in newborns with RDS. It is important to note that, although these
results are valuable, the research is not without certain limitations. A small number of
patients were carefully selected, contributing to high sample homogeneity but simultane-
ously limiting the overall generalization of results. Ethical aspects of neonatal research,
especially considering the vulnerable population of premature infants, require a cautious
approach to patient recruitment. Short-term monitoring of therapy effects represents an ad-
ditional limitation, complicating a full understanding of long-term outcomes and potential
complications. This fact emphasizes the necessity of future research covering an extended
time period and conducting a more detailed analysis of the long-term effects of applied
therapeutic strategies.

Integrating MATLAB algorithms directly into clinical practice through the develop-
ment of an intuitive Graphical User Interface (GUI) will facilitate physicians’ seamless
use of algorithms in real time, enhancing the diagnostic process. This implementation
aims to increase the accessibility and practical application of our algorithm in real clinical
settings, enabling physicians to have quick and efficient access to relevant information
from medical images. The use of deep machine learning and MATLAB R2012b GUIs can
significantly speed up the diagnostic process and has found wide application in clinical
practice. This software enables doctors to effectively communicate with data, analyze it,
and make decisions through an intuitive user interface [37–39].

5. Conclusions

In the presented research, we analyzed the effectiveness of applied therapeutic inter-
ventions, exogenous surfactants, and inhaled corticosteroids in prematurely born infants
with RDS. Our analysis of gas parameters in arterial capillary blood showed significant
improvements in respiratory functions after the implemented therapies. Simultaneously,
we developed and applied an innovative algorithm for lung segmentation in radiographic
images of newborns, providing additional value to RDS diagnosis. The combination of a
threshold-based approach and sophisticated morphological operations allowed our algo-
rithm to extract lung regions consistently and accurately, emphasizing its crucial role in
medical segmentation.

Our research not only confirms the crucial role of applied therapies but also highlights
the importance of the developed algorithm in the field of medical research, particularly
in enhancing lung segmentation in the sensitive population of newborns with RDS. We
continue further research with a focus on improving the proposed algorithm through
the development of modules for the classification of radiographic images, aiming for
continuous enhancement of diagnostic methods in neonatology.
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