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Szmidla, J.; Marjanović, N.;
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Abstract: This research aims to show the effects of adding cardinality constraints to limit the number
of different cross-sections used in simultaneous sizing and shape optimization of truss structures. The
optimal solutions for sizing and shape optimized trusses result in a generally high, and impractical,
number of different cross-sections being used. This paper presents the influence of constraining the
number of different cross-sections used on the optimal results to bring the scientific results closer to
the applicable results. The savings achieved using the cardinality constraint are expected to manifest
in more than just the minimization of weight but in all the other aspects of truss construction, such
as labor, assembly time, total weld length, surface area to be treated, transport, logistics, and so on.
It is expected that the optimal weight of the structures would be greater than when not using this
constraint; however, it would still be below conventionally sized structures and have the added
benefits derived from the simplicity and elegance of the solution. The results of standard test examples
for each different cardinality constraint value are shown and compared to the same examples using
only a single cross-section on all bars and the overall optimal solution, which does not have the
cardinality constraint. An additional comparison is made with results of just the sizing optimization
from previously published research where authors first used the same cardinality constraint.

Keywords: truss optimization; cardinality; Euler buckling; optimization constraints; sizing and
shape optimization

1. Introduction

Advancements in structural truss optimization, since the start of the digital age, were
largely limited in complexity by the processing power and storage capacity of the computers
available in the past. To have the optimal solutions made applicable in the real world,
the gradual addition of constraints, which kept up with increases in computational speed
and storage space, has allowed for results that are closer and closer to being directly used.
Furthermore, this can now be carried out without the need for additional revisions and
modifications, which would require skilled and experienced engineers.

The first optimization results were obtained only for the simple structures; they used
continuous variables for sizing, resulting in designs that were practically impossible to
construct. The sizes are generally allowed to vary within a millimeter or smaller range,
which would be prohibitively expensive to produce and require very narrow tolerances
since these structures are initially optimized without a safety factor, and any dimensional
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variation could result in structural failure. In the vast majority of cases, truss members
are assembled from standard cross-section elements, which are produced in a specific set
of different sizes. Due to production limitations, these bars are also made within specific
dimensional tolerances. Adding discrete variables for cross-sections was the first step in
bringing the optimal solutions closer to applicable results.

Researchers in [1] used continuous sizing variables, as recently as 2015, to show the
efficacy of their algorithm on truss examples. The change to discrete cross-section variables
results in greater optimal weights, as presented in [2,3]. The authors of [4] developed an
optimization algorithm for more efficient truss optimization, tested on a continuous and a
discrete variable cross-section problem of a 25-bar truss.

In the past few decades, the use of dynamic buckling constraints has become increas-
ingly prevalent as these are the constraints that drastically increase the complexity of the
problem. These are nonlinear constraints and result in creating a non-convex feasible
solution domain. The use of evolutionary-based algorithms has allowed these problems to
be solved and able to avoid being trapped in local optima. Even with improved algorithms,
many papers, such as [5], consider fixed values for buckling constraints, even though this
does not guarantee applicable results, or even the minimal possible weight while main-
taining stability. Dynamic buckling constraints were used by authors in [6] to demonstrate
the improvement in achieving the minimal weight using their proposed algorithm and
compared their results to [7], which used these constraints on various test examples. A
sizing optimization comparison, for example, with the Euler buckling constraint turned
on and off in [8], shows the drastic increase in optimal weight due to the increase in the
cross-sections of the compressed bars. The authors presented a new algorithm called
PO (political optimization) in [9] and successfully used it to find the optimal solutions in
standard test examples with the addition of buckling constraints. This paper uses con-
tinuous cross-section sizing variables, making the results inapplicable in practice. The
authors in [10–13] also successfully showed the implementation of Euler buckling in truss
optimization problems.

Recently, the authors in [14–19] used different approaches to add a cardinality con-
straint to truss optimization models. Researchers in [14] considered static loading problems
by applying buckling constraints to compressed bars for sizing optimization. The re-
searchers in [15] considered the effects of dynamic actions introducing natural frequency
constraints in sizing and shape optimization, which were influenced by work carried out
in [18,19]. The authors in [19] considered just sizing as well as simultaneous sizing and
shape optimization using typical stress and displacement constraints and added the Eu-
ler buckling constraints using a fixed coefficient rather than the moment of inertia, thus
showing the effects of limiting the number of different cross-sections being used.

This research aims to bridge the gap between optimization results and applicable
structures. Expanding on the previous work, this research also uses minimal element
length and dynamic Euler buckling in addition to the standard constraints, as well as
recording results for each different number of cross-sections used, at least up to the optimal
number when this constraint is not used. Some of the most frequently used standard test
examples are used to demonstrate the effects of having cardinality constraints.

The paper is structured as follows: in Section 2, the mathematical formulations of
existing, known constraints are formulated in the context of sizing and shape optimization
use. Section 3 gives the mathematical and logical explanation of the cardinality constraint.
Section 4 shows the configurations for the test examples which were used. The results are
presented in Section 5 with comparisons to sizing optimized results from the literature,
which also use the cardinality constraint, as well as the overall optimum for each example.
Finally, conclusions are drawn in Section 6, giving an overview of what was carried out
and suggesting future research directions.
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2. Simultaneous Truss Sizing and Shape Optimization

Sizing optimization considers cross-sections as variables. This research looks at cross-
section variables as a discrete set of values to achieve applicable results. The objective
function is to find the combination of cross-sections which give a minimal weight while
subjected to stress and displacement constraints. Most truss sizing problems found in the
literature view the minimal weight design problem as follows:

minW(A) =
i=n
∑

i=1
ρi Aili with A = (A1, . . . , An)

subjected to


Amin ≤ Ai ≤ Amax for i = 1, . . . , n
σmin ≤ σi ≤ σmax for i = 1, . . . , n
umin ≤ uj ≤ umax for j = 1, . . . , k

, (1)

where W is the weight of the truss, n is the number of truss elements, Ai is the area of the
ith element cross-section, li is the length of the ith element, σi is the stress of the ith element,
uj is the displacement of the jth node, and k is the number of nodes.

This type of optimization has shown the greatest possibility of decreasing the overall
weight when compared to shape and topology optimizations individually. In most cases in
the literature, the standard test examples used full, round cross-sections. However, any
number of different shapes and dimensions of cross-section profiles can be used. This
is only transferable to other cross-section shapes for elements in tension. Compressed
elements must also be tested for buckling (2). Euler buckling constraints also consider
the minimum area moment of inertia, which is why the results of these examples are only
useful for the specific profile shape with which they are optimized.

The Euler buckling is added to obtain results that can be applied in practice. The
iterative change in the moment of inertia, due to the change in cross-sections, also changes
the Euler critical buckling constraint in each iteration (2). This constraint is, therefore,
considered to be a dynamic constraint. Its addition significantly increases the complexity
of the optimization problem. The constraint used in this research is the Euler critical load,
as the stress comparison uses the same area on both sides of the expression.

σ
comp
Ai ≤ σKi

where σ
comp
Ai =

Fcomp
Ai
Ai

and σKi =
FKi
Ai

FKi =
π2 ·Ei · Ii

l2
i∣∣∣Fcomp

Ai

∣∣∣ ≤ FKi for i = 1, . . . , n

, (2)

where σAi is the axial compression stress of the ith bar element, and σKi is the critical
buckling stress of the ith element; Fcomp

Ai is the axial compression force, FKi is the Euler’s
critical load of the ith element, Ei is the ith element’s modulus of elasticity Ii is the minimum
moment of inertia of the ith element’s cross-section, and li is the length of the ith element.
The constraint from Equation (2) is added to the existing constraints from Equation (1).

Shape optimization considers the positions of nodes as variables and allows for drastic
changes in shape, which are not always an obvious solution. It is used individually to
achieve a lower weight than the initial concept and with a set of previously calculated bar
cross-sections. This is a significant limitation, as the changes in shape can decrease stress
and, therefore, will result in oversized cross-sections being used, thereby wasting material.

This research also uses a minimal element length constraint to avoid excessively
short elements, which would be impractical to implement. The value of each example
is determined by experience or design guidelines given in standards or literature. The
constraint is formulated as follows:

li ≥ lmin = for i = 1, . . . , n

li =
√
(xib − xia)

2 + (yib − yia)
2 , (3)



Materials 2024, 17, 1390 4 of 17

where element length li is from 1 to n, which is between nodes a and b with coordinates
(xia, yia) and (xib, yib), respectively. The shape optimization node coordinate constraints
implicitly define the maximal element values; therefore, they are unnecessary. If there
were a need for a maximal element length constraint, the same method could be used to
create it. This could be an interesting constraint for limiting the bar lengths not to exceed
the stock lengths to avoid extensions. This constraint supplements the node coordinate
bounds to prevent a pileup of nodes close to one location, resulting in excessively short
elements. The minimal length of elements also ensures a reasonable amount of space for
beam connections and access to the joint for establishing those connections. For example,
in the 10-bar truss example in Section 4.1, nodes 1 and 3 could even be located in the same
position, resulting in two elements occupying the same space while having one element
with a length of 0.

A sequential approach, compared to the simultaneous one explored in [20], showed
the benefits of the simultaneous optimization of structural aspects. Using sizing and shape
optimization simultaneously is expected to give better results than each individually or
even sequentially.

In this research, the same penalty function is assigned to all the constraints. The
penalty function multiplies the invalid result by a large number in case any single or
multiple constraints were not met.

3. Constraining the Number of Different Cross-Sections Used

Previous research [14] has shown that the use of sizing optimization can result in
solutions that are impractical to construct. Namely, if sizing optimization results in a truss
with a large number of different cross-sections, that solution, though good on paper, would
not find application in practice since the logistics and assembly of such a structure would
be unnecessarily more complex. This is, therefore, another constraint, which needs to be
addressed to achieve actual optimal results, [18]. Adding another constraint drastically in-
creases the complexity of solving the already multi-modal discontinuous function; however,
it is paramount for achieving applicable results.

The mathematical formulation for constraining the number of different cross-sections
proposed in this paper is given by:∣∣{AG

1 , AG
2 , AG

3 , . . . , AG
n
}∣∣ = m

m ≤ mmax
, (4)

where AG
n is the cross-section geometry area assigned to the nth element, m is the cardinal

of the used cross-section area geometries set, and mmax is the maximal allowed number of
different cross-sections.

To implement this constraint, authors have developed an original software in Rhinoceros 6’s
Grasshopper and Karamba3D 2.2.0 using two variable sets. One set includes m variables, each
of which can adopt a cross-section diameter from the discrete set of all available cross-sections.
The other set of variables assigns a cross-section to each bar from the previous set of variables,
guaranteeing that the constraint set by (4) is always satisfied. This is illustrated in Figure 1 with
a generalized example.

In this research, the numbers of different cross-sections used were set as fixed values to
see the influence of limiting the number of different cross-sections. The first set of variables
was set to have all different cross-sections selected, and the second was forced to have at
least one of each different cross-section from the set, thereby changing the inequality in
expression (4) to an equality, with mmax different first variables. This was carried out to plot
the changes for each number.



Materials 2024, 17, 1390 5 of 17Materials 2024, 17, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 1. General example of constructing the variable sets. 

4. Test Examples 
Sizing and shape optimization problems are the most frequently demonstrated in the 

literature using examples of 10-, 17-, and 25-bar truss problems. Those examples were 
previously analyzed in [2] and in [14], in particular, where the number of different cross-
sections was first constrained for sizing optimization. All examples use dynamic Euler 
buckling constraints for compressed elements. Adding this constraint ensures that the op-
timal truss configurations can stay in the elastic zone and maintain stability under the 
defined loads. This research uses discrete values for the cross-section areas from previ-
ously published research. The new cardinality constraint for each example is set to an 
exact value of different cross-sections allowed for that optimization run. This constraint is 
suggested to be used to set a maximal, not exact number of cross-sections to be used, as is 
the case here. The reason for using exact numbers in this research is to show optimal val-
ues for each different number to find trends in the change in cardinality. The examples 
were optimized for each number of different cross-section profiles, which was smaller 
than the number of cross-sections in the optimal solution and for a few numbers greater 
than that number. The examples with a greater number of different cross-sections than 
the optimal ones were included to observe the trend and are not considered useful in 
practice. 

4.1. Planar 10-Bar Truss Problem 
The planar 10-bar truss is laid out as shown in Figure 2. Bars are made of aluminum 

6063-T5, with a Young modulus of 0.7·105 MPa and a density of 2.7·g/cm3. A point load is 
applied to nodes (2) and (4) with a value of F = 444.82 kN in the −y direction. 

 
Figure 2. Planar 10-bar truss layout with labeled bars (1–10) and nodes ((1) to (6)). 

Figure 1. General example of constructing the variable sets.

4. Test Examples

Sizing and shape optimization problems are the most frequently demonstrated in the
literature using examples of 10-, 17-, and 25-bar truss problems. Those examples were
previously analyzed in [2] and in [14], in particular, where the number of different cross-
sections was first constrained for sizing optimization. All examples use dynamic Euler
buckling constraints for compressed elements. Adding this constraint ensures that the
optimal truss configurations can stay in the elastic zone and maintain stability under the
defined loads. This research uses discrete values for the cross-section areas from previously
published research. The new cardinality constraint for each example is set to an exact value
of different cross-sections allowed for that optimization run. This constraint is suggested
to be used to set a maximal, not exact number of cross-sections to be used, as is the case
here. The reason for using exact numbers in this research is to show optimal values for each
different number to find trends in the change in cardinality. The examples were optimized
for each number of different cross-section profiles, which was smaller than the number
of cross-sections in the optimal solution and for a few numbers greater than that number.
The examples with a greater number of different cross-sections than the optimal ones were
included to observe the trend and are not considered useful in practice.

4.1. Planar 10-Bar Truss Problem

The planar 10-bar truss is laid out as shown in Figure 2. Bars are made of aluminum
6063-T5, with a Young modulus of 0.7·105 MPa and a density of 2.7·g/cm3. A point load is
applied to nodes (2) and (4) with a value of F = 444.82 kN in the −y direction.
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Constraints include a maximal displacement of ±0.0508 m of all nodes in all directions,
maximal axial stress of ±172.37 MPa for all bars, and the Euler buckling constraints for
all the compressed bars. A discrete set of variables for the full circular cross-sections was
used from previously published research. We decided to use the full-circular cross-sections,
which are the standard test examples widely recognized in the field, to prove that our
research was valid, and with comparable results. The hollow circular cross-sections might
be more “real-world’ examples, which we shall consider in future research. There are
50 possible cross-section diameters: 3, 4, 6, 6.5, 7, 7.5, 8, 8.5, 9, 10, 11, 12, 12.5, 14, 15, 16, 17.5,
18, 19, 20, 22.5, 25, 27.5, 28, 30, 31.5, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5,
65, 70, 75, 80, 85, 90, 95, 100, 110, 125, given in mm. The coordinates of nodes (3) and (4)
are variable in the x and y directions within the bounds of the initial geometry (±9.144 m
and −9.144 m in the x direction for nodes (3) and (4), respectively, and −9.144 m in the
y direction for both nodes).

4.2. Planar 17-Bar Truss Problem

The planar 17-bar truss problem is laid out as shown in Figure 3. Bars are made of steel
with a Young modulus of 2.1 × 105 MPa and a density of 7.4·g/cm3. A load of F = 444.82 kN
is applied in node (9) in the −y direction.
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Displacement is constrained to ±0.0508 m for all nodes in both directions, and Euler
buckling constraints are used for all compressed bars. The discrete set of variables, for
the full circular cross-sections, is used from the previous example. There are 49 possible
cross-section diameters, ranging from 6 mm (28.3 mm2) to 250 mm (49,089.4 mm2) [14]. The
coordinates of nodes (3) to (8) are variable in the x and y direction, and the y coordinate of
node (9) is variable. Nodes (3) to (8) can all vary from 0 to 10.16 m in the x direction and
−2.54 to 5.08 m in the y direction. Node (9) is limited from 0 to 2.54 m in the y direction.

4.3. Spatial 25-Bar Truss Problem

The spatial 25-bar truss problem is shown in Figure 4. The material characteristics and
the discrete set of variables for full round cross-sections are the same as in the 10-bar truss
problem. The force vectors in the nodes are given in (x, y, z) components as follows: node
(1) (4.448, −44.48, −44.48) kN, node (2) (0, −44.48, −44.48) kN, node (3) (2.224, 0, 0) kN,
and node (6) (2.669, 0, 0) kN. The truss cross-sections are grouped into the following eight
sets: 1 (A1), 2 (A2–A5), 3 (A6–A9), 4 (A10–A11), 5 (A12–A13), 6 (A14–A17), 7 (A18–A21),
and 8 (A22–A25) [18].
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Constraints include a tensile stress limit of 40 kN for all bar groups, a maximal displace-
ment of ± 0.009 m for all nodes in all directions, and Euler buckling constraints used for all
compressed bars. The shape variables for this example are as follows: 0.508 m ≤ x4, x5, −x3,
−x6 ≤ 1.524 m; 1.016 m ≤ y3, y4, −y5, −y6 ≤ 2.032 m; 2.286 m ≤ z3, z4, z5, z6 ≤ 3.302 m;
1.016 m ≤ x8, x9, −x7, −x10 ≤ 2.032 m; and 2.540 m ≤ y7, y8, −y9, −y10 ≤ 3.556 m.

5. Results

All test examples were optimized in the original software created by the authors, using
a genetic algorithm due to its availability and favorable characteristics. Any other heuristic
optimization algorithm could be used with this set of constraints. Each example was
optimized ten times for each of the specific numbers of different cross-section constraints.
The results presented in this research are the best from each set of results. For each example,
multiple solutions, of the ten repeated optimizations, for the particular example were
close to the best results, showing that the best solutions are near the global optima. It
should be noted that the termination criteria (maximal stagnant population of 50), as well
as population size (50), maintained a population of 5%, and inbreeding (75%) for each
optimization were the same for all examples. Combinatorial methods (derivative-free
algorithms) are naturally suited for discrete or integer optimization problems. However,
their use can be hampered when the number of design variables increases. In this regard,
gradient-based methods are faster but can easily become trapped in local minima. Hence,
there is fertile ground for the development of new algorithms. This research focused on the
effects of simultaneously size and shape design variables in a discrete–continuous mixed
optimization setting using a well-known algorithm.

For each of the models, the solution was represented by one cross-section (the same
cross-section for the entire structure), the sizing variables were set to only allow for one
cross-section for all bars and simultaneous shape optimization was conducted. Table 1 gives
the cross-section areas of the optimal models for 10-bar truss sizing and shape optimization
according to the number of different cross-sections used. Note that in the first column the
solution with one cross-section is given, where all the elements have the same cross-section
is an optimal solution, where sizing only allows for one cross-section in the simultaneous
optimization. The parameter m is set to be equal to mmax, which in that case is 1. Basically,
the whole structure is sized according to the most stressed element in that configuration.
The cross-sections are presented by areas, given in cm2, and not by diameters. A reason for
this is for the sake of comparison, since this is the usual way in which the cross-sections
were presented in the vast majority of previous research. That is probably a remnant from
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the period before the buckling was considered, as in that case any profile with the same
area would “work” in these situations, if only it were not for buckling.

Table 1. Cross-section areas of optimal models for 10-bar truss sizing and shape optimization.

Element No.
Cross-Section Areas According to the Number of Different Cross-Sections Used, cm2

1 2 3 4 5 6 7 8 9 10

1 415.476 380.133 380.133 213.825 176.715 176.715 176.715 176.715 176.715 176.715
2 415.476 56.745 56.745 63.617 44.179 44.179 50.265 33.183 122.718 132.732
3 415.476 380.133 380.133 380.133 380.133 380.133 380.133 380.133 415.476 415.476
4 415.476 380.133 380.133 380.133 380.133 380.133 380.133 346.361 380.133 380.133
5 415.476 56.745 56.745 63.617 44.179 44.179 44.179 28.274 1.131 1.131
6 415.476 56.745 56.745 63.617 44.179 44.179 44.179 28.274 23.758 23.758
7 415.476 56.745 1.131 1.131 1.131 1.131 1.131 1.131 56.745 56.745
8 415.476 380.133 380.133 380.133 380.133 380.133 380.133 380.133 226.980 226.980
9 415.476 56.745 56.745 63.617 95.033 95.033 95.033 95.033 122.718 122.718

10 415.476 56.745 1.131 1.131 1.131 2.011 2.011 2.011 7.069 7.069
Weight, kg 8866.484 4440.629 4084.884 3869.295 3812.595 3813.71 3824.721 3685.142 3775.581 3781.66

Table 2 shows the optimal weights and differences from the solution with a single
cross-section and from the optimal solution for the 10-bar truss sizing and shape problem.
In this example, the optimal solution uses eight different cross-sections. The optimal
coordinates of points 1 and 3 are given in Table 3 for each solution with a different number
of cross-sections.

Table 2. Optimal weights and differences for the 10-bar truss sizing and shape problem.

No. of Different
Cross-Sections Weight, kg

Difference from the
Solution with a Single

Cross-Section, %

Difference from the
Optimal Solution, %

1 8866.484 - 140.601
2 4440.629 49.917 20.501
3 4084.884 53.929 10.847
4 3869.295 56.360 4.997
5 3812.595 57.000 3.459
6 3813.71 56.987 3.489
7 3824.721 56.863 3.788
8 3685.142 58.437 -
9 3775.581 57.417 2.454
10 3781.66 57.349 2.619

Table 3. Optimal coordinates of points according to the number of different cross-sections used for
the 10-bar truss example.

Number of
Cross-Sections Used

Coordinate

x1 y1 x3 y3

1 11.487 1.427 11.312 3.126
2 11.561 3.172 6.817 7.235
3 11.524 3.963 6.037 7.326
4 11.635 3.97 5.957 7.405
5 11.600 3.975 5.916 7.452
6 11.600 3.972 5.916 7.452
7 11.600 3.972 5.916 7.452
8 11.596 4.284 5.789 8.003
9 10.230 3.516 8.888 5.305

10 10.230 3.516 8.888 5.305
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Figure 5 shows the trend of optimal weight results depending on the number of
different cross-sections used for the 10-bar truss example. It compares them to the weights
obtained in [14], where only sizing optimization was used with this constraint.
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Figure 5. Comparison of results for sizing optimization [14] and sizing shape optimization from this
research for different numbers of cross-sections of the 10-bar truss problem.

The 17-bar truss example was only optimized for up to 10 different cross-sections.
This number was chosen since the optimal solution for this problem uses eight different
cross-sections, which is already a very high number, and further increasing the number of
different cross-sections would not yield significant results.

Table 4 shows the optimal weights and differences from the solution with a single
cross-section and from the optimal solution for the 17-bar truss sizing and shape problem.
Table 5 gives the cross-section areas of the optimal models for the 17-bar truss sizing and
shape optimization according to the number of different cross-sections used.

Table 4. Optimal weights and differences for the 17-bar truss sizing and shape problem.

No. of Different
Cross-Sections Weight, kg

Difference from
the Solution with

a Single Cross-Section, %

Difference from
the Optimal
Solution, %

1 2720.745 - 100.663
2 1647.07 39.463 21.476
3 1471.678 45.909 8.541
4 1395.838 48.696 2.947
5 1361.614 49.954 0.423
6 1355.876 50.165 -
7 1363.586 49.882 0.569
8 1364.098 49.863 0.606
9 1373.841 49.505 1.325
10 1373.769 49.508 1.320
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Table 5. Cross-section areas of optimal models for 17-bar truss sizing and shape optimization.

Element No.
Cross-Section Areas According to the Number of Different Cross-Sections Used, cm2

1 2 3 4 5 6 7 8 9 10

1 86.590 86.590 56.745 56.745 63.617 56.745 56.745 56.745 56.745 56.745
2 86.590 3.801 15.904 15.904 12.566 19.635 15.904 15.904 15.904 15.904
3 86.590 86.590 86.590 86.590 86.590 86.590 95.033 95.033 95.033 95.033
4 86.590 3.801 15.904 15.904 12.566 19.635 15.904 15.904 15.904 15.904
5 86.590 86.590 56.745 56.745 63.617 56.745 56.745 56.745 56.745 56.745
6 86.590 3.801 15.904 15.904 12.566 19.635 15.904 15.904 15.904 15.904
7 86.590 86.590 86.590 86.590 63.617 78.540 78.540 86.590 86.590 86.590
8 86.590 3.801 15.904 15.904 1.767 4.909 6.158 7.069 8.042 8.042
9 86.590 86.590 56.745 44.179 50.265 44.179 44.179 38.485 38.485 38.485

10 86.590 3.801 15.904 15.904 1.767 4.909 6.158 7.069 8.042 7.069
11 86.590 86.590 56.745 56.745 63.617 56.745 63.617 63.617 63.617 63.617
12 86.590 3.801 15.904 15.904 1.767 4.909 6.158 7.069 8.042 7.069
13 86.590 86.590 15.904 15.904 50.265 19.635 15.904 15.904 15.904 15.904
14 86.590 86.590 56.745 44.179 50.265 44.179 44.179 38.485 33.183 33.183
15 86.590 86.590 56.745 44.179 50.265 44.179 44.179 44.179 44.179 44.179
16 86.590 3.801 56.745 44.179 50.265 44.179 44.179 44.179 44.179 44.179
17 86.590 86.590 56.745 56.745 50.265 56.745 56.745 56.745 56.745 56.745

Weight, kg 2720.745 1647.07 1471.678 1395.838 1361.614 1355.876 1363.586 1364.098 1373.841 1373.769

The optimal coordinates of points 1 to 9 are given in Table 6 for each solution with
a different number of cross-sections. In this example, the x coordinate of point 9 is not
a variable, as moving this point in the x direction would decrease the total length of the
structure, and this is not considered for this particular example.

Table 6. Optimal coordinates of points according to the number of different cross-sections used for
the 17-bar truss example.

Coordinate
Number of Cross-Sections Used

1 2 3 4 5 6 7 8 9 10

x3 2.652 2.722 2.741 2.65 2.599 2.651 2.664 2.599 2.562 2.563
y3 0.123 −0.247 −0.269 −0.278 −0.342 −0.303 −0.301 −0.301 −0.288 −0.256
x4 3.12 1.524 1.532 1.614 1.518 1.604 1.613 1.615 1.677 1.706
y4 2.125 2.498 2.436 2.41 2.455 2.411 2.418 2.418 2.408 2.405
x5 5.192 5.676 4.99 5.297 4.922 5.45 5.516 5.525 5.749 5.756
y5 0.373 −0.136 −0.285 −0.295 −0.236 −0.272 −0.279 −0.275 −0.2 −0.199
x6 5.184 3.993 4.029 3.983 3.935 4.068 4.071 4.071 3.897 3.917
y6 1.881 1.833 2.194 2.231 2.356 2.356 2.417 2.421 2.4 2.415
x7 6.665 6.949 7.699 8.097 7.682 8.16 8.232 8.289 8.392 8.35
y7 0.296 −0.144 −0.445 −0.327 −0.111 −0.205 −0.228 −0.191 0.025 −0.004
x8 6.649 6.385 7.085 7.488 7.306 7.766 7.791 7.791 8.197 8.281
y8 1.917 1.338 1.927 1.921 1.815 1.909 1.929 1.939 1.947 2.015
y9 0.828 0.343 0.718 0.748 0.327 0.584 0.704 0.769 0.816 0.835

As was the case with the 10-bar truss example, coincidentally, the 17-bar truss example
also gives the lowest optimal weight using eight different cross-sections.

Figure 6 shows the trend of optimal weight results depending on the number of
different cross-sections used for the 17-bar truss example and compares them to the weights
achieved in [14]) where only sizing optimization was used with this new constraint. As was
expected, the addition of simultaneous shape optimization resulted in a greater decrease in
overall weight for all numbers of different cross-sections used.
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Figure 6. Comparison of results for sizing optimization [14] and sizing shape optimization from this
research for different numbers of cross-sections of the 17-bar truss problem.

It is interesting to note that the optimal weights for solutions using more different
cross-sections are negligibly greater than the optimal solution. At the same time, the sizing
optimization results show a more considerable variance in weight around the optimal
number of cross-sections.

For the 25-bar truss sizing and shape problem, Table 7 shows the optimal weights
and differences between the solution with a single cross-section and the optimal solution.
The key difference with this example, aside from it being a spatial problem, is that the
cross-sections are grouped, so multiple bars in certain sections are already grouped,
and the number of different cross-sections in any of the eight cross-section groups is
being considered.

Table 7. Optimal weights and differences for the 25-bar truss sizing and shape problem.

No. of Different
Cross-Section Groups Weight, kg

Difference from
the Solution with

a Single Cross-Section, %

Difference from
the Optimal
Solution, %

1 578.458 - 39.855
2 530.288 8.327 28.209
3 479.944 17.030 16.037
4 479.164 17.165 15.849
5 474.359 17.996 14.687
6 413.612 28.497 -
7 442.939 23.428 7.090
8 442.895 23.435 7.080

The optimal coordinates of the points, which are also grouped according to symmetry
in this example, are given in Table 8, which gives the cross-section areas of the optimal
models for the 25-bar truss sizing and shape optimization according to the number of
different cross-section groups used. The number of different cross-sections in groups used
for the optimal solution in this case is 6. Table 9 presents the optimal coordinates for each
solution with a different number of cross-section groups.
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Table 8. Cross-section areas of optimal models for 25-bar truss sizing and shape optimization.

Element
Group No.

Cross-Section Group Areas According to the Number of Different Cross-Sections Used, cm2

1 2 3 4 5 6 7 8

1 28.274 12.566 1.131 4.909 4.909 1.131 1.131 2.011
2 28.274 33.183 33.183 28.274 28.274 23.758 23.758 23.758
3 28.274 33.183 33.183 28.274 28.274 33.183 33.183 33.183
4 28.274 12.566 1.131 4.909 1.131 1.131 1.131 1.131
5 28.274 12.566 7.069 4.909 4.909 4.909 4.909 3.142
6 28.274 12.566 7.069 15.904 15.904 7.069 7.069 7.069
7 28.274 33.183 33.183 28.274 28.274 28.274 28.274 28.274
8 28.274 33.183 33.183 33.183 33.183 28.274 38.485 38.485

Weight, kg 578.458 530.288 479.944 479.164 474.359 413.612 442.939 442.895

Table 9. Optimal coordinates of points according to the number of different cross-sections used for
the 25-bar truss example.

Node Coordinates

No. of Different
Cross-Section

Groups

−x3, x4,
x5, −x6

[m]

y3, y4,
−y5, −y6

[m]

z3, z4,
z5, z6
[m]

−x7, x8,
x9, −x10

[m]

1 1.016 2.374 4.888 2.032
2 1.016 2.232 5.506 2.032
3 1.016 2.388 5.278 2.032
4 1.016 2.29 5.132 2.032
5 1.016 2.26 5.136 2.032
6 1.016 2.6 4.86 2.032
7 1.016 2.734 4.572 2.032
8 1.016 2.684 4.672 2.032

Figure 7 shows the trend of optimal weight results depending on the number of
different cross-sections used for the 25-bar spatial truss example. It compares them to the
weights achieved in [14], where only sizing optimization was used with this new constraint.
Once again, the addition of simultaneous shape optimization resulted in a greater decrease
in weight overall for all numbers of different cross-sections used.
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Figure 7. Comparison of results for sizing optimization [14] and sizing shape optimization from this
research for different numbers of cross-section groups of the 25-bar truss problem.

The optimal structure shapes result from limiting the number of different cross-sections
that differ from the initial model. Depending on the number of shape variables, the changes
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are more drastic between solutions with different numbers of cross-sections with a larger
number of variables. In practice, trusses of these and similar shapes would be analytically
calculated to have three to four different cross-sections. Figures 8–10 show the overall
optimal solutions without limiting the number of cross-sections and the solutions with only
three different cross-sections.
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Figure 10. Optimal solutions of the 25-bar spatial truss problem where (a) 6 and (b) 3 different
cross-sections are used in groups.

Visually, there is a small difference in the optimal and three cross-section solutions for
the 10-bar truss problem. The optimal shape seems to be with node (1) along bar 9. This
suggests that topological optimization could potentially improve upon this solution by
eliminating doubled elements along the position of bar 9. The bars in compression/tension
are the same in this shape configuration.

All the solutions of the 17-bar truss, except the solution that uses one cross-section for
all the bars, have the position of nodes in the bottom row (3, 5, and 7) below 0 and node (7)
above its initial position.
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Figure 11 shows the differences in % from the respective overall optimal solutions,
based on the number of different cross-sections used, for all three examples to illustrate the
trend of weight decrease. The graph is shown with all values and a scaled version of the
below 50% values to better illustrate the variations that are too close in the image when the
graph is in the 0–150% range.
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6. Conclusions

This research results from the efforts made by the authors towards a broader set of
goals in trying to find ways to bring the optimization of truss structures closer to the
practical problems they represent. In previous years, significant steps were taken to add
standard constraints which better represent the actual engineering constraints in designing
trusses. The first step towards bringing the truss optimization problem closer to applicable
solutions was the implementation of discrete variables. The next major issue was adding a
dynamic buckling constraint for compressed bars to avoid structures that would buckle
under the load. The addition of each new constraint resulted in drastic increases in the
problem’s complexity and the discontinuation of the non-linear, non-convex, and implicit
search space.

By constraining the number of different cross-sections used, this research shows that
there is a possibility of obtaining better results than through the conventional design
methods while using a reasonable number of different cross-sections. The use of a large
number of different cross-sections unnecessarily increases the complexity of the designed
structure and makes it impractical for on-site assembly, as well as for logistics. The use
of a large number of different cross-sections is also wasteful as there are more different
cross-sections of unused stock when cutting the bars to size. Using a smaller number of
different cross-sections simplifies the structure, as well as decreasing the possibility of
human error during the cutting and assembly process.
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This paper examines the consequences of using all the aforementioned constraints on
typical test examples with 10, 17, and 25 bars. Between one and four different cross-sections
are used, in practice, for most truss designs. The results for many different numbers of
different cross-sections (except for the 17-bar example where the maximum number was
10 for practical reasons) are presented in this paper for all three examples. As a visual
representation of the practical results, the figures are shown for overall optimal solutions
(without the maximum number of different cross-sections constraint) and correspondingly,
limited to three different cross-sections.

Two main parameters were compared in this research: the difference in weight from
the solution, which uses the same cross-section for all the bars, and the difference in
weight from the overall optimal solution. The 10-bar truss has an overall optimal weight of
3685.142 kg using ten different cross-sections, the 17-bar 1355.876 kg using six different cross
sections, and the 25-bar 413.612 kg using six different cross-sections in 8-bar groups. The
planar truss results, which use four different cross-sections, weigh less than 5% more than
their corresponding overall optimal solutions, while using three different cross sections
results in a ~10% increase (10.847% for the 10-bar, and 8.541% for the 17-bar example).
The 25-bar truss is a specific problem, more than just a spatial problem, as the bars in this
example are grouped so that each group has the same cross-section. It is hypothesized
that the reason this example does not follow the same trend in weight decrease, according
to the number of different cross-sections used, is due to this grouping of elements, as
well as the limited variability of node positions. The weight of three and four different
cross-section models for the 25-bar example do not vary by a lot; therefore, using three
instead of four different cross-sections in this example would result in an increase of 0.118%
from the four different cross-sections, and 16.037% from the overall optimal solution.

All the examples have less than a 20% increase in weight compared to the optimal for
solutions with three and four different cross-sections (less than 11% for planar trusses). This
means that using the mmax < 3 or mmax < 4 constraints would not result in drastic increases
in weight, but would result in practically applicable results.

Results from this research were also compared to the corresponding results of the
just sizing optimization of the same examples, according to the number of different cross-
sections used, taken from previous work. The simultaneous addition of shape optimization
resulted in an average decrease in weight of optimal results of approximately 30% across
all corresponding 10-bar truss solutions with different numbers of different cross-sections
used; approximately 18% for the 17-bar truss problem, and approximately 37% average
decrease for the 25-bar problem. By using the sizing and shape optimization, the weight
of trusses limited to three different cross-sections were ~31% less compared to only sizing
optimized for the 10-bar truss, ~20% for the 17-bar truss, and ~38% for the 25-bar truss,
while decreases when using four different cross-sections were approximately 31%, 21%,
and 35%, respectively.

Once the optimal number of different cross-sections is greater than that of the global
optimal number, the weight of the structure gradually increases. This is most likely due
to the algorithm being forced to use that particular number, and therefore, one or more
bars have to be oversized. The increase is insignificant; however, since these results are
practically inapplicable, their purpose is just to show that the global optimal number of
different cross-sections is achieved without the cardinality constraint.

The simultaneous optimization of sizing and shape yields results with a lower overall
weight than when just using sizing optimization, leading to a more economical solution
overall. Weight optimization contributes not only to the direct cost savings of material used
but also to other aspects such as transport, logistics, surface coverage, etc. It is evident
from the results presented here that there is a need to include topological optimization
simultaneously with this process. From observing the results, it can be concluded that there
are bars in all examples which have unused or minimally loaded bars, which could be
eliminated to save additional weight. This will be the goal of the authors’ future research.
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1. Bekdaş, G.; Nigdeli, S.M.; Yang, X.-S. Sizing optimization of truss structures using flower pollination algorithm. Appl. Soft Comput.

2015, 37, 322–331. [CrossRef]
2. Kaveh, A.; Sheikholeslami, R.; Talatahari, S.; Keshvari-Ilkhichi, M. Chaotic swarming of particles: A new method for size

optimization of truss structures. Adv. Eng. Softw. 2014, 67, 136–147. [CrossRef]
3. Petrovic, N.; Marjanovic, N.; Kostic, N.; Blagojevic, M.; Matejic, M.; Troha, S. Effects of introducing dynamic constraints for

buckling to truss sizing optimization problems. FME Trans. 2018, 46, 117–123. [CrossRef]
4. Kanarachos, S.; Griffin, J.; Fitzpatrick, M.E. Efficient truss optimization using the contrast-based fruit fly optimization algorithm.

Comput. Struct. 2017, 182, 137–148. [CrossRef]
5. Pham, H.-A.; Tran, T.-D. Optimal truss sizing by modified Rao algorithm combined with feasible boundary search method.

Exp. Syst. Appl. 2022, 191, 116337. [CrossRef]
6. Artar, M.; Carbas, S. Discrete sizing design of steel truss bridges through teaching-learning-based and biogeography-based

optimization algorithms involving dynamic constraints. Structures 2021, 34, 3533–3547. [CrossRef]
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