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Abstract -  The experimental determination of a dispersion 
relation by measurements of wave properties in different 
points in space meets various challenges due to the spatial 
aliasing, which is a consequence of description of a continuous 
wave by a discrete set of measurement points. The paper 
presents an analysis of the phenomenon of false detection of 
standing waves during experimental determination of disper-
sion relationship of flexural waves in beams by correlation 
method. The false detection of standing waves, manifested as 
zero group velocity of the waves that does not correspond to a 
real resonance, is a consequence of equidistant spacing of 
measurement points in experimental setup, and may be 
avoided by different  positioning of measurement points in 
space. The results of the analysis are verified by comparison 
between the results of experimental setups with equidistant 
measurement points and measurement points with distances to 
excitation point proportional to prime numbers. 

1. INTRODUCTION 
One of key elements of any definition of waves is that a wave 
is propagation of a disturbance through a medium. The dis-
turbed part of the medium is the wavefield, and the border of 
a wavefield is a wavefront, which expands with propagation of 
a wave. Many complex theoretical and practical problems of 
wave propagation are solved by application of the Huygens 
principle, which describes the wave propagation by in-
terference of spherical waves that are expanding with constant 
velocity c around all points of a wavefront. The velocity of 
propagation of the disturbance by spherical waves c is called 
“the phase velocity” of the wave, while the velocity of 
propagation of energy (or mass in the case of mechanical 
waves) by a wave (which does not have to be equal to phase 
velocity) is called “the group velocity” of the wave v. The 
knowledge of the phase velocity of a wave in a medium, 
therefore, is the key to the applications of the Huygens prin-
ciple. An important property of wave motion is that the phase 
velocity c and the group velocity v of a harmonic wave, in 
general, depend on the frequency f of the harmonic wave. 
Since any wave may be represented as a sum of harmonic 
waves using the Fourier transformation, different frequency 
components of a wave propagate with different velocities, 
which leads to an effect of decomposition of waves that is 
called “dispersion”. For that reason, the all-important rela-
tionship between the phase velocity and the frequency of a 

wave, c( f ), is called “the dispersion relationship” (abbreviat-
ed as “DR” in the following text). Since the phase velocity c, 
frequency f, angular frequency ω = 2π/f , wavelength λ, and 
the wavenumber k = 2π/λ of a harmonic wave are related by 
the equations λ = c/f and ω = c/k, the DR is most often ex-
pressed in the analytical form F(ω,k) = 0 or ω = ω(k), because 
it enables simple calculation of both phase velocity (as 
c = ω/k) and the group velocity (as v = dω/dk). 
Theoretical calculation of the DR is possible only in a limited 
number of cases with high symmetry and simple structure of 
the medium, and the alternative for the other cases is the ex-
perimental determination of DR [1]. Even in the cases when it 
is possible to determine the DR by theory, experimental 
determination of DR is used for characterization of materials 
[2][3]. The main concept for experimental determination of the 
DR consists in measurement, in multiple points of a structure, 
of the response (usually acceleration) to an excitation (usually 
impulse or harmonic). The responses at these points at a 
particular excitation frequency (obtained by direct meas-
urement or spectral decomposition) are then used to construct 
the “optimal” wavefield, with a known wavenumber, that has 
minimal deviation from the measured responses. Different 
approaches to construction of the wavefield lead to different 
methods for experimental determination of the DR [4]. The 
subject of this paper is the correlation method [5], which, in 
suitable structures, uses harmonic progressive waves to con-
struct the test wavefields, and the simple sequential search of 
wavenumber space to find the wavenumber of optimal wave-
field. It has been already shown that a straightforward appli-
cation of the correlation method is limited to a low-frequency 
range due to the spatial aliasing [4], but the research presented 
in this article warns that even that frequency range is reduced 
in the case of equidistant measurement points due to the false 
detection of standing waves. Fortunately, the research shows 
that the false detection of standing waves may be avoided by 
non-equidistant positioning of measurement points. 

2.THEORY 
For the sake of simplicity, the present paper will consider 
propagation of flexural waves over a thin homogenous beam, 
which is a well-studied case in theory [6]. The flexural waves 
are suitable for experimental studies because they are simple 
for excitation and detection. The DR of flexural waves that 
propagate over a thin homogenous beam is given by the ex-
pression: 
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with ρ standing for density, E for Young’s modulus of the 
material, while I represents the area moment of inertia, and A  
the area, of the cross-section of the beam. 
Let a harmonic progressive flexural wave, with the angular 
frequency ω and the wavenumber k related by the DR (1), be 
excited in a homogenous thin beam by the action of harmonic 
transversal force F (t) = Fω·exp(-iωt). If the x-axis is oriented 
along the longitudinal axis of the beam, and if one end  of the 
beam is taken as the origin of the axis, then the transversal 
accelerations of the beam points will have values a(x,t) 
= aω·[i∙exp(kx-ωt)], and the response to the excitation of the 
beam to the excitation, the accelerances w(x,t) = at(x,t)/F(t) 
will have values w(x,ω) = wω·exp(ikx), independent of t. Due 
to the orthogonality of harmonic functions, the correlation 
between the accelerance wt(x,ω) of any harmonic wavefield, 
with the angular frequency ω and the wavenumber kt, and the 
accelerance of the wavefield of the excited harmonic wave 
w(x,ω), defined as 

 ( ) ( ) ( )*, ,t tW k w x w x dxω ω ω
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will be equal to zero unless the wavenumber of the harmonic 
wavefield is equal to the wavenumber of the excited wave, 
kt = k, when the correlation tends to infinity. This property of 
the correlation is the basis for correlation method for experi-
mental determination of DR. The method uses measurements 
of accelerations in a finite number of points L, with the coor-
dinates xl (l = 1, 2,…, L), which are, in the case of thin ho-
mogenous beam placed along the beam. The measured accel-
erations and excitation force are used to obtain the acceler-
ances in the measurement points wl(ω) = w(x=xl, ω), which are 
then used for calculations of the sums that are estimations 
Ŵω(kt) of correlation between the measured wavefield at an-
gular frequency ω and different harmonic progressive waves 
with wavenumbers kt and accelerances wt(x,ω) = wω·exp(iktx). 
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where Δxl represents the space interval around the point xl. 
Since Ŵω(kt) is only an estimation of the correlation Wω(kt), it 
is not equal to zero for k≠kt and not infinite for k=kt, but it 
should, anyway, have maximal value in the latter case. Using 
that property of Ŵω(kt), correlation method selects value for 
wavenumber of the measured wavefield to be equal to the test 
value kt which has maximal value of estimated correlation (3), 
and that is the value that maximizes the correlation function 
Yω(kt), given by the expression: 
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As explained, the correlation method uses progressive waves 
to construct the test wavefields, which implies that the method 
is applicable to the wavefields that consist of progressive 
waves. However, in all real structures, due to their finite di-
mensions and reflections from the boundaries, exist standing 
waves with the corresponding natural frequencies of the 
structures. While the standing waves may be considered as a 

superposition of progressive waves moving in opposite direc-
tions (therefore having wave vectors with equal intensity, but 
opposite signs), they do not transfer energy and their group 
velocities are zero. Since the group velocity is derivative of 
DR, the DR obtained by correlation method has inflexion point 
at resonant frequencies of the structure, which is different from 
DR of progressive waves that the correlation method intends 
to reveal. Therefore, it may be concluded that the existence of 
standing waves prevents the application correlation method. 
This paper focuses on the phenomenon of false detection of 
standing waves that arises when experimental determination of 
DR is performed by correlation method with data obtained 
using equidistant measurement points (abbreviated as DR-
CM-ED). This phenomenon, which will be shown to be 
avoidable, further reduces applicability of correlation method 
for determination of DR. 
The measurement points are most frequently taken to be 
equidistant, xl = l∙d, where d is the distance between adjacent 
measurement points. There are several reasons for such ap-
proach, and one of dominant is application of the most popular 
signal processing technique, FFT (Fast Fourier Transfor-
mation), which requires measurement from equidistant input 
points. In such a case, the correlation function has the form: 
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It has been shown [4] that the correlation function in the case 
of equidistant measurement point is periodic in wavenumber 
space with the period 2π/d, Yω(k+2π/d) = Yω(k), as illustrated 
in Fig. 1. Since it means that the maxima of the correlation 
function are also periodic, the periodicity of the correlation 
function has a consequence that the DR obtained DR-CM-ED 
is also periodic with the same period, 2π/d, ω(k+2π/d) = ω(k), 
as Fig. 2 illustrates. Such a periodicity is a well-known con-
sequence of the equidistant selection of measurement points, 
and it occurs in general in all cases of propagation of waves 
through periodic structures [7]. The basic period in the wave-
number space, -π/d < k < π/d, is called “the Brillouin zone” 
(BZ) or “the first Brillouin zone”. If the limits of the first 
Brillouin are denoted as ±π/d = ±kBZ, and the corresponding 
values of angular frequency and frequency as ωBZ and fBZ, then 
the period of a DR-CM-ED may be written as 2kBZ.  

 
Fig. 1 Correlation function of a DR-CM-ED 

For physical reasons, any DR is even function, ω(-k) = ω(k), 
because the reversed sign of k means only change of direction 
of propagation, which does not affect phase velocity due to the 
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symmetry properties of space and matter. Due to the peri-
odicity and even parity of a DR-CM-ED, its derivative has to 
be periodic with the same period, 

 2k k
d

d d
dk dkπ

ω ω

+

=  (6) 

and has to have odd parity 
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Furthermore, since the derivative of a DR, dω/dk, is the group 
velocity of a wave, it has to be a continuous function of k, 
because any physical quantity in classical mechanics has a 
single value. The continuity of the first derivative for any 
wavenumber k = k0 may be expressed as 
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which means that the left and the right limit of the derivative 
of DR have to be equal for any wavenumber k = k0 
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Since the equations (7) and (9) hold for all wavenumbers, they 
have to hold also for k = 0. From (7) follows that the first 
derivatives of the DR on the left side and right side of zero 
have opposite signs 
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and from (9) it follows that they have to have the same sign 
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Both (10) and (11) may hold only if the derivative of the DR 
for k = 0 is zero. Due to the periodicity, the first derivative of 
a DR-CM-ED also has to be equal to zero for all points 
k = ±z∙2kBZ = ±m·kBZ, where z is an integer, and m = 2z is an 
even number. 
On the other hand, the equations (6) , (7) and (9) have also to 
hold for all wavenumbers, and therefore also for the border of 
the Brillouin zone, k = +kBZ. However, due to the continuity 
(9) the first derivatives of the DR-CM-ED on the left side and 
right side of +kBZ have to have the same signs 
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and, at the same time, due to the combination of the require-
ments for periodicity (6) and odd parity (7), they have to have 
opposite signs  
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which is, again, only possible if the derivative of the DR for 
k = ±kBZ is zero. Due to the periodicity, the first derivative of a 
DR-CM-ED also has to be equal to zero for all points k = kBZ 
±z∙2kBZ = ±m·kBZ, where z is an integer, and m = (2z+1) is an 
odd number. 

In conclusion, the physical requirements for even parity and 
continuity of DR and the mathematical requirement for peri-
odicity of DR-CM-ED mean that the first derivative of the DR-
CM-ED has to be equal for all wavenumbers satisfying 
conditions k = ±m·kBZ with m being an integer. 
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On the other hand, the equation (1) shows that the first deriv-
ative of the DR of flexural waves a thin homogenous beam is 
equal to zero only for k=0, which means that the DR-CM-ED 
cannot be a good description of the DR for wavenumbers 
satisfying conditions k = ±m·kBZ (in other word, in centres and 
borders of Brillouin zones). 

 
Fig. 2 Theoretical prediction of DR-CM-ED (solid line – 

centres in even BZ, dashed line – centres in even BZ) 
The reason for the observed failure of DR-CM-ED is perio-
dicity of the array of measurement points, which is caused by 
their equidistant positions. It is well-known fact from studies 
of waves in periodic structures [7] that waves with k = ±m·kBZ 
in discrete periodic structures (e.g. crystals) degenerate into 
oscillations for even values of m, while for odd values of m 
they represent standing waves. It is easy to demonstrate be-
cause in all points of a periodic discrete structure with period 
d, xl = l·d, a wave with k = ±m·kBZ for even m=2z has phase 
factors exp(ikxl) = exp(i·z·l·2π) = 1, which means that phases 
of the wave are equal in the same points, implicating that the 
wave degenerates into whole-body (or rigid-body) oscilla-
tions. On the other hand, if m=2z+1 is odd, then the phase 
factors have values exp(ikxl) = exp(i∙(2z+1)∙l∙π) = (-1)l, which 
means that the adjacent points have opposite phases, impli-
cating that the wave is a standing wave. The same relationships 
hold for the accelerations of a progressive wave with 
k = ±m·kBZ taken in an array of equidistant points, which means 
that such a progressive wave will be falsely detected as 
standing wave or whole-body oscillation. 
At first glance, the effect of false detection of standing waves 
and whole-body oscillations may be easily avoided by select-
ing non-periodic positioning of measurement points. However, 
the Fourier theorem shows that any finite non-periodic array 
may be decomposed in an infinite sum of periodic arrays with 
the period equal to the least common denominator of 
differences between the members of array (the distances 
between the measurement points). Since, by definition, irra-
tional distances cannot be measured, the longest practical 
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period of a set of distances between the measurement points is 
obtained if the positions of the measurement points xl are 
proportional to prime numbers. 

3.EXPERIMENT 
The experiment was carried with the aim to apply correlation 
method for determination of DR of flexural waves on a free 
homogenous thin beam using a set of equidistant measurement 
points and a set of measurement points with distances 
proportional to prime numbers. The complete experiment is 
described in the reference [4], and here will be repeated just 
the part about the test object and positioning of the meas-
urement points, which are the most relevant for further dis-
cussion of the obtained results.  
The beam was a steel rod with length D ≈ 1,65 m, and roughly 
square cross-section with side b ≈ 1 cm. The end parts of the 
rod, with the length of around 25 cm, were resting on soft 
sponges, with the aim to emulate a beam with free ends. The 
measurements were organized in three series, with different 
positions of measurement points. 

 
Fig. 3 Accelerance of the beam measured at the point 

x=90 cm from the beginning of the rod 
In the first series, the measurement points were uniformly 
distributed at 10 equidistant positions with distances d ≈15 cm, 
with the first measurement point being at the distance d from 
the beginning of the rod and the last being at the distance d 
from the end of the rod. Therefore, the arrangement of the 
measurement points was symmetric with respect to the centre 
of the rod. 
In the second series, 10 measurement points were selected to 
have the distances to the beginning of the rod (the excited end) 
being proportional to prime numbers sequence 5, 7, 11, 13, 17, 
19, 23, 29, 31 and 37. The selected set of measurement points 
covered the part of the rod between 20 cm and 148 cm. 
In the third series, 31 measurement points were selected to 
have the distances to the beginning of the rod (the excited end) 
being proportional to prime numbers sequence 2, 3, 5, 7, 11, 
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 
83, 89, 97,101, 103, 107, 109, 113 and 127. The selected set of 
measurement points covered the part of the rod between 
7.5 cm and 157.5 cm. 

4. RESULTS AND DISCUSSION 
The accelerance amplitude spectra for all cases revealed the 
expected resonant behaviour, as Fig. 3 illustrates. The resonant 
peaks at low frequencies (14 Hz – 590 Hz) are singlets, while 
at higher frequencies the resonant peaks appear to be doublets, 

with the frequency split of the doublets increasing with 
resonant frequency. 
The frequencies are detected at frequencies close to the natural 
frequencies predicted by theory for flexural vibrations of a thin 
homogenous beam with free ends: 
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and these are the frequencies of the standing waves that form 
at the beam. 

 
Fig. 4 DR-CM-ED obtained in the experiment (dots-

experimental data, lines-theory) 
As explained in the theoretical analysis, in the case of the 
equidistant measurement points the obtained DR (it is the DR-
CM-ED), presented by points in the Fig. 4, is periodic function 
of wavenumber k, with the period 2kBZ =(2π/d) ≈ 42m-1, so that 
the frequency fBZ ≈ 1044 Hz corresponds to the end of the first 
Brillouin zone (kBZ = π/d), and the frequency 4∙fBZ ≈ 4176 Hz 
corresponds to the center of the next Brillouin zone (2∙kBZ). 
Even in such a large-scale view (0-6000 Hz) it is clear that at 
frequencies corresponding to wavenumber values k = m∙kBZ the 
obtained DR departs both from the monotonously increasing 
trend within Brillouin zones and from the predictions of 
theory, presented by solid lines in Fig. 4. 

 
Fig. 5 Restricted DR-CM-ED and correlation function 

obtained in the experiment (dots-experimental data, thick 
lines-theoretical DR, thin line-correlation function) 

In order to increase visibility and use the periodicity of the 
obtained results, the DR-CM-ED is frequently presented con-
fined to the first Brillouin zone, as shown in the Fig. 5. The 
DR-CM-ED is presented in the figure by the points, while the 
thin line presents the correlation function, which indicates 
resonances. The figure clearly presents the influence of the 
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standing waves to the experimental determination of DR in 
general: close to the natural frequencies of the beam, correla-
tion method is unable to distinguish the incident (the monot-
onously increasing branches) and reflected (the monotonously 
increasing branches) progressive waves. Furthermore, the 
figure also shows that the DR-CM-ED contains ranges of false 
standing waves at the ends of Brillouin zones (flat DR-CM-ED 
near fBZ ≈ 1044 Hz) and false oscillations (flat DR-CM-ED 
near fBZ ≈ 4176 Hz). Finally, Fig. 5 also indicates that there is 
interaction between real and false standing waves detection, 
observable in the range 3500-4500 Hz. 
With the aim to clearly show the effect of false standing wave 
detection, Fig. 6 shows the part of DR-CM-ED containing the 
first Brillouin zone and the range close to its boundary k = kBZ. 
The figure also shows the theoretical predictions for DR of 
incident (solid line) and reflected (dashed line) progressive 
waves. It is clear that the DR-CM-ED is flat, indicating 
detection of standing waves, in the area range where the values 
of wavenumbers of incident and reflected waves coincide due 
to periodicity artificially induced by positioning of 
measurement points. 

 
Fig. 6 DR-CM-ED within the I BZ and close to the boundary 

between the I BZ and II BZ 
In order to test the effects of different positions of measure-
ment points, three sets of measurement points were formed for 
application of correlation method for determination of DR: 

• “equidistant” set of data obtained in 10 equidistant 
measurement points during the first series of meas-
urements, 

• “mixed” set, containing data obtained in 10 equidis-
tant measurement points during the first series of 
measurements and the data obtained in 10 non-
equidistant measurement points during the second 
series of measurements, 

• “primed” set, containing data obtained in 31 non-
equidistant measurement points during the third se-
ries of measurements. 

Fig. 7 shows that the periodicity of the measurement points is 
indeed the sole reason for the false detection of standing waves 
near the boundary of Brillouin zone. The false detection occurs 
not only when the measurement points are equidistant, but also 
when there is a subset of equidistant points within the 
measurement points set. When all the positions of the 
measurement points are proportional to prime numbers, the 
detection of false standing waves disappears, and the DR in the 
region follows theoretical predictions, shown by the solid line. 

 
Fig. 7 DR-CM-ED obtained using three different sets of 

measurements points 
Fig. 7 also shows that the detection of real standing waves, that 
arise at natural frequencies of the structure, as expected, does 
not depend on positions of measurement points. The natural 
frequencies of the beam in the observed range correspond to 
resonant frequencies (15) for values m = 9, m = 10 and m = 11. 

5. CONCLUSIONS 
This article presents research of false detection of standing 
waves during experimental determination of dispersion rela-
tionship using by correlation method and equidistant meas-
urement points. 
The theoretical analysis revealed that a progressive wave with 
wavenumber k, discretized in an equidistant set of 
measurement points with distance d between them, cannot be 
distinguished from a standing wave when k = (2z+1)π/d (ends 
of Brillouin zones) and from whole-body oscillation when k = 
(2z)π/d (centers of Brillouin zones). Since standing waves and 
whole-body oscillations do not transfer energy, the false 
detection causes false inflection points (“flat ranges”) in the 
dispersion relationships detected by correlation method. This 
theoretical analysis shows that the false detection of standing 
waves is an artifact of equidistant measurement points and the 
simplest way to avoid it is by positioning measurement points 
so that their distances to excitation point are proportional to 
prime numbers. 
The experiment that was designed to verify the theoretical 
considerations confirmed the presented conclusions. Fur-
thermore, the experiment revealed that even the application of 
correlation method to experimental data obtained using non-
equidistant set of points are sensitive to false standing waves 
detection if the set contains a subset with equidistant points. 
Due to their finite dimensions, in all real structures exist real 
standing waves, which are also detected by correlation method 
and cause inflection points in DR. Since they are real, their 
detection, and the corresponding deviation of experimental DR 
from the true values, cannot be avoided by positioning of 
measurement points. Therefore, the correlation method is not 
applicable in vicinity of resonant frequencies of structures. 
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