MODEL FOR OPTIMIZATION OF PHASE PROCESSES BY THE LINEAR PROGRAMMING METHOD

Milan KOLAREVIĆ, Vladan GRKOVIĆ, Branko RADIČEVIĆ, Zvonko PETROVIĆ
Faculty of Mechanical and Civil Engineering in Kraljevo, University of Kragujevac, Dositejeva 19, Kraljevo, Serbia kolarevic.m@mfkv.kg.ac.rs, grkovic.v@mfkv.kg.ac.rs

Abstract

The problem of optimization of a multiphase production process by the linear programming method is very frequent in manufacturing practice. Instead of a classical solution to the problem, i.e. creation of constraint equations per production phase, the paper proposes the methodology of forming of a unique (summary) table which can be used for creation of a complex mathematical model of the problem in a matrix form. The method is illustrated on the example of an optimization process of manufacturing and mounting of a hydraulic valve for regulation of pressure and flow, which is foreseen for installation on hydraulic bar feeders for CNC machines.

Key words: Phase process, linear programming, optimization

1. INTRODUCTION

Production processes can be single phase and multiphase processes. Single phase ones are those in which final products are directly made of raw material. Unlike single phase processes, a multiphase process can be divided into several phases in which the results of previous phases can have effects on later ones. To be more precise, a multiphase process can be divided into several single phase processes which are interconnected and conditioned by the given constraints.
Programming of a multiphase process is commonly reduced to the problem of process realization by individual phases for the purpose of achieving an optimum production result. The number of levels of division of a multiphase process is conditioned by objective circumstances, such as the technological process of manufacturing and mounting of the product, although division can sometimes be a consequence of subjective decisions, too [2].
The paper deals with the programming of multiphase processes which can be mathematically solved by linear
programming methods. The procedure of creation of the mathematical model of multiphase process optimization is presented on the example of manufacturing and mounting of a hydraulic valve for regulation of pressure and flow, which is foreseen for installation of hydraulic bar feeders for CNC machines.
The look and mounting structure of the hydraulic valve with its accompanying parts is shown in Figure 1. The product is formed in four phases: in the first phase the parts (D1, D2, ... D8) are manufactured from semifinished products, in the second phase the parts and standard parts (GR1, GR2, ... GR8) are used for making subassemblies (PS1, PS2 and PS3), in the third phase the main assembly (GS) is made, and the product (P) is formed in the fourth phase.
The task is as follows: It is necessary to program a multiphase production process so that the optimum quantity of regulating valves could be manufactured from the available quantities of semi-finished products and standard parts and thus acquire a maximum profit from the sale of those valves. There are no market constraints with respect to the quantity of products for sale.

Table 1. Specification of necessary semi-finished products for manufacturing valve parts

$\left\|\begin{array}{c} \text { Designati } \\ \text { on } \end{array}\right\|$	Name of part	Unit	Qty/pr oduct	Semi-finished product				Mass of finished component [kg]
				Material	Dimensions [mm]	Mass of work piece [kg]	Designati on	
D_{1}	Control block	Pc.	1	S355JR	$\neq 60 \times 80 \times 130$	4.888	S_{I}	3.360
D_{2}	Block	Pc.	1	S355JR	$\neq 60 \times 80 \times 92$	3.459		2.046
D_{3}	Flow regulating spindle	Pc.	1	C45E	Ø 32×100	0.646	S_{2}	0.243
D_{4}	Pressure regulating spindle	Pc.	1	C45E	$\emptyset 18 \mathrm{~h} 9 \times 107$	0.219	S_{3}	0.176
D_{5}	Screw 005	Pc.	1	C45E	Ø16×60	0.097	S_{4}	0.057
D_{6}	Piston	Pc.	1	C45E	Ø 46×40	0.534	S_{5}	0.105
D_{7}	Ring	Pc.	1	C45E	$\emptyset 55 \times 10$	0.191	S_{6}	0.078
D_{8}	Bushing	Pc.	1	C45E	Ø30h9×35	0.199	S_{7}	0.073

Fig. 1. Assembly structure of the product

Parts D1 through D8 are manufactured from semifinished products by cutting operation. The necessary dimensions and quantities of semi-finished products for parts manufacturing are shown in Table 1.

Table 2. Available quantities of semi-finished products used for manufacturing valve parts

Semi-finished products						
Designation	Name	Unit	Avail. Qty	Material	Dimensions [mm]	Mass**kg]
S_{I}	Steel plate	Pc.	4	S355JR	$2000 \times 2000 \times 80$	2506.560
S_{2}	Cold drawn steel bars	Pc.	3	C45E	$\emptyset 32 \times 2000$	12.911
S_{3}	Cold drawn steel bars	Pc.	3	C45E	$\emptyset 18 \times 2000$	4.085
S_{4}	Cold drawn steel bars	Pc.	2	C45E	$\emptyset 16 \times 2000$	3.228
S_{5}	Cold drawn steel bars	Pc.	2	C45E	$\emptyset 46 \times 2000$	26.680
S_{6}	Cold drawn steel bars	Pc.	1	C45E	$\emptyset 55 \times 2000$	38.142
S_{7}	Cold drawn steel bars	Pc.	2	C45E	Ø 30×2000	11.348
* The mass of semi-finished products refers to the unit of measurement (one steel plate, bar, etc.......)						

Table 3. Specification of standard parts and available quantity

Designa tion	Name	Standard/ Manufacturer	Unit	Avail. Qty
$G R_{1}$	Sealing	RubeliGuiquoz	Pc.	500
$G R_{2}$	O-ring	RubeliGuiquoz	Pc.	600
$G R_{3}$	Seeger ring	DIN472	Pc.	500
$G R_{4}$	Spring	DIN 2098	Pc.	700
$G R_{5}$	Elastic pin	DIN 1481	Pc.	500
$G R_{6}$	Sealing	RubeliGuiquoz	Pc.	600
$G R_{7}$	Screw M6x80	DIN 912	Pc.	1000
$G R_{8}$	Manometer	WIKA 0-10 bar	Pc.	700

The available quantities of standard parts which are purchased on the market and which are necessary for completion of the valves are shown in Table 3.

2. PRODUCTION PHASES CONSTRAINT EQUATIONS

The process of manufacturing and mounting parts, subassemblies and assemblies takes place in phases presented in the following tables. In the first phase semifinished products $S 1, S 2, \ldots$ S7 are cut for the purpose of making parts $\mathrm{D} 1, \mathrm{D} 2, \ldots$ D8 in quantities $\mathrm{x} 1, \mathrm{x} 2, \ldots$, x8. The necessary and available quantities of semifinished products are shown in Table 4.

Table 4. Phase 1

			Products of Phase 1								Available quantities
			D_{l}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	
		S_{I}	4.888	3.459							10026.24
		S_{2}			0.646						38.733
		S_{3}				0.219					12.255
		S_{4}					0.097				6.456
		S_{5}						0.534			53.36
		S_{6}							0.191		38.142
		S_{7}								0.199	22.696
			x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	,

For the first phase of production it is necessary to determine the variables $x_{1}, x_{2}, \ldots, x_{8}$ which satisfy the non-negativity conditions

$$
\begin{equation*}
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8} \geq 0 \tag{1}
\end{equation*}
$$

and constraints with respect to the available quantities:

$$
\begin{align*}
& 4.888 \cdot x_{1}+3.459 \cdot x_{2} \leq 10026.24 \tag{2}\\
& 0.646 \cdot x_{3} \leq 38.733 \tag{3}\\
& 0.219 \cdot x_{4} \leq 12.255 \tag{4}\\
& 0.097 \cdot x_{5} \leq 6.456 \tag{5}\\
& 0.534 \cdot x_{6} \leq 53.36 \tag{6}\\
& 0.191 \cdot x_{7} \leq 38.142 \tag{7}\\
& 0.199 \cdot x_{8} \leq 22.696 \tag{8}
\end{align*}
$$

$a=10026.24-4.888 \cdot x_{1}-3.459 \cdot x_{2}$
$b=38.733-0.646 \cdot x_{3}$
$c=12.255-0.219 \cdot x_{4}$
$d=6.456-0.097 \cdot x_{5}$
$e=53.36-0.534 \cdot x_{6}$
$f=38.142-0.191 \cdot x_{7}$
$g=22.696-0.199 \cdot x_{8}$ and the available quantities of parts $D_{1} D_{2} \ldots \ldots{ }_{8}$ cy x_{1} and the available quantities of parts $D_{1}, D_{2}, \ldots D_{8}$ cy x_{1}, x_{2}, \ldots, x_{8}.
It may happen in Phase 1 that a new part is obtained by additional treatment of a standard part. In that case, Table 4 can be extended by the category of standard parts (Table 4a) on the basis of which new constraints with respect to available quantities of standard parts can be written. There is not such a case in the given example so that these equations are not written.

After the completion of Phase 1 , the remaining quantities of semi-finished products are

Table 4a. Phase 1

In the second phase, the remaining quantity of semifinished products, parts manufactured in the first phase and standard parts are used to form subassemblies PS1, $P S 2$ and PS3 in quantities x_{9}, x_{10} and x_{11} (Table 5).

Table 5. Phase 2

The constraint equations for Phase 2 are:
non-negativity conditions
$x_{9}, x_{I 0}, x_{I I} \geq 0$
and the constraints with respect to available quantities are:

$$
\begin{align*}
& x_{9} \leq 500 \tag{10}\\
& x_{9} \leq 600 \tag{11}\\
& x_{10} \leq 500 \tag{12}\\
& x_{10} \leq 600 \tag{13}\\
& x_{11} \leq 500 \tag{14}\\
& x_{11} \leq 700 \tag{15}\\
& x_{11} \leq x_{1} \tag{16}\\
& x_{10} \leq x_{2} \tag{17}\\
& x_{9} \leq x_{3} \tag{18}\\
& x_{9} \leq x_{4} \tag{19}\\
& x_{9} \leq x_{5} \tag{20}\\
& x_{9} \leq x_{6} \tag{21}\\
& x_{11} \leq x_{7} \tag{22}\\
& x_{11} \leq x_{8} \tag{23}
\end{align*}
$$

As the constraints (10), (12) and (14) exclude constraints (11), (13) and (15), Equations (11), (13) and (15) can be excluded from further consideration. However, for the purpose of understanding the methodology which is proposed in the continuation, these constraints will be kept, and in the inequalities (16) through (23) the variables are moved to their left sides so that they now read:

$$
\begin{array}{ll}
-x_{1}+x_{11} & \leq 0 \\
-x_{2}+x_{10} & \leq 0 \\
-x_{3}+x_{9} & \leq 0 \\
-x_{4}+x_{9} & \leq 0 \\
-x_{5}+x_{9} & \leq 0 \\
-x_{6}+x_{9} & \leq 0 \\
-x_{7}+x_{11} \leq 0 \\
-x_{8}+x_{11} \leq 0 \tag{23'}
\end{array}
$$

After Phase 2, the remaining quantities of standard parts are:

$$
\begin{aligned}
& m=500-x_{10} \\
& n=600-x_{10} \\
& p=500-x_{11}
\end{aligned}
$$

$$
\begin{aligned}
& q=700-x_{11} \\
& r=500-x_{9} \\
& s=600-x_{9} \\
& t=1000 \\
& u=700
\end{aligned}
$$

In Phase 3, the remaining quantity of semi-finished products, standard parts, parts manufactured in Phase 1 and subassemblies manufactured in Phase 2 are used to form the main assembly $G S$ in the quantity x_{12} (Table 6).
Table 6. Phase 3

			Products of Phase $\mathbf{3}$ $G S$	Available quantities
		S_{I}		$\begin{gathered} a=10026.24-4.888 \cdot x_{1-} \\ 3,459 \cdot x_{2} \end{gathered}$
		S_{2}		$b=38.733-0.646 \cdot x_{3}$
		S_{3}		$c=12.255-0.219 \cdot x_{4}$
		S_{4}		$d=6.456-0.097 \cdot x_{5}$
		S_{5}		$e=53.36-0.534 \cdot x_{6}$
		S_{6}		$f=38.142-0.191 \cdot x_{7}$
		S_{7}		$g=22.696-0.199 \cdot x_{8}$
	坒	$G R_{1}$		$m=500-x_{10}$
		$G R_{2}$		$n=600-x_{10}$
		$G R_{3}$		$p=500-x_{11}$
		$G R_{4}$		$q=700-x_{11}$
		$G R_{5}$		$r=500-x_{9}$
		$G R_{6}$		$s=600-x 9$
		$G R_{7}$		$t=1000$
		$G R_{8}$		$u=700$
	0000000000	D_{1}		$x_{1}-x_{11}$
		D_{2}		$x_{2}-x_{10}$
		D_{3}		$x_{3}-x_{9}$
		D_{4}		$x_{4}{ }^{-} x_{9}$
		D_{5}		$x_{5}-x_{9}$
		D_{6}		$x_{6}-x_{9}$
		D_{7}		$x_{7}-x_{11}$
		D_{8}		$x_{8}-x_{11}$
		$P S_{l}$	1	x_{9}
		$P S_{2}$	1	x_{10}
		$P S_{3}$		x_{11}
	Qty		x_{12}	-

The constraint equations for Phase 3 are:
non-negativity conditions

$$
\begin{equation*}
x_{12} \geq 0 \tag{24}
\end{equation*}
$$

and the constraints with respect to available quantities are:

$$
\begin{align*}
x_{12} & \leq x_{9} \tag{25}\\
x_{12} & \leq x_{10} \tag{26}
\end{align*}
$$

It is more suitable to write the inequalities (25) and (26) in the form:

$$
\begin{align*}
& -x_{9}+x_{12} \leq 0 \\
& -x_{10}+x_{12} \leq 0
\end{align*}
$$

In the last phase, i.e. Phase 4 , the remaining quantity of semi-finished products, standard parts, parts manufactured in Phase 1, subassemblies manufactured in

Phase 2 and the main assembly formed in Phase 3 are used to form the product P in the quantity X_{13} (Table 7).

Table 7. Phase 4

			Products of Phase $\mathbf{4}$ P	Available quantities
		S_{I}		$\begin{gathered} \hline a=10026.24-4.888 \cdot x_{I}- \\ 3.459 \cdot x_{2} \\ \hline \end{gathered}$
		S_{2}		$b=38.733-0.646 \cdot x_{3}$
		S_{3}		$c=12.255-0.219 \cdot x_{4}$
		S_{4}		$d=6.456-0.097 \cdot x_{5}$
		S_{5}		$e=53.36-0.534 \cdot x_{6}$
		S_{6}		$f=38.142-0.191 \cdot x_{7}$
		S_{7}		$g=22.696-0.199 \cdot x_{8}$
	淢	$G R_{l}$		$m=500-x_{10}$
		$G R_{2}$		$n=600-x_{10}$
		$G R_{3}$		$p=500-x_{11}$
		$G R_{4}$		$q=700-x_{11}$
		$G R_{5}$		$r=500-x_{9}$
		$G R_{6}$		$s=600-x_{9}$
		$G R_{7}$	2	$t=1000$
		$G R_{8}$	1	$u=700$
		D_{1}		$x_{1}-x_{11}$
		D_{2}		$x_{2}-x_{10}$
		D_{3}		$x_{3}-x_{9}$
		D_{4}		$x_{4}-x_{9}$
		D_{5}		$x_{5}-x_{9}$
		D_{6}		$x_{6}-x_{9}$
		D_{7}		$x_{7}-x_{11}$
		D_{8}		$x_{8}-x_{11}$
		$P S_{1}$		$x_{9}-x_{12}$
		$P S_{2}$		$x_{10}-x_{12}$
		$P S_{3}$	1	x_{11}
		$G S$	1	x_{12}
	Quantities		x_{13}	-

The constraint equations for Phase 4 are:
non-negativity conditions

$$
\begin{equation*}
x_{13} \geq 0 \tag{27}
\end{equation*}
$$

and the constraints with respect to available quantities are:

$$
\begin{align*}
& 2 x_{13} \leq 1000 \tag{28}\\
& x_{13} \leq 700 \tag{29}\\
& x_{13} \leq x_{11} \tag{30}\\
& x_{13} \leq x_{12} \tag{31}
\end{align*}
$$

It is more suitable to write the inequalities (30) and (31) in the following form:

$$
\begin{align*}
& -x_{11}+x_{13} \leq 0 \tag{30'}\\
& -x_{12}+x_{13} \leq 0 \tag{31'}
\end{align*}
$$

The constraints (1) - (31) are summed in Table 8, which can be the basis for creation of the matrix for solving the given problem of a multiphase process by linear programming.

Table 8. Summary table of constraints

Phase	1								2			3	4	Available quantities
	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	$P S_{I}$	$P S_{2}$	$P S_{3}$	GS	P	B
S_{I}	4.888	3.459												10026.24
S_{2}			0.646											38.733
S_{3}				0.219										12.255
S_{4}					0.097									6.456
S_{5}						0.534								53.36
S_{6}							0.191							38.142
S_{7}								0.199						22.696
$G R_{1}$										1				500
$G R_{2}$										1				600
$G R_{3}$											1			500
$G R_{4}$											1			700
$G R_{5}$									1					500
$G R_{6}$									1					600
$G R_{7}$													2	1000
$G R_{8}$													1	700
D_{1}	-1										1			0
D_{2}		-1								1				0
D_{3}			-1						1					0
D_{4}				-1					1					0
D_{5}					-1				1					0
D_{6}						-1			1					0
D_{7}							-1				1			0
D_{8}								-1			1			0
$P S_{I}$									-1			1		0
$P S_{2}$										-1		1		0
$P S_{3}$											-1		1	0
GS												-1	1	0
	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}	

Instead of Tables 4, 5, 6 and 7, which can serve as the basis for forming the constraint equations, it is possible to initially form only one summary table for all production phases. In table 8 the phases are shown in different colours. In order to keep the available quantities of semifinished products from Table 2 and available quantities of standard parts from Table 3 (column B- available quantities), it is necessary, in the part of the matrix which refers to the same category (e.g. parts-parts), to add the number -1 on the diagonal (parts of the table that are grey shaded).
The procedure of writing the constraint equations in the mathematical model is thus shortened and it is possible to write the equations in their matrix form directly from the summary table 8 .

3. MATHEMATICAL MODEL

3.1. Objective function

If the maximum profit from the sale of product is desired, the objective function can be written in the form:

$$
\begin{equation*}
\max f\left(x_{13}\right)=d \cdot x_{13} \tag{32}
\end{equation*}
$$

where: d - the profit gained by the sale of 1 piece of product
x_{13} - the optimim quantity of products which should be manufactured
If it is assumed that the profit per product piece is $d=100 \mu j$, the objective function reads:

$$
\begin{equation*}
\max f\left(x_{13}\right)=100 \cdot x_{13} \tag{33}
\end{equation*}
$$

3.2. Constraints

The constraints (1) - (31) hold for all phases and include the non-negativity conditions of the variables:

$$
x_{1}, x_{2}, x_{3}, \ldots, x_{13} \geq 0
$$

The mathematical model in its matrix form reads:

It is necessary to maximize the objective function:

$$
\begin{equation*}
\max F(X)=d X \tag{34}
\end{equation*}
$$

with satisfying the constraints with respect to available quantities:

$$
\begin{equation*}
\mathbf{M X} \leq \mathbf{B} \tag{35}
\end{equation*}
$$

and the non-negativity condition:

$$
\begin{equation*}
\mathbf{X} \geq \mathbf{0} \tag{36}
\end{equation*}
$$

For the given example, the matrices \mathbf{M}, \mathbf{X} and \mathbf{B} read:
$\mathbf{M}=$

4. CONCLUSION

Due to the limited space, the paper has analyzed the phase production problem reduced only to the constraints of available semi-finished products and standard parts. Real problems are much more complex in practice because products are more complex, they require a larger number of production phases and the mathematical model can include some other constraints, such as: labour constraints, available capacities of machines, market constraints, available funds, etc.
In addition, phase processes are not always linear or single criterion processes so the mathematical models which describe this problem are much more complex.
The advantages of the presented methodology for solving problems of a multiphase process by linear programming are as follows:

- Instead of forming several tables which are the basis for defining the mathematical model of a phase process by linear programming, it is possible to shorten the procedure by forming only one summary table,
- In contrast to the classical way of forming a mathematical model in which constraints equations are defined for each phase, the mentioned methodology uses the summary table, which defines forming products per phase, in order to directly define the matrices \mathbf{X}, \mathbf{M} and \mathbf{B}.
- The possibility of occurrence of errors in the process of forming the mathematical model of the problem is considerably reduced.

Acknowledgement: The authors would like to express their gratitude to the Ministry of Education and Science of the Republic of Serbia for their support to this research through the project TR37020.

REFERENCES

[1.] Rajović M., Linearna algebra - teorija matrica i linearnih operatora, Akademska misao, Beograd, 2007.
[2.] Vadnal A., Primjena matematičkih metoda u ekonomiji, Informator, Zagreb, 1980.
[3.] Mamuzić Z., Determinante, matrice, vektori, analitička geometrija, Građevinska knjiga, Beograd, 1974.

