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Cookie Formulations with Combined

Dehydrated Peach: A Machine

Learning Approach for Technological

Quality Assessment and Optimization.

Foods 2024, 13, 782. https://doi.org/

10.3390/foods13050782

Academic Editor: Alcina

M.M.B. Morais

Received: 1 February 2024

Revised: 27 February 2024

Accepted: 29 February 2024

Published: 2 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Enhancing Cookie Formulations with Combined Dehydrated
Peach: A Machine Learning Approach for Technological Quality
Assessment and Optimization
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Abstract: This study focuses on predicting and optimizing the quality parameters of cookies enriched
with dehydrated peach through the application of Support Vector Machine (SVM) and Artificial
Neural Network (ANN) models. The purpose of the study is to employ advanced machine learning
techniques to understand the intricate relationships between input parameters, such as the pres-
ence of dehydrated peach and treatment methods (lyophilization and lyophilization with osmotic
pretreatment), and output variables representing various quality aspects of cookies. For each of
the 32 outputs, including the parameters of the basic chemical compositions of the cookie samples,
selected mineral contents, moisture contents, baking characteristics, color properties, sensorial at-
tributes, and antioxidant properties, separate models were constructed using SVMs and ANNs.
Results showcase the efficiency of ANN models in predicting a diverse set of quality parameters
with r2 up to 1.000, with SVM models exhibiting slightly higher coefficients of determination for
specific variables with r2 reaching 0.981. The sensitivity analysis underscores the pivotal role of
dehydrated peach and the positive influence of osmotic pretreatment on specific compositional
attributes. Utilizing established Artificial Neural Network models, multi-objective optimization was
conducted, revealing optimal formulation and factor values in cookie quality optimization. The
optimal quantity of lyophilized peach with osmotic pretreatment for the cookie formulation was
identified as 15%.

Keywords: support vector machine; Artificial Neural Network; modeling data; peach addition;
cookie quality

1. Introduction

Cookies are top-rated baked products that are highly accepted by consumers, despite
being primarily made of butter, refined sugar, and wheat flour, which makes them high in
calories and low in dietary fiber and bioactive compounds from a nutritional standpoint [1,2].

Currently, a significant number of consumers are cognizant of the connection between
insufficient nutrition and the onset of diet-related disorders, leading them to actively seek
functional foods that are nutrient-rich and have the potential to positively impact their
physiological well-being [3,4]. Incorporating fruit or fruit by-products into cookie formula-
tions led to increases in the fiber contents and bioactive compounds of the cookies [5]. In
determining the precise level of each novel ingredient and changing the standard cookie
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dough, it is essential to consider health aspects, technological quality, and consumer ac-
ceptability, especially as the inclusion of new additives in cookie formulations requires
meticulous testing and quality optimization [5,6].

Integrating machine learning models plays a crucial role in modeling and optimizing
formulations in food applications [7]. These advanced computational tools, including
Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs), contribute
to a more precise understanding of ingredient interactions and their impact on product
attributes [8]. By leveraging machine learning algorithms, researchers can model complex
relationships within diverse data sets and optimize food formulations [9,10].

Utilizing SVMs for regression analysis involves employing hyperplane classifiers
that map input data into a multidimensional space, enabling comparison with the output
data [11,12]. The research conducted by Nirere et al. [13] showed the feasibility of employ-
ing hyperspectral imaging technology in conjunction with the least-squares support vector
machine model for classifying the quality of dried wolfberry fruit.

Recently, ANNs have been increasingly used in modeling food product formulations,
particularly through the efficiency of multilayer perceptron (MLP-ANN) in regression
applications [14,15]. ANNs, characterized by their structure, learning algorithm, and
activation function, effectively fit and generalize data based on selected input parameters
to achieve desired output values [16]. The effectiveness of ANNs is assessed by comparing
experimental and computed data [17].

Adaptable non-linear methods serve as powerful tools for modeling intricate relation-
ships in diverse datasets from instrumental analysis and are extensively employed in food
analysis for classification, optimization, and regression investigations; numerous examples
demonstrate their ability to achieve high-quality results that surpass those available from
traditional methods in some cases [18,19].

The VOSviewer program was employed to detect patterns in scientific papers related
to cookie optimization and modeling, utilizing author and index keywords for representa-
tion. A comprehensive analysis was carried out by searching through abstracts 350 times.
The co-occurrence analysis of metadata on cookie optimization and modeling revealed
four distinct groups, as illustrated in Figure 1.
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from Scopus.

Cookie formulation and dough preparation-related words were collected in the red
cluster, with the words “flour”, “formulation”, “dough” and “sugar” being the most
frequently mentioned in the summaries analyzed. The green cluster included data system
and information parameters applied in cookie optimization and modeling. The most
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frequent terms in the green cluster were “data”, “user”, “information”, “paper”, and
“simulation”. The yellow cluster summarized processes of cookie production, optimization,
and modeling, and the most frequently used terms were “process”, “shape”, “structure”,
and “error”. The blue group included terms regarding food modeling. The most frequently
used terms were “food”, “modeling”, “consumption”, “intake”, and “group”.

The frequency of occurrence of each word is depicted by the size of the circle. Diverse
colors were used to delineate distinct clusters of closely interconnected keywords, facili-
tating their classification. VOSviewer software ver. 1.6.20 was employed to elucidate the
phrase structure, utilizing data obtained from the Scopus database [20]. Presently, there is
often a deficiency in comprehensive examinations of the intricate relationships within the
realm of cookie optimization and modeling in current research.

There is a need for thorough exploration of the impacts that cookie optimization and
modeling parameters have on the quality of end products. Additionally, the refinement
of cookie optimization and modeling through the application of mathematical models
remains an area deserving of more extensive investigation. Addressing these gaps in
knowledge is necessary for advancements in this field and for fully harnessing the capa-
bilities of mathematical modeling in enhancing the efficiency of cookie optimization and
modeling processes.

In this study, nonlinear machine learning models, specifically SVMs and ANNs, were
constructed. The input parameters for these models were the percentage of dehydrated
peach addition and the method of preparation of the dehydrated peach, which included
both the lyophilization method and lyophilization with osmotic pretreatment in sugar beet
molasses. The data for the modeling were taken from our previously published paper [21]
as a continuation of the research.

The primary objective was to identify the most suitable machine learning model, not
only in terms of predictive accuracy but also considering the error rate of each model.
Comparison of the models involved assessing different modeling errors by juxtaposing
literature findings and calculated data with the model outcomes [22]. The main parameter
for model comparison was the coefficient of determination, which serves as the key metric
to identify the most suitable model for estimating overall technological quality [23].

Yoon’s global sensitivity method, utilizing the ANN model, was employed to explore
the impact of input variables (percentage of peach addition and treatment used) on output
variables (cookies’ chemical, mineral matter, and phenolic compound contents, the antiox-
idative activity of nutritive parameters, and the physical, technological, textural, color, and
sensory characteristics of the technological parameters).

The overarching aim was to predict and optimize the percentage of peach addition to
cookie formulations, focusing on the overall technological quality aspect.

2. Materials and Methods
2.1. Experimental Data

As a logical extension of prior investigations, we utilized experimental data from
our previous study [21]. In brief, cookie samples featuring varying levels of dehydrated
peach addition were tested for their chemical, mineral matter, and phenolic compound
contents, the antioxidative activity of nutritive parameters, and the physical, technological,
textural, color, and sensory characteristics of the technological quality. Peaches underwent
lyophilization and lyophilization with osmotic pretreatment in sugar beet molasses solution
for 5 h at 20 ◦C. Subsequently, the dehydrated peach samples were incorporated into cookie
formulations, replacing flour at levels ranging from 0% to 25%.

To enhance comprehension of the research framework, Figure 2 illustrates the flowchart
detailing the conducted investigation.
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2.2. SVM Modeling

Support Vector Machine (SVM) models rely on averaging principles and serve as algo-
rithms applicable to supervised learning in regression tasks. In the context of regression,
SVM models predict outcomes by partitioning the data into segments for model training
and testing. These models are well-suited for forecasting various output variables, includ-
ing the chemical compositions of cookies (such as mineral matter and phenolic compounds),
the antioxidative activity of nutritional parameters, and the physical, technological, textural,
color, and sensory characteristics of the technological parameters.

In nonlinear applications, the initial step involves transforming input vectors from a
low-dimensional space using a nonlinear function in the modeling process (1) (Φ) [24]:

(x) = wT ·Φ(x) + b (1)

where w and b represent the weight vector and intercept of the model.
The SVM models were developed to predict output variables based on the input

parameters (percentage of peach addition and treatment used). The model was created as
regression type 1 with a training constant of 10. The epsilon measure of the model was set
to 0.1, while the radial basis function (gamma value) was set to 1.00. The total number of
model iterations was 10,000.

2.3. ANN Modeling

Artificial Neural Network (ANN) modeling, specifically Multi-Layer Perceptron
(MLP), is a prominent type of ANN that is extensively employed in computing [25]. The
key strength of this network lies in its ability to “learn” and establish connections between
input and output data [26,27]. This feature proves highly valuable for predicting nonlinear
problems, especially in domains requiring the processing of substantial volumes of data [28].
The quantity of artificial neurons within the hidden layer is subject to variation depending
on the error and trial methods employed. In the learning process of a neural network, input
data undergo processing, ultimately leading to the conversion of the input data into the
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desired output data [29]. There are two fundamental types of network learning processes:
supervised and unsupervised. In supervised learning, the model is supplied with Artificial
Neural Network (ANN) output data, allowing it to compare and assess the values obtained
during the learning process [30]. The data basis was divided into 70% training and 30%
testing data. The developed ANN models were trained 100,000 times per model with a
random number of neurons in the hidden layer (3–15). Various activation functions and
randomly assigned values for weighting coefficients and biases were employed in the
modeling process. To address nonlinear optimization challenges, the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm was utilized. This algorithm played a key role in
optimizing the parameters of the Artificial Neural Network (ANN) during the modeling
process [31]. The neural network models, expressed in matrix notation, incorporate biases
and weight coefficients for the hidden and output layers. These are symbolized by the
matrices and vectors W1, B1, W2, and B2, where W1 and W2 are matrices for the weight
coefficients, and B1 and B2 are vectors representing biases. The output value, denoted as
Y, is determined by transfer functions, with f 1 representing the transfer function for the
hidden layer and f 2 for the output layer. The input layer matrix is denoted by X [32,33]:

Y = f1(W2· f2(W1·X) + B1) + B2 (2)

2.4. Global Sensitivity Analysis

Yoon’s interpretation method was employed to assess and quantify the relative impact
or influence of the input variables (percentage of peach addition and treatment used) on
output variables (cookies’ chemical, mineral matter, and phenolic compound contents, the
antioxidative activity of nutritive parameters, and the physical, technological, textural,
color, and sensory characteristics of the technological parameters). These calculations were
performed according to the weight coefficients of the developed ANN models [34]. The
given equation was utilized to evaluate the direct influence of the input parameters on the
output variables, taking into account the weighting coefficients incorporated within the
Artificial Neural Network (ANN) models [35]:

RIij(%) =
∑n

k=0

(
wik·wkj

)
∑m

i=0

∣∣∣∑n
k=0

(
wik·wkj

)∣∣∣ ·100% (3)

where w represents the weights of the ANN model, i is the input variable, j is the output
variable, k is the hidden neuron, n is the number of hidden neurons, and m is the number
of inputs.

2.5. The Accuracy of the Models

To gauge the efficacy and performance of the Support Vector Machine (SVM) and
Artificial Neural Network (ANN) models in predicting output variables from input data,
various statistical parameters were computed. These parameters encompassed the reduced
chi-square (X2) (4), root mean square error (RMSE) (5), mean systematic error (MBE) (6),
mean percentage error (MPE) (7), total squared error (SSE) (8), average absolute relative
deviation (AARD) (9), and coefficient of determination (r2) (10). The RMSE values serve as
indicators of the model’s efficiency by assessing the agreement between calculated values
and experimentally measured values. On the other hand, MBE values are employed to
ascertain the standard deviation between the predicted and measured values [36–38]. These
statistical parameters were calculated using equations [39]. In addition, Yoon’s method of
global sensitivity (8) was used to evaluate the direct influence of the input parameters on
the output variables, which correspond to the weighting coefficients (w) within the ANN
model [40,41]:

χ2 =
∑N

i=1
(
xexp,i − xpre,i

)2

N − n
(4)
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RMSE =

[
1
N
·∑N

i=1

(
xexp,i − xpre,i

)2
]1/2

(5)

MBE =
1
N
·∑N

i=1

(
xexp,i − xpre,i

)
(6)

MPE =
100
N

·∑N
i=1

(∣∣xexp,i − xpre,i
∣∣

xpre,i

)
(7)

SSE = ∑N
i=1

(
xexp,i − xpre,i

)2 (8)

AARD =
100
N

·∑N
i=1

∣∣∣∣∣ xexp,i − xpre,i

xpre,i

∣∣∣∣∣ (9)

r2 = 1 −
∑N

i=1
(

xexp,i − xpre,i
)2

∑N
i=1
(

xexp,i − x
)2 , x = ∑N

i=1 xexp,i (10)

where N represents the total number of data records, while xexp,i and xpre,i are the experi-
mental and model-predicted values, respectively.

3. Results and Discussion
3.1. SVM Modeling

The SVM models were created to predict the quality parameters of cookies with the
addition of dehydrated peach based on the input parameters, including the percentage
of dehydrated peach addition as well as the treatment for obtaining dehydrated peach
(lyophilization and lyophilization with osmotic pretreatment). The models were created as
regression type 1 with a training constant of 9. The epsilon measure of the model was set
to 0.1, while the radial basis function (gamma value) was set to 0.50. The total number of
model iterations was 10,000.

On Figure 3 the number of support vector machines used to create SVM models for
observed output variables is shown.
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3.2. ANN Modeling

For all 32 of the observed responses, ANN models were conducted separately. The
results of mathematical modeling for logical representation and better illustration were
organized into six groups: the first group included the basic chemical compositions of the
cookie samples (contents of protein, carbohydrate, starch, sugar, fat, cellulose, and ash); the
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second covered selected mineral contents (K, Ca, Mg, and Fe); the third group represented
moisture content, baking weight loss, diameter, thickness, T/R ratio, and hardness; the
fourth group included the color characteristics of the cookie samples (L*, a*, b*, and ∆E); the
fifth group covered the sensorial properties of the cookie samples (color intensity, surface
appearance, taste, smell, sensory hardness, and, fracturability); and finally the sixth group
represented the antioxidant properties of the observed samples (total polyphenol content,
total carotenoid content, antioxidative activity by DPPH, antioxidative activity by ABTS,
and RP-reduction potential) [21].

The developed models for the first group of results, presented in Table 1, showcased
favorable generalization properties, enabling accurate predictions of observed parameters.
These predictions were based on the percentage of dehydrated peach addition and selection
of the peach drying method (lyophilization and lyophilization with osmotic pretreatment).
According to the calculations of the ANN models, the optimal configuration for the number
of neurons in the hidden layers was determined to be 9, 4, 7, 7, 7,6, and 3, corresponding
to the MLP 4-9-1, MLP 4-4-1, MLP 4-7-1, MLP 4-7-1, MLP 4-7-1, MLP 4-6-1, and MLP
4-3-1 network structures. Additionally, these models demonstrated a high coefficient
of determination (r2), with values reaching 0.997, 0.992, 0.998, 0.999, 0.999, 0.997, and
0.999 during the training and testing phases, underscoring the robustness and validity of
the model.

Table 1. Artificial Neural Network model summary (performance and errors) for training, testing,
and validation cycles for the contents of protein, carbohydrate, starch, sugar, fat, cellulose, and ash.

Output
Variable

Net. Name
Performance Error Training

Algorithm
Error

Function

Activation

Train. Test. Train. Test. Hidden Output

Protein MLP 4-9-1 0.997 1.000 0.0007 0.00009 BFGS 5 SOS Identity Tanh
Carbohydrate MLP 4-4-1 0.992 1.000 0.0004 0.009 BFGS 13 SOS Tanh Exponential

Starch MLP 4-7-1 0.998 1.000 0.0021 0.0226 BFGS 54 SOS Exponential Tanh
Sugar MLP 4-7-1 0.999 1.000 0.0031 0.0527 BFGS 32 SOS Tanh Logistic

Fat MLP 4-7-1 0.999 1.000 0.0002 0.0001 BFGS 51 SOS Exponential Exponential
Cellulose MLP 4-6-1 0.997 1.000 0.0005 0.011 BFGS 33 SOS Logistic Exponential

Ash MLP 4-3-1 0.999 1.000 0.00002 0.0001 BFGS 24 SOS Logistic Tanh

Train.—training cycle, Test.—testing cycle.

The neural network models for the second group of results, as optimally designed
and presented in Table 2, demonstrated favorable generalization properties, facilitating the
prediction of the observed parameters. Based on the calculations of the ANN models, the
optimal configuration for the number of neurons in the hidden layers was determined to
be 6, 4, 3, and 7, corresponding to the MLP 4-6-1, MLP 4-4-1, MLP 4-3-1, and MLP 4-7-1
network structures. Furthermore, these models exhibited high coefficients of determination
with values of 0.999, 0.997, and 0.993 during the training and testing cycle, confirming the
model’s validity.

Table 2. Artificial Neural Network model summary (performance and errors) for training, testing,
and validation cycles for the contents of K, Ca, Mg, and Fe.

Output
Variable

Net. Name
Performance Error Training

Algorithm
Error

Function

Activation

Train. Test. Train. Test. Hidden Output

K MLP 4-6-1 0.999 1.000 0.1000 0.0007 BFGS 32 SOS Tanh Exponential
Ca MLP 4-4-1 0.997 1.000 0.0573 0.0000 BFGS 9 SOS Logistic Identity
Mg MLP 4-3-1 0.991 1.000 0.292 0.101 BFGS 11 SOS Logistic Tanh
Fe MLP 4-7-1 0.993 1.000 0.00004 0.0001 BFGS 15 SOS Logistic Logistic

Train.—training cycle, Test.—testing cycle.

The developed models for the third group of results, as presented in Table 3, indicated
favorable generalization properties, facilitating accurate predictions of output responses.
In compliance with the developed ANN models, the optimal configuration for the number
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of neurons in the hidden layers was 9, 7, 6, 8, 8, and 7, corresponding to the MLP 4-9-1,
MLP 4-7-1, MLP 4-6-1, MLP 4-8-1, MLP 4-8-1, and MLP 4-7-1 network structures. Moreover,
the developed ANN models demonstrated high coefficients of determination with values
of 0.997, 0.992, 0.998, 0.999, 0.999, 0.997, and 0.999 during the training and testing phases,
underscoring the robustness and validity of the model.

Table 3. Artificial Neural Network model summary (performance and errors) for training, testing,
and validation cycles for moisture, BWL, R, H, RH, and HAR.

Output
Variable

Net. Name
Performance Error Training

Algorithm
Error

Function

Activation

Train. Test. Train. Test. Hidden Output

M MLP 4-9-1 0.962 1.000 0.243 2.543 BFGS 5 SOS Identity Identity
BWL MLP 4-7-1 0.995 1.000 0.0298 0.0820 BFGS 17 SOS Exponential Tanh

D MLP 4-6-1 0.977 1.000 0.091 0.016 BFGS 28 SOS Exponential Exponential
T MLP 4-8-1 0.992 1.000 0.018 0.881 BFGS 16 SOS Tanh Tanh

T/R MLP 4-8-1 0.996 1.000 0.007 0.112 BFGS 21 SOS Logistic Logistic
HAR MLP 4-7-1 0.967 1.000 3.282. 2.701 BFGS 10 SOS Identity Identity

Train.—training cycle, Test.—testing cycle.

The models developed for the color properties of the observed cookie samples are
detailed in Table 4. According to the calculations of the Artificial Neural Network (ANN)
models, the optimal configuration for the number of neurons in the hidden layers was
determined to be 6, 7, 6, and 6. These values correspond to the MLP 4-6-1, MLP 4-7-1, MLP
4-6-1, and MLP 4-6-1 network structures, respectively. Furthermore, these models exhibited
high coefficients of determination, with values reaching 0.980, 0.962, 0.999, and 0.997
during the training and testing phases. This underscores the robustness and validity of the
models in predicting and capturing the color properties of the dehydrated peach-enhanced
cookie samples.

Table 4. Artificial Neural Network model summary (performance and errors) for training, testing,
and validation cycles for L*, a*, b*, and ∆E.

Output
Variable

Net. Name
Performance Error Training

Algorithm
Error

Function

Activation

Train. Test. Train. Test. Hidden Output

L* MLP 4-6-1 0.980 1.000 0.1533 3.676 BFGS 5 SOS Exponential Exponential
a* MLP 4-7-1 0.962 1.000 0.0778 1.3278 BFGS 6 SOS Identity Logistic
b* MLP 4-6-1 0.999 1.000 0.0084 0.571 BFGS 35 SOS Logistic Logistic
∆E MLP 4-6-1 0.997 1.000 0.169 2.240 BFGS 23 SOS Tanh Logistic

Train.—training cycle, Test.—testing cycle, Valid.—validation cycle.

The models developed for the fifth group of results, as presented in Table 5, exhibited
favorable generalization properties, enabling accurate predictions of the observed param-
eters. According to the calculations of the Artificial Neural Network (ANN) models, the
optimal configuration for the number of neurons in the hidden layers was determined
to be 3, 5, 3, 4, 8, and 6. These values correspond to the MLP 4-3-1, MLP 4-5-1, MLP
4-3-1, MLP 4-4-1, MLP 4-8-1, and MLP 4-6-1 network structures, respectively. Additionally,
these models demonstrated high coefficients of determination, with values reaching 0.973,
0.990, 0.927, 0.936, 0.967, and 0.828, confirming the validity and reliability of the models in
predicting the parameters for the fifth group of results.

The developed models for the sixth group of results are presented in Table 6. Ac-
cording to the calculations of the Artificial Neural Network (ANN) models, the optimal
configuration for the number of neurons in the hidden layers was determined to be 4, 8,
7, 8, and 5. These values correspond to the MLP 4-4-1, MLP 4-8-1, MLP 4-7-1, MLP 4-8-1,
and MLP 4-5-1 network structures, respectively. Moreover, the models demonstrated high
coefficients of determination, with values reaching 0.996, 0.994, 0.995, 0.953, and 0.967,
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confirming the validity and reliability of the models in predicting the parameters for the
fifth group of results.

Table 5. Artificial Neural Network model summary (performance and errors) for training, test-
ing, and validation cycles for color intensity, surface appearance, taste, smell, sensory hardness,
and fracturability.

Output
Variable

Net.
Name

Performance Error Training
Algorithm

Error
Function

Activation

Train. Test. Train. Test. Hidden Output

CI MLP 4-3-1 0.973 1.000 0.0231 0.1886 BFGS 10 SOS Identity Identity
SA MLP 4-5-1 0.990 1.000 0.0289 0.0262 BFGS 14 SOS Exponential Tanh
T MLP 4-3-1 0.927 1.000 0.756 0.134 BFGS 1 SOS Identity Tanh
S MLP 4-4-1 0.936 1.000 0.072 0.0349 BFGS 4 SOS Identity Logistic

SH MLP 4-8-1 0.967 1.000 0.118 0.0400 BFGS 3 SOS Exponential Identity
B MLP 4-6-1 0.828 1.000 0.219 0.0333 BFGS 3 SOS Exponential Identity

Train.—training cycle, Test.—testing cycle.

Table 6. Artificial Neural Network model summary (performance and errors) for training, testing,
and validation cycles for total polyphenol content, total carotenoid content, antioxidative activity by
DPPH, antioxidative activity by ABTS, and RP-reduction potential.

Output
Variable

Net. Name
Performance Error Training

Algorithm
Error

Function

Activation

Train. Test. Train. Test. Hidden Output

PHE MLP 4-4-1 0.996 1.000 0.0001 0.0000 BFGS 5 SOS Logistic Exponential
CAR MLP 4-8-1 0.994 1.000 0.9142 7.7654 BFGS 13 SOS Exponential Identity

DPPH MLP 4-7-1 0.995 1.000 0.004 0.0089 BFGS 10 SOS Exponential Identity
ABTS MLP 4-8-1 0.953 1.000 9.090 4.446 BFGS 5 SOS Identity Tanh

RP MLP 4-5-1 0.967 1.000 3.084 4.854 BFGS 36 SOS Tanh Identity

Train.—training cycle, Test.—testing cycle.

3.3. The Accuracy of the Models

To numerically assess the accuracy of the presented SVM and ANN models, various
performance metrics such as reduced chi-square (χ2), root mean square error (RMSE), mean
bias error (MBE), mean percentage error (MPE), total squared error (SSE), average absolute
relative deviation (AARD), and coefficient of determination (r2) were calculated, as shown
in Table 7 for the SVM models and in Table 8 for the ANN models.

Table 7. Tests for the developed SVM model’s “goodness of fit”.

χ2 RMSE MBE MPE SSE AARD r2

SVM Prot 0.001 0.027 0.007 0.324 0.006 0.163 0.968
Carb 0.001 0.035 0.001 0.041 0.011 0.259 0.981

Starch 0.122 0.330 −0.128 0.657 0.831 1.783 0.956
Sugar 0.110 0.313 0.112 0.493 0.770 1.757 0.973

Fat 0.007 0.081 −0.026 0.509 0.053 0.470 0.979
Cell 0.013 0.108 0.040 0.852 0.091 0.649 0.981
Ash 0.002 0.044 0.016 4.563 0.015 0.248 0.958

K 103.246 9.580 3.222 3.004 732.514 50.264 0.969
Ca 2.158 1.385 0.561 3.112 14.432 7.143 0.951
Mg 2.125 1.374 0.522 2.441 14.551 7.363 0.967
Fe 0.001 0.035 0.017 1.693 0.008 0.215 0.895
M 0.801 0.844 −0.433 16.067 4.720 6.259 0.950
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Table 7. Cont.

χ2 RMSE MBE MPE SSE AARD r2

BWL 0.670 0.772 0.280 5.296 4.659 6.142 0.966
D 2.921 1.611 0.696 1.185 19.004 8.179 0.610
T 1.774 1.256 −0.264 9.509 13.560 8.669 0.452

T/R 1.027 0.955 0.040 11.038 8.198 7.064 0.327
HAR 8.246 2.707 0.717 10.559 61.342 21.775 0.972

L* 8.554 2.757 −0.994 5.070 59.531 15.842 0.927
a* 0.610 0.736 0.362 3.954 3.703 4.571 0.909
b* 1.937 1.312 −0.529 5.414 12.976 7.042 0.888
∆E 10.786 3.096 1.155 8.773 74.285 17.660 0.923
CI 0.192 0.413 0.194 4.495 1.195 2.390 0.891
SA 0.396 0.593 −0.223 16.690 2.718 4.703 0.961
T 0.536 0.690 −0.353 20.248 3.167 4.785 0.876
S 0.022 0.139 −0.028 3.347 0.167 1.053 0.981

SH 0.098 0.295 −0.136 7.770 0.616 1.774 0.914
B 0.247 0.469 −0.086 10.795 1.911 3.121 0.867

PHE 0.013 0.106 0.045 19.904 0.083 0.434 0.744
CAR 37.421 5.767 2.233 13.086 254.473 29.361 0.902

DPPH 0.053 0.218 0.018 66.574 0.424 1.643 0.865
RA 916.533 28.543 3.624 41.219 7214.037 201.384 0.830

ABTS 822.893 27.046 10.830 30.537 5527.627 117.238 0.825

Table 8. Tests for the developed ANN model’s “goodness of fit”.

χ2 RMSE MBE MPE SSE AARD r2

ANN Prot 0.001 0.033 0.030 0.541 0.002 0.269 0.982
Carb 0.005 0.068 −0.017 0.054 0.038 0.341 0.909

Starch 0.015 0.115 0.034 0.238 0.110 0.679 0.989
Sugar 0.032 0.168 −0.050 0.284 0.232 0.975 0.988

Fat 0.000 0.018 0.001 0.142 0.003 0.131 0.997
Cell 0.006 0.075 −0.025 0.523 0.045 0.364 0.973
Ash 0.000 0.009 0.000 1.488 0.001 0.060 0.996

K 0.177 0.396 0.117 0.179 1.291 2.664 1.000
Ca 0.100 0.299 0.005 1.133 0.803 2.200 0.994
Mg 0.562 0.707 0.155 1.914 4.281 5.071 0.980
Fe 0.000 0.011 0.005 0.719 0.001 0.088 0.983
M 1.689 1.225 0.498 12.668 11.276 7.363 0.870

BWL 0.093 0.288 −0.056 2.316 0.718 2.025 0.995
D 0.168 0.386 −0.091 0.462 1.267 3.106 0.951
T 0.472 0.648 0.103 2.462 3.679 2.900 0.839

T/R 0.069 0.248 −0.017 2.380 0.549 1.257 0.955
HAR 106.101 9.711 −2.571 64.001 789.330 49.474 0.571

L* 18.522 4.058 0.338 4.778 147.144 20.395 0.732
a* 0.800 0.843 −0.141 5.163 6.219 4.635 0.768
b* 0.218 0.441 −0.071 1.983 1.703 2.817 0.977
∆E 11.916 3.255 −1.184 3.377 82.712 13.700 0.897
CI 0.135 0.346 −0.084 5.366 1.015 2.254 0.880
SA 0.064 0.238 0.044 4.701 0.494 1.751 0.984
T 1.372 1.104 0.108 30.445 10.873 8.272 0.729
S 0.144 0.357 −0.142 10.489 0.967 2.979 0.865

SH 0.041 0.190 0.030 4.623 0.318 1.335 0.902
F 0.402 0.598 0.053 15.452 3.189 4.665 0.660

PHE 0.000 0.013 −0.006 9.086 0.001 0.065 0.991
CAR 5.483 2.208 −0.715 13.945 39.256 13.930 0.969

DPPH 0.005 0.068 −0.030 26.712 0.034 0.420 0.960
RA 28.326 5.018 −1.850 8.088 195.822 32.000 0.987

ABTS 334.897 17.254 10.065 83.982 1767.459 114.503 0.896



Foods 2024, 13, 782 11 of 19

According to the presented results, the SVM and ANN models successfully underwent
minor lack-of-fit tests, indicating their effective prediction of the values for the analyzed
parameters. Slightly higher coefficients of determination were obtained using SVM for
the content of cellulose, Fe content, thickness, hardness, L*, a*, ∆E, color intensity, smell,
sensory hardness, and fracturability. However, ANN models more efficiently predicated
the majority of the observed parameters.

3.4. Global Sensitivity Analysis—Yoon’s Interpretation Method

The influence of the input variables on the relative importance of the protein content,
carbohydrates content, starch content, sugar content, fat content, cellulose content, and ash
content for the ANN models is illustrated in Figure 4. According to Figure 4, the addition
of dehydrated peach was the most influential parameter of all the observed parameters.
It positively influenced protein content (+80.00%), carbohydrate content (+62.23%), sugar
content (+61.89%), cellulose content (+78.99%), and ash content (+64.44%). On the other
hand, it had a negative influence on starch content (−68.87%) and fat content (−86.49%).

Figure 5 illustrates the impacts of the input variables (the percentage of dehydrated
peach addition and the drying treatment employed in the preparation of the dehydrated
peach) on the relative importance of K content, Ca content, Mg content, and Fe content
in the developed Artificial Neural Network (ANN) models. It is noticed that the per-
centage of dehydrated peach addition was also the most influential parameter, inducing
positive responses for K (+42.87%), Ca (67.86%), Mg (+68.35%), and Fe (+59.86%). Osmotic
pretreatment had the most positive influence on the K content (+11.54%). The research
by Lončar et al. [42] underlined that the addition of osmotically pre-treated and then
lyophilized apples to muffin samples was the most influential factor affecting mineral
composition, especially K content. Sugar beet molasses, with their high dry matter (80%)
and specific nutrient content, are an excellent medium for osmotic pre-treatment, given
their complex chemical composition that includes over 200 different inorganic and organic
compounds [43].

The impact of input variables on the relative importance of moisture content, baking
weight loss, diameter, thickness, T/R ratio, and hardness for the developed ANN models
is presented in Figure 6. It is observed that the percentage of dehydrated peach addition
is the most influential parameter. It affected negatively moisture content (−66.87%) and
thickness (−47.56%), while it had the opposite effect on baking weight loss, diameter, T/R
ratio, and hardness, with relative importance of +83.64%, +82.20%, +70.12%, and +53.13%,
respectively. The research by Grigelmo-Miguel et al. [44] reported that the addition of peach
dietary fiber in reduced-fat muffins increased their hardness and chewiness. However,
springiness and cohesiveness were not different.

The influence of input variables on the relative importance of the color characteristics
of the observed cookie samples is given Figure 7. The percentage of dehydrated peach
addition was the most influential parameter, with negative influences on L* (−69.92%)
and b* (−69.98%) while positively influencing a* (+50.00%) and ∆E (+77.00%). Drying
treatments had the opposite effect on L*and a*, and these findings are in accordance with
the results of Filipović et al. [21]. Salehi and Aghajanzadeh [45] highlighted that muffins
incorporating varying amounts of peach dietary fiber (2%–10%) exhibited increased levels
of moisture, protein, and minerals, along with fewer calories compared with the control
sample. Nevertheless, the inclusion of peach dietary fiber led to a darker color in the
muffins and an increase in both hardness and chewiness. The substitution of flour by dehy-
drated peach in the muffins increased their density and reduced the number of air pockets,
thereby increasing the force needed for compression. These findings align with the research
conducted by Grigelmo-Miguel [46], which demonstrated that incorporating various fruit
powders into the batter formulation resulted in a firmer texture or increased hardness of
the final products. Additionally, they are consistent with the findings of Mihaylova. [47],
who observed that the texture quality parameters of wheat cookies decreased with higher
levels of peach powder added to the mixture.



Foods 2024, 13, 782 12 of 19Foods 2024, 13, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 4. Relative importance of peach addition and treatment selection on: (a) protein content, (b) 
carbohydrate content, (c) starch content, (d) sugar content, (e) fat content, (f) cellulose content, and 
(g) ash content. 

Figure 4. Relative importance of peach addition and treatment selection on: (a) protein content,
(b) carbohydrate content, (c) starch content, (d) sugar content, (e) fat content, (f) cellulose content,
and (g) ash content.



Foods 2024, 13, 782 13 of 19Foods 2024, 13, x FOR PEER REVIEW 14 of 22 
 

 

 

Figure 5. Relative importance of peach addition and treatment selection on: (a) K content, (b) Ca content, (c) Mg con-
tent, and (d) Fe content. 

The influence of input variables on the relative importance of the color characteris-
tics of the observed cookie samples is given Figure 7. The percentage of dehydrated 
peach addition was the most influential parameter, with negative influences on L* 
(−69.92%) and b* (−69.98%) while positively influencing a* (+50.00%) and ΔE (+77.00%). 
Drying treatments had the opposite effect on L*and a*, and these findings are in accord-
ance with the results of Filipović et al. [21]. Salehi and Aghajanzadeh [45] highlighted that 
muffins incorporating varying amounts of peach dietary fiber (2%–10%) exhibited in-
creased levels of moisture, protein, and minerals, along with fewer calories compared 
with the control sample. Nevertheless, the inclusion of peach dietary fiber led to a darker 
color in the muffins and an increase in both hardness and chewiness. The substitution of 
flour by dehydrated peach in the muffins increased their density and reduced the num-
ber of air pockets, thereby increasing the force needed for compression. These findings 
align with the research conducted by Grigelmo-Miguel [46], which demonstrated that 
incorporating various fruit powders into the batter formulation resulted in a firmer tex-
ture or increased hardness of the final products. Additionally, they are consistent with 
the findings of Mihaylova. [47], who observed that the texture quality parameters of 
wheat cookies decreased with higher levels of peach powder added to the mixture. 

The influence of input variables on the relative importance of the color intensity, 
surface appearance, taste, smell, sensory hardness, and fracturability for the developed 
ANN models is illustrated in Figure 8. It can be noted that the percentage of dehydrated 
peach addition is again the most influential parameter affecting the observed responses. 
It positively affected only color intensity while having negative impacts on the other re-
sponses. The significant change in the color of the cookies when the peach was dehy-
drated using the osmotic pre-treatment method can be attributed to the influence of mo-
lasses on the overall appearance of the cookie color [48]. Molasses, recognized for their 
dark hue, impart color to the dehydrated peach through solid gain. Additionally, mo-

Figure 5. Relative importance of peach addition and treatment selection on: (a) K content, (b) Ca
content, (c) Mg content, and (d) Fe content.

The influence of input variables on the relative importance of the color intensity,
surface appearance, taste, smell, sensory hardness, and fracturability for the developed
ANN models is illustrated in Figure 8. It can be noted that the percentage of dehydrated
peach addition is again the most influential parameter affecting the observed responses.
It positively affected only color intensity while having negative impacts on the other
responses. The significant change in the color of the cookies when the peach was dehydrated
using the osmotic pre-treatment method can be attributed to the influence of molasses on
the overall appearance of the cookie color [48]. Molasses, recognized for their dark hue,
impart color to the dehydrated peach through solid gain. Additionally, molasses catalyze
the development of Maillard reactions and caramelization, which further contributes to the
overall change in cookie color [49].

Furthermore, Figure 9 illustrates the relative importance of the total polyphenol
content, total carotenoid content, antioxidative activity by DPPH, antioxidative activity by
ABTS, and RP-reduction potential for the developed ANN models. Moreover, numerous
researchers observed that fortifying cookies with polyphenol antioxidants sourced from
various fruits and vegetables enhances their antioxidant properties [50,51].

3.5. Multi-Objective Optimization

The established Artificial Neural Network (ANN) models, encompassing all 32 exam-
ined parameters related to nutritive and technological quality responses were employed
for Multi-Objective Optimization (MOO). The objective was to identify the optimal overall
quality of the dehydrated peach-supplemented cookie samples. The MOO solution resulted
in a Pareto front, indicating an improvement in one objective function without adversely
affecting others [52]. Utilizing the genetic algorithm (GA), the MOO problem was tackled
using a stochastic approach inspired by natural evolution incorporating mutation, selection,
inheritance, and crossover [53]. The MOO computation was executed using the gamultiobj
function in Matlab software version 12.5.0. The initial population was randomly generated
and subjected to a set of points within the design space. The populations of subsequent
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generations were determined through a distance measure and the non-dominated ranking
of individual points in the current generation [54,55].
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(b) baking weight loss, (c) diameter, (d) thickness, (e) T/R ratio, and (f) hardness.

The numerical tasks were handled separately for each constructed Artificia Neural
Network (ANN) model through the application of Multi-Objective Optimization (MOO)
calculations in Matlab. The MOO procedure was specifically crafted to pinpoint the opti-
mal combinations of process parameters. Its goal was to maximize the output variables
associated with both nutritive and technological quality within the ANN models. Con-
straints employed in the optimization process were applied within the experimental range
of parameters, following the recommendations of Filipović et al. [21]. The optimization
process for ANN models involved 400–500 generations, with a fixed population size of 1000
for each input variable across all models. The Pareto front comprised 12 to 20 points for
the calculated ANN models. Ultimately, the optimum addition of OL peach to the cookie
formulation was determined to be 15%. The resulting optimal sample is in accordance with
the results obtained by Filipović et al. [21].
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4. Conclusions

The employed Support Vector Machine and Artificial Neural Network models ac-
curately predicted the quality parameters of cookies enriched with dehydrated peach,
considering input factors such as the percentage of dehydrated peach and the treatment
method (lyophilization and lyophilization with osmotic pretreatment in sugar beet mo-
lasses). The SVM models exhibited slightly higher coefficients of determination (r2 up to
0.981) and lower root mean square errors (RMSE down to 0.027) for specific parameters,
while the ANN models demonstrated overall greater efficiency in predicting the majority
of the 20 observed parameters (r2 reaching 1.000 and RMSE of 0.009). Sensitivity analysis
underscored the significance of the percentage of dehydrated peach, positively impacting
various aspects including protein, carbohydrate, sugar, cellulose, and ash contents while
negatively affecting starch and fat contents. Osmotic pretreatment notably influenced
potassium content. Baking characteristics, color properties, and sensorial attributes were
primarily influenced by the presence of dehydrated peach. Multi-objective optimization
using the genetic algorithm determined the optimal addition of dehydrated peach to be
15%, aligning with prior research. Future studies could focus on refining machine learning
models, exploring hybrid approaches, and validating findings across diverse conditions
to enhance the accuracy and applicability of models for optimizing cookie quality using
dehydrated peach.
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