

39th Danubia-Adria Symposium on Advances in Experimental Mechanics

September 26-29, 2023 Siófok, Hungary

Organized by the Hungarian Scientific Society of Mechanical Engineering (GTE) under the auspices of the Danubia-Adria Society on Experimental Methods

> https://www.danubia-adria.org/ https://gteportal.eu/en/home/

Sponsors

https://www.femalk.hu/en

https://www.econengineering.com/en/

https://www.avl.com/en-hu/locations/avl-hungary-kft

https://www.cadterv.hu/en

http://mogi.bme.hu/

https://www.mm.bme.hu/home

BME FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF APPLIED MECHANICS

https://siofok.hu/

Organization

- Austrian Society of Experimental Strain Analysis (ASESA)
- Croatian Society of Mechanics (HDM)
- Czech Society for Mechanics (CSM)
- German Society of Experimental Structural Analysis (GESA)
- Greek Society of Experimental Mechanics of Materials (GSEMM)
- Hungarian Scientific Society of Mechanical Engineering (GTE)
- Italian Association for Stress Analysis (AIAS)
- Polish Committee for Mechanics of the Polish Academy of Sciences (KMPAN)
- Romanian Association of Stress Analysis and Materials Testing (ARTENS)
- Serbian Society of Mechanics (SSM)
- Slovak Society of Mechanics (SSM)
- Slovenian Society of Experimental Mechanics (SSEM)

Scientific Committee

- <u>Austria</u>: Josef Eberhardsteiner, Wilfried Eichlseder, Bernhard Pichler
- <u>Croatia</u>: Damir Semenski, Lovre Krstulović-Opara, Zvonimir Tomičević
- <u>Czech Republic</u>: Milan Růžička, Robert Zemčík
- Germany: Matthias Bartholmai, Thomas Lehmann
- <u>Greece</u>: Stavros Kourkoulis, Ermioni Pasiou
- <u>Hungary</u>: Rita Kiss, Attila Kossa
- <u>Italy</u>: Francesca Cosmi, Mario Guagliano
- Poland: Zbigniew Kowalewski, Paweł Pyrzanowski
- <u>Romania</u>: Dan Mihai Constantinescu, Ştefan Dan Pastramă, Adrian Pascu
- Serbia: Marko Miloš, Miroslav Živković, Vladimir Milovanović
- The Slovak Republic: František Nový, Eva Tillová
- Slovenia: Igor Emri, Anatolij Nikonov

Conference chairs

<u>Chair</u>: Attila Kossa Co-chair: Rita Kiss

About the Symposium

The Danubia-Adria Society on Experimental Methods (DAS) was founded in 1983. The objective of the Society is "to promote experimental mechanics, covering all aspects from the development to the applications of the methods, for the quality improvement of products and processes and for developing new models of education".

To achieve this purpose the Society intends to: encourage exchanges of teachers and researchers between universities and other technical and scientific societies; develop areas of technological cooperation between researchers and technicians from different countries on bilateral and multilateral basis to contribute to the mutual scientific benefit; organize every year an Annual Symposium on "Development of Methods and Applications of Experimental Mechanics"

The Symposium is mainly focused on experimental mechanics and therefore we expect contributions which contain any experimental mechanics technique in the scientific analysis. The main categories are:

- Structural analysis
- Material modelling
- Biomechanics
- Instrumentation
- Numerical methods combined with experimental mechanics
- Industrial projects

DEVELOPMENT OF AN SOFTWARE APPLICATION FOR POST-PROCESSING OF EXPERIMENTALLY OBTAINED FATIGUE PROPERTIES OF METALLIC MATERIALS

Vladimir MILOVANOVIĆ¹, Marko GICIĆ¹, Miroslav ŽIVKOVIĆ¹, Jelena ŽIVKOVIĆ¹, Vladimir DUNIĆ¹

University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, E-mail: vladicka@kg.ac.rs; gicic998@gmail.com; miroslav.zivkovic@kg.ac.rs; jelena.zivkovic@kg.ac.rs; dunic@kg.ac.rs

1. Introduction

There is no exact data, but many books and scientific articles have suggested that 50% to 90% of all mechanical failures are fatigue failures. Fatigue tests measure the resistance of materials to damage, losing strength and failure under the repeated application of load [1].

The main idea of this paper is to develop a software solution for post-processing of experimentally obtained fatigue properties of metallic materials in accordance with the appropriate standard for statistical analysis ASTM E739-91 [2], using the Python programming language with appropriate libraries.

2. The concept of a software application

The software application for post-processing of experimentally obtained fatigue properties was developed in the Python 3.10.7 programming language [3]. Beside to the standard libraries, additional libraries (NumPy, pandas, matplotlib, tkinter) were used for working with data, drawing graphics, creating a graphical user interface, and Visual Studio Code software [4].

The idea of a general algorithm program for post-processing of experimentally obtained fatigue properties is as follows:

- All obtained results of the experimental tests are collected in an Excel file performed in accordance to ASTM E468-90 standard [5].
- Starting the application is done by running the *.exe file.
- Step 1 is choosing the type of analysis low cycle fatigue or high cycle fatigue.
- Step 2 is to select the appropriate Excel document. For low cycle fatigue, the table contains the following data: modulus of

elasticity E, number of the sample, and their values of total strain amplitude ε_a , stress amplitude σ_a and number cycles to failure *N*. For high cycle fatigue, the table contains the number of samples, stress amplitude σ_a and and number cycles to failure *N*.

- Step 3 is the display of the obtained fatigue properties. For low cycle fatigue: fatigue strength coefficient σ_f , fatigue strength exponent *b*, fatigue ductility coefficient ε_f , fatigue ductility exponent *c*. For high cycle fatigue: fatigue strength coefficient σ_f , fatigue strength exponent *b*, Slope of fatigue strength curve *m*.
- Step 4 is plotting of corresponding *ε*-*N* and *S*-*N* curves in semi-log or log-log representation with all results of the experimental tests.

3. Visualization of a software application

Starting the program (*.exe file) opens the window shown in Figure 1., in which it is necessary to select the type of fatigue properties

Postproccesing Fati	<u> 20</u> 3		×
Select type:			
Lowcycle fatigue	Hig	hcycle fa	tigue
Exit			

Fig. 1. Main window of software application

By selecting one type of fatigue assessment, a new file selection window opens. Selecting a file opens a new window, which offers the option to start a program for post-processing the data of the loaded file, prepared in accordance with ASTM E468-90. By loading the data from the selected file, the calculation procedure of the appropriate fatigue

1

properties of the material is started in accordance with ASTM standard: E739-91. Results of obtained fatigue properties are shown in Figure 2.

LCF Results		1	65		\times	
Fatigue strength coefficient	1099.70	20345501996				
Fatigue strength exponent -0.10766460			67 <mark>1</mark> 63277			
Fatigue ductility coefficient	189893 <mark>0</mark> 6429					
Fatigue ductility exponent	015905959662					
Log-log scale						
σ-Nf	ɛa,e-Nf		εa-Nf			
Semi-log scale						
σ-Nf	εa,e-Nf		εa-Nf			
Exit						
HCF Results		2005	1]	×	
Fatigue strength coefficie	ent 2828.9	323368664	946			
Fatigue strength expone	nt -0.170	802034002	35933	3		
Slope of fatigue strength	n curve 5.8547	312 <mark>14</mark> 6539	58			
Log-log scale		S-N	f]		
Semilog scale		S-N	f			

Fig. 2. Obtained fatigue properties, window with results

On windows shown in Figure 2 user is enabled to plot different types of ε -N curves and S-N curves. ε -N and S-N curves can be represented in semi-log or log-log form with all results of the experimental tests.

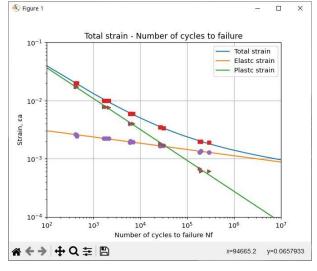


Fig. 3. ε-N curves

www.das2023.hu

Figures 3. and 4. present ε -N curves in log-log representation and S-N curves in semi-log representation as results of using the developed software application for the determination of fatigue properties of metallic materials, respectively.

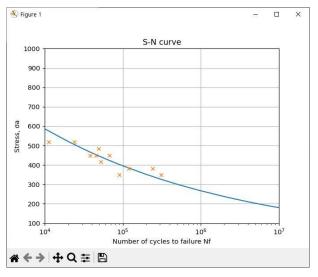


Fig. 4. S-N curves

4. Conclusions

The paper has presented a very useful developed software application for the determination of fatigue properties of metallic materials in accordance with standard ASTM E739-91, using the python programming language. As a result, the user is enabled to display the corresponding fatigue properties of the tested material as well as the corresponding ε -N or S-N curves.

Acknowledgments

This research was funded by Ministry of Technological Education, Science and Development, Republic of Serbia, Grant TR32036.

References

- [1] Stephens, R., Fatemi, A., Stephens, R., Fuchs, H., Metal Fatigue in Engineering, New York: John Wiley & Sons Inc., 2001.
- [2] ASTM: E739-91; Standard Practice for Statistical Analysis of Linear or Linearised Stress-Life (S–N) and Strain-Life ("-N) Fatigue Data. ASTM International: West Conshohocken, PA, USA, 2004.
- [3] Python, https://docs.python.org/, Accessed October, 2022.
- [4] Visual Studio Code, https://code.visualstudio.com/, Accessed October, 2022.
- [5] ASTM: E468-90; Standard Practice for Presentation on Constant Amplitude Fatigue Test Results for Metalic Materials. ASTM International: West Conshohocken, PA, USA, 2004.