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Abstract 

In practical applications, TiNi shape memory alloys (SMAs) exhibit behavior that can pose a challenge 

with current constitutive models and their implementations in finite element method (FEM) software. 

TiNi SMA devices typically operate in the forward or reverse martensitic transformation regime, which 

is known as subloop loading. During such cyclic loading–unloading, the hysteresis stress–strain loop 

changes because of material damage, which can be considered the fatigue of TiNi SMAs. During both 

the loading and unloading processes, the stress plateau decreases. At the same time, the accumulated 

(residual) martensitic transformation strain increases. In this study, the experimental investigation 

results and observations of the aforementioned phenomena are presented. Next, the phase-field damage 

model is employed, along with a modified Lagoudas constitutive model, to simulate the change in 

stress–strain hysteresis. Furthermore, a fatigue function is used to simulate the accumulation of 

martensitic transformation strain. The experimental stress–strain response is compared with the 

simulation results, and good quantitative and qualitative agreement is obtained. The damage and 

martensitic volume fraction with respect to strain are discussed for full-loop and subloop loading. The 

observations and conclusions, as well as open questions, are presented. Possible directions for future 

research are provided. 

Keywords: subloop loading, shape memory alloys, TiNi alloy, phase-field damage model, fatigue 

function 

1 Introduction 
Shape memory alloys (SMAs) have long piqued the interest of scientists, engineers, and engineering 

companies because of their specific thermomechanical characteristics. When an SMA is subjected to 

stress and/or a temperature change, diffusionless martensitic phase transformation occurs in either a 

forward or reverse direction, resulting in superelasticity or a shape memory effect. Because of this 

possibility, SMA attracts technologically innovative applications. The shape memory effect 

phenomenon, which can be observed when the material is below the austenitic transformation 

temperature, inspired the name SMA. The same material exhibits a superelasticity effect at a 

temperature above the austenitic finish. The thermomechanical behavior is related to the diffusionless 

phase transformation between a high-temperature, high-symmetry austenite and a low-temperature, 

low-symmetry martensite [1]. 
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In particular, Ti–Ni binary SMAs (TiNi SMAs) exhibit superior recovery stress and strain and long 

fatigue life, resulting in their widespread application compared with other series of SMAs. TiNi SMAs 

have numerous industrial applications, including mechanical sensors and actuators in aerospace [2], 

civil [3], automotive [4, 5], and wind energy [6] industries. Some TiNi SMA devices are designed to 

operate in the martensitic transformation regime, where the loading–unloading conditions remain 

constant. These loading–unloading conditions are considered to be subloop loading. Figure 1 shows a 

stress–temperature phase diagram for a typical TiNi SMA, where the superelasticity phenomenon is 

observed at a constant temperature T (vertical line). In subloop loading, the stress changes in the 

martensitic and reverse transformation regions, indicated by the filled areas in Figure 1, result in 

incomplete martensitic and reverse transformations. By investigating the stress–strain response to 

subloop loading, it was observed that the behavior is strongly related to the number of cycles, which is 

impractical for application because a stable behavior is required [7]. In the stress–strain response, 

hysteresis is observed because of frictional effects inside the material, which should be described using 

phenomenological models [7]. In addition to stress and strain, an increase in accumulated (residual) 

transformation strain can be observed due to cyclic loading [8]. 

 

Figure 1 Phase diagram of superelasticity phenomena under isothermal loading–unloading 

conditions 

Phenomenological constitutive models have been proposed to predict complex thermomechanical 

behavior under various loading and boundary conditions. In their study [9], Müller and Xu investigated 

the description of inner loops during superelastic behavior. They used the polynomial Landau–

Devonshire theory and compared the model with the experimental results. Ortín [10] and Boyd and 

Lagoudas [11] also successfully considered subloops using the Preisach model. Tanaka et al. [8] and 

Tanaka and Nagaki [12] analyzed subloops and proposed a model with assumed phase transformation 

kinetics. Different subloop aspects were treated by Tobushi et al. [13], where plateaus in stress–strain 

hysteresis in TiNi SMAs were discussed. In [7], a constitutive model previously proposed by Savi et al. 

[14], Baêta-Neves et al. [15], and Paiva et al. [16] is used. They compared the numerical and 

experimental results and showed that they were in close agreement. Phillips et al. [17] investigated 

internal damage in a TiNi SMA and noticed that fatigue evolved nonlinearly. Rapid damage is 

associated with irrecoverable strain accumulation. Scalet et al. [18] investigated the behavior of TiNi 

SMAs when the transformation direction is changed in a mixed-phase state. They found that TiNi SMAs 

can memorize previous states, as in [19]. They explained the phenomenon in a material as an alteration 

of the material microstructure [20] controlled by a critical threshold energy value. They assumed that 

the same energy level state was achieved after a series of loadings. They also suggested that 

conventional TiNi SMAs can be modeled without considering irrecoverable strains and damage when 

the number of actuation cycles is relatively low. 
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Ren et al. [21] investigated the behavior of NiTi wires subjected to cyclic loading. They used a modified 

Lagoudas model that considers the slopes of phase transformation lines, and the residual strain is cycle-

dependent. In his PhD thesis, Wang [22] generalized the Zaki–Moumni SMA model to describe cyclic 

pseudoelasticity with four fundamental characteristics: large residual strain, degeneration of 

pseudoelasticity and hysteresis loop, rate dependence, and evolution of phase transformation of 

polycrystalline SMAs. Wang et al. [23] used molecular dynamics to investigate the superelasticity of 

NiTi SMAs subjected to cyclic loading. They found that superelasticity degeneration occurs and 

residual strain accumulates progressively with an increasing number of cycles. Furthermore, Xiao et al. 

[24] and [25] established a phenomenological constitutive model for the cyclic behavior of superelastic 

NiTi SMAs that can capture superelasticity degradation. Moreover, in [26], Xiao et al. experimentally 

and numerically investigated multiple cases of cyclic loadings on superelastic NiTi SMAs. Mechanical 

instability was used in the model to reproduce transformation patterns under tensile stress states. Xie et 

al. [27] developed a three-dimensional (3D) phase-field model for NiTi SMA single crystals to simulate 

the cyclic phase transition. They found that NiTi SMAs exhibit localized deformation and local 

softening. In further investigation, Xie et al. [28] proposed a new thermomechanical phase-field model 

based on a previously developed isothermal phase-field model [27]. They showed that cyclic 

superelasticity degradation and its dependence on the loading rate and level can be captured. Choi et al. 

[29] proposed an integrated unified elastic–viscoplastic fatigue and creep damage model to simulate 

cyclic softening and creep–fatigue interaction damage. They integrated the creep and fatigue damage 

model into the viscoplasticity damage model and compared the obtained results with those of the 

experimental investigation. Kan et al. [30] investigated the stress–strain response, temperature, and 

dissipation energy in superelastic NiTi SMAs as the number of cycles increased. They revealed path-

dependent functional fatigue, which increases with loading frequency. Kan et al. [31] experimentally 

investigated the functional degeneration of NiTi SMA rods under cyclic loading–unloading. Kan et al. 

[32] also presented the experimental and theoretical evolution of the superelasticity of NiTi SMA helical 

springs under cyclic deformation. 

Until now, some phenomenological models have been able to capture subloop behavior and consider 

accumulated martensitic transformation strain. The proposed solutions are based on different 

mathematical models and provide satisfactory results for special cases. However, a comprehensive 

solution that can cover all subloop loading cases and the accumulation of transformation strain remains 

a topic of interest for scientists and is essential for the use of TiNi SMAs in engineering solutions. The 

phase-field damage model (PFDM) has recently attracted attention as a universal solution. By 

considering damage to materials as an additional degree of freedom, the behavior of structures under 

cyclic loading can be observed. The first implementation and application of the PFDM for TiNi SMAs 

were presented in two studies [33,34] using different phenomenological constitutive models. In the first 

study, the Lagoudas model was used, whereas the Drucker–Prager yield function was employed in the 

second study. In both studies, fatigue functions were proposed [35]. 

In this study, the authors experimentally investigated TiNi SMAs under subloop loading conditions and 

proposed the PFDM as a functional solution for the simulation of subloop hysteresis, as well as the 

accumulation of damage and its relationship with the accumulated martensitic volume fraction and 

residual transformation strain. The modified Lagoudas model [36,37] was used as the base for the 

PFDM implementation. The proposed modifications are reviewed for completeness, and details related 

to the Boyd–Lagoudas hardening function are presented [38]. Next, the PFDM theory, along with the 

derivation of a fatigue function, is presented. Thermomechanical coupling is not considered in this study 

because the experimental investigation is performed at low strain rates. Thus, the temperature of the 

material is assumed to be constant. The TiNi SMA is first investigated under full-loop loading–

unloading conditions. Subloop loading–unloading is then performed, and the stress–strain response is 

obtained. Both tests are simulated, and the material parameters are calibrated. The comparison of the 

stress–strain response, the obtained parameters, and the relationship between the accumulated damage 

and martensitic volume fraction are discussed in detail, with open questions for future research. Within 
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this scope, this study not only provides answers to some questions but also opens new questions that 

require further research. 

2 Theory 

2.1 TiNi SMA constitutive model 
Previous experience with the constitutive model presented in Lagoudas’s paper [38], as well as its 

implementation in finite element method (FEM) software [36], imply that it is one of the 

phenomenological models that can be successfully modified to capture the subloop loading behavior in 

conjunction with the PFDM. Therefore, this subsection provides an overview of the main constitutive 

model theory, and the proposed modifications [36,37], along with the hardening function employed for 

simulations [38], are reviewed. The TiNi SMA model is derived on the basis of a Gibbs free energy 

function, g , extended by a transformation hardening function, ( )f  , that depends on a martensitic 

volume fraction,  . The model is explicitly expressed, as in Qidwai and Lagoudas [1]: 
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Two internal state variables define the constitutive model: the martensitic volume fraction   and the 

martensitic transformation strain tre . The variables σ  and T  denote the total stress and the 

temperature of the material, respectively,  represents the effective compliance tensor, α  denotes 

the effective thermal expansion coefficient tensor, T  represents the current temperature of the material, 

0T  denotes the reference temperature, c  represents the effective specific heat, 0s  denotes the effective 

specific entropy, 0u  denotes the effective specific internal energy, and   denotes the density of the 

material. The main assumption for the derivation of this constitutive model is that the change in 

martensitic transformation strain tre  is strictly because of a change in the amount of martensitic volume 

fraction   as follows [1]: 

 tr trH e n , (2) 

where H  represents the value of the maximal transformation strain and trn  denotes the transformation 

direction vector [36-38]. By introducing the Legendre transformation, as described in [39], 

 
1

:g u sT


   σ e , (3) 

where u  represents the internal energy, s  represents the specific entropy, and e  represents the total 

strain tensor. The first law of thermodynamics can be expressed as follows [36,38,39]: 

  :u div q   σ e q , (4) 

where q  represents the heat flux and q  represents the heat source of the added thermal energy. When 

we substitute Eq. (4) into the Clausius–Duhem equation [38], 

   0sT div q   q . (5) 
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The Clausius–Planck inequality can be obtained as follows [36,38,39]: 

 
1

: 0int u Ts


   σ e . (6) 

The time derivative of the Gibbs free energy is given by [36,38] 

 
1 1

: :g u sT sT
 

    σ e σ e  (7) 

can be substituted into Eq. (5), yielding the following [36,38]: 

 : 0g sT    σ e . (8) 

The total derivative of the Gibbs free energy is [36,38] 
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and when it is substituted into Eq. (8), the following is obtained: 
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The total strain tensor e  and entropy s  are defined as [36,38] 
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From Eq. (11), it can be noticed that the total infinitesimal strain is the sum of the elastic strain ee , the 

thermal strain te , and the martensitic transformation strain tre  [36,38]: 

 e t tr  e e e e . (13) 

It is now possible to show that the internal dissipation of energy is greater than or equal to zero [36,38]: 
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Substituting Eq. (2) into Eq. (14), the general thermodynamic force   can be obtained as follows 

[36,38]: 

 : 0int tr
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σ n . (15) 

For the given Gibbs free energy in Eq. (1), the explicit form of   is [38] 
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where 0 0 0 0 0 0, , , ,M A M A M A M A M Ac c c s s s u u u              α α α , where the 

subscript A  denotes the austenite phase and M  denotes the martensite phase. The simplest Boyd–

Lagoudas [1,11,38] hardening function ( )f   is used in this case as follows: 
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where 1 2, , ,M Ab b    are the transformation strain hardening material constants [1]: 
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The transformation function   is introduced by Lagoudas as [38] 
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where Y  represents the threshold value, which depends on the transformation hardening function ( )f   

[38,40]: 

  0

1

4
Ms Mf Af AsY s T T T T     . (20) 

The decomposition of the total stress on the deviatoric 'S  and the mean  part m  is [41] 

 ' m σ S I . (21) 

It can be used in Eq.(19) with an approximation that the proposed transformation direction trn  in Eq. 

(2) is constant and equal to the trial value from the beginning of the time step [41,42]. The 

transformation function is derived in a scalar form as [36]: 
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where 
AG  and 

MG  denote the shear moduli for austenite and martensite, respectively, 
A

mc  and 
M

mc  

denote 1/3 of the bulk moduli for the austenite and martensite phases, S  denotes the von Mises 

equivalent stress, tre  denotes the equivalent transformation strain, *'S  denotes the trial deviatoric 

stress, MsT  denotes the martensite start temperature, and AfT  denotes the austenite finish temperature. 

When 0 , an elastic response is obtained; however, for both forward and reverse phase 

transformations, the transformation function needs to satisfy 0  while 0  . 

2.2 Phase-field damage modeling 
In the literature [43-46], the PFDM was introduced by analyzing a bar with a constant cross-section, as 

shown in Figure 2. The damage variable d  along the x  axis of the bar can be defined for the diffusive 

crack topology as an exponential function [43-46]: 

   e c

x

l
d x



 , (23) 

where cl  is defined as a characteristic length-scale parameter. 

 

Figure 2 Bar loaded by forces F  on both sides with a crack surface S  in the middle: damage phase 

field for diffusive crack topology [44,45,47,48] 

The internal potential energy density   is considered the sum of mechanical energy density  ,M d ε  

and fracture surface energy density  ,S d d   [33-35,49,50]: 

    , ,M Sd d d    ε . (24) 

The mechanical strain energy density of the virgin material 0

M  is multiplied by the degradation 

function  d  to define the mechanical strain energy density 
M  as [33-35,49,50] 
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        0 0, , , ( ) :M Md d d       e e σ e ,  (25) 

where 0 ( )σ  denotes the Cauchy stress tensor of an undamaged solid. Similarly, the “damaged” 

Cauchy stress ( )σ  is expressed as follows [47,48,51]: 

   0( , ) ( )d d  σ σ . (26) 

The fracture surface energy 
S  at the crack surface S  is defined as [33-35,49,50] 

        ,S S

c c

S V V

f fG dS G d d dV d dV         , (27) 

where the regularized crack surface functional for multi-dimensional solids is obtained in the same 

manner as that given in the literature [33,34,43,44]: 

      ,
V

S d f d d dV  . (28) 

The fracture surface energy density dissipated by the formation of the crack is defined as follows: 

      ,S

cd G d df    . (29) 

In the previous equations, cG  denotes the Griffith-type critical fracture energy release rate, also 

known as the fracture toughness of the material, described as the amount of energy required to 

produce a unit area of the fracture surface, and   denotes a crack surface density function per unit 

volume defined as [33,35,43-46,49,50] 
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where   denotes the gradient operator. Cyclic loading causes more damage, which is captured by the 

fatigue function  f   [33-35]. This function degrades the material toughness with respect to the 

fatigue history variable. The increment of the history variable can be defined as [31-35] 

    
t t

t

t H d   


   , (31) 

where  H   denotes the Heaviside step function [31-35]: 
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H





 


. (32) 

The fatigue history variable   is defined as [31-35] 

 
M  , (33) 

resulting in 

 
t t t      , (34) 

whereas the fatigue function is [33] 
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Here, T  denotes a threshold value below which the fracture energy remains unaffected. It is adopted 

according to the literature [33]: 

 
12

V
T

G
  . (36) 

Threshold value in Eq. (36) controls the accumulation of the mechanical strain energy responsible for 

the damage. Damage occurs from the beginning of loading because of the increase in elastic strain 

energy, which is a reason for fracture in high cyclic fatigue cases when materials do not exhibit inelastic 

strains. When the accumulated mechanical strain energy 
t t

 is higher than the threshold value T , 

the fatigue function in Eq. (35) affects the fracture energy in Eq. (29) in a way that decreases it below 

its initial value, which accelerates the damage and finally leads to fracture. The fatigue life of the SMA 

depends on the accumulated elastic strain energy, whereas the inelastic strain and the forward and 

reverse martensitic transformation do not influence the damage. Furthermore, in the case of cyclic 

loading up to the same total strain value, according to the model, the fatigue life tends to infinity, which 

can be observed in the experimental investigation of NiTi SMAs, where the fatigue life is up to several 

tens of thousands of cycles. 

The total internal potential energy intW  functional is defined as [33-35,47-51] 
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where the critical fracture energy release rate per unit volume is c
V

c

G
G

l
 . The variation in the 

internal potential energy over the total strain and damage is given as [47,48,51] 
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 e

e
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We can obtain [47,48,51] 

   2: c

V

int VW G d d l d d dVf          σ e . (39) 

Variation in the external potential energy extW  is known as [47,48,51] 

 ext

V A

W dV dA      b u h u , (40) 

where b  represents the body force field per unit volume, h  represents the boundary traction per unit 

area, and u  represents the displacement vector. The equilibrium of the internal and external potential 

energies [47,48,51] is 

 int extW W  , (41) 
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Using the total derivatives of the following terms and the Gauss theorem, we obtain the following 

[47,48,51]: 
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where n  represents the unit outer normal to the surface A . The Neumann-type boundary conditions 

are as follows [47,48,51]: 

 0  σ n h , (44) 

 0d  n , (45) 

which result in the following governing balance equations [47,48,51]: 

   0Div  σ b , (46) 

    2 2

0' 0M

V cf G d l d d       .  (47) 

2.3 FEM software implementation 
In [36,52-54], the thermomechanically coupled FEM software PAK, developed at the Faculty of 

Engineering, University of Kragujevac, Serbia, as an in-house non-commercial software solution, was 

used to investigate the influence of strain rate on the stress–strain response in TiNi SMAs. However, in 

this study, thermomechanical coupling is not necessary, because the low strain rate loading conditions 

do not increase the temperature of TiNi SMAs; thus, isothermal conditions can be considered. To 

simulate the mechanical behavior of TiNi SMAs, the structural analysis software PAK-S [55] is used. 

PAK-S is a software for structural analysis based on FEM. It can be used for linear and nonlinear 

analyses, which include various types of constitutive models, loading and boundary conditions, 

elements, and iterative solvers for parallel processing. In addition, this software implements the phase-

field damage modeling presented in Section 2.2. The TiNi SMA constitutive model presented in Section 

2.1 is implemented to compute displacements, martensitic volume fraction, total stress, total strain, and 

transformation strain fields. In PAK-S, the PFDM theory presented in Section 2.2 is also implemented, 

and 3D multi-field elements are created to solve the fields of displacement and damage separately in a 

staggered solution scheme [47,48,51]. 

This section describes discretization using standard finite elements and Lagrange interpolation 

functions. The standard Galerkin method is used to derive the equilibrium equations of finite elements 

[47,48,51]. The displacement vector of the nodes U  is unknown and should be determined. By 

grouping the terms in Eq. (42) with the displacement variation u  and damage variation d , we 

obtain the energy balance equations as follows [47,48,51]: 

 :
V V A

dV dV dA       σ e b u h u , (48) 
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The displacement vector u  at the integration point is defined as [41] 

 
uu N U , (50) 

where 
u

N  denotes the matrix of interpolation functions [56] for the interpolation of displacement 

values in the nodes of the finite element located in the vector U . The small strain vector ε  at the 

integration point is defined as [41,49] 

 
ue B U , (51) 

where 
u

B  (strain–displacement) denotes the matrix containing the derivatives of the interpolation 

functions [56]. The value of the damage field d  at the integration point is given by [49,50] 

 
dd  N d , (52) 

where 
d

N  denotes the vector of interpolation functions for the interpolation of the damage values in 

the nodes of the finite element, which are located in the vector d . The local gradient of damage d , 

which we denote by analogy with strains as 
d
ε , is [49,50] 

 
d dd  ε B d , (53) 

where 
d

B  (damage gradient − damage) denotes the matrix containing the derivatives of the 

interpolation functions. We can express the variation in the displacement field u  and the variation in 

the damage field d  as [47,48,51] 

 
u u N U , (54) 

 
dd  N d . (55) 

Variations in the small strain ε  and the damage gradient d  are [47,48,51] 

 
u ε B U , (56) 

 
dd   B d , (57) 

resulting in [47,48,51] 

   0Т u  U F R , (58) 

 0T d d F , (59) 

where R  represents the vector of external forces, 
u

F  denotes the vector of internal forces, and 
d

F

denotes the part of the internal potential energy associated with damage: 

 
uT uT

V A

dV dA  R N b N h , (60) 

 
u uT

V

dV F B σ , (61) 
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For arbitrary variations in the displacement vector U  and damage vector d , from Eqs. (58) and 

(59), the equilibrium equations of the finite elements are obtained as [47,48,51] 

 
u F R , (63) 

 
d F 0 , (64) 

that is 

   0

uT uT uT

V V A

d dV dV dA    B σ N b N h , (65) 
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0'dT dT dT

V c

V

d f G d l d dV         N N B 0 . (66) 

Eqs. (65) and (66) are nonlinear functions of displacement and damage, which generally cannot be 

solved directly but are solved incrementally. Suppose we have known solutions at time and are looking 

for solutions at time, where t  denotes the time or load step. We consider that the external forces are 

independent of strain and are known at each time step. We can express [41] 

 
t t t  R R R , (67) 

where 
t
R  and 

t t
R  denote the external forces at the beginning and end of the time step, respectively, 

and R  denotes the increment in the external forces in the time step. By solving the nonlinear system 

of Eqs. (63) and (64) at the time t t  [47,48,51], 

 
t t u t t F R , (68) 

 
t t d F 0 , (69) 

displacement U  and damage d  increments in the nodes are obtained, on the basis of which the 

total displacements 
t t

U  and damages 
t t

d  at the end of the step are calculated as [47,48,51] 

 
t t t   U U U , (70) 

 
t t t   d d d , (71) 

where we consider the known displacements and damage 
t
d  from the beginning of the step. Eqs. and 

are linearized by expanding the vector of internal forces and the vector of internal damage energy 
t t d

F  into the Taylor series as [47,48,51] 

    1 1
t u t u

t t u t u

t t

  
    

 

F F
F F U d

U d
, (72) 

    1 1
t d t d

t t d t d

t t

  
    

 

F F
F F U d

U d
, (73) 
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where 
 1

U denotes the first approximation of the displacement increment and 
 1

d  denotes the first 

approximation of the damage increment. Substituting Eq. (72) into Eq. (68) and Eq. (73) into Eq. (69), 

we obtain the following system of coupled equations [47,48,51]: 

 

 

 

1

1

t uu t ud t t t u

t du t dd t d

     
    

     

UK K R F

K K Fd
, (74) 

where the submatrices of the tangent stiffness matrix are [47,48,51] 

   0

tt u
t uu t uT u

t t

V

d dV


 
 

σF
K B B

U U
, (75) 

   0'
t u

t ud t uT t d

t

V

d dV


 
 

F
K B N

d
 , (76) 

   0'
t d

t du t dT t T u

t

V

d dV


 
 

F
K N B

U
 , (77) 

     2

0''
t d

t dd t t dT d dT d

V V ct

V

d f G G l dV  


    
  

F
K N N B B

d
, (78) 

and the vectors of the external forces, internal forces, and damage energy are [47,48,51] 

 
t t uT t t uT t t

V A

dV dA    R N b N h , (79) 

   0

t u t uT t

V

d dV F B σ , (80) 

     2

0't d dT t t dT t dT t

V c

V

d f G d l d dV        F N N B . (81) 

Applying the Newton–Raphson iterative procedure (Eq. (3)) to solve the coupled system of nonlinear 

equations (Eq. (74)) yields [47,48,51] 

 

   

   

 

 

 

 

1 1 1

1 1 1

uu i ud i i u it t t t t t t t

du i dd i i d it t t t t t

     

    

         
     

           

K K U R F

K K d F
,  (82) 

Where the subscript i indicates the number of iterations. After each iteration, the total displacement and 

damage are calculated as [47,48,51] 

 
     1i i it t t t   U U U , (83) 

 
     1i i it t t t   d d d .  (84) 

For a staggered iterative solution scheme, the submatrices (Eqs. (76) and (77)) can be neglected, which 

provides a more stable solution for the coupled system, as presented in [47,48,51]. 
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3 Experimental investigation 
The same TiNi SMA material is investigated experimentally under full-loop and subloop loading 

conditions. For the experimental investigation [13], a rectilinear wire made of Ti–55.4-wt% Ni SMA, 

0.75 mm in diameter, was used (Furukawa Electric Co). The wire is prepared through shape memory 

processing at 673 K for 60 min, followed by cooling in an electric furnace. The determined reverse 

transformation finish temperature AfT  was approximately 323K [13]. A tensile testing machine was 

used for the investigation, and an extensometer with a gauge length of 20 mm was used to measure the 

displacement. Full-loop loading and unloading were applied under a constant strain rate 

1%/ mind dt  , as shown in Figure 3a. 

  
a) b) 

Figure 3 Loading conditions for a) full-loop and b) subloop cases 

The recorded stress–strain response is shown in Figure 4a. As shown in Figure 4a, stress plateaus appear 

in the loading and unloading processes. The stress plateau in the loading process is due to martensitic 

transformation, whereas those in the unloading process are due to reverse transformation from the 

martensite phase to the austenite phase. This is a typical stress–strain diagram of TiNi SMAs. Subloop 

loading conditions are applied at the same constant strain rate in further experimental investigations. 

During the loading process, before the completion of the martensitic transformation, the specimen is 

unloaded. Similarly, before the end of the reverse transformation, the specimen is reloaded again, as 

shown in Figure 3b. The stress–strain response is depicted in Figure 4b. The figure also shows the 

complex stress–strain diagram. Typical TiNi SMAs exhibit this type of response under subloop loading 

conditions. In particular, the stress plateau increases and decreases in a complex manner during the 

reloading process. This phenomenon occurs because the boundary between the martensite and austenite 

phases moves within the material during the loading and unloading processes. This complex behavior 

manifests because of the decreasing deformation resistance each time the boundary passes through the 

material [13]. In other words, this phenomenon occurs because of the accumulation of damage during 

cyclic loading. 



15 

 

  
a) b) 

Figure 4 Stress–strain response for experimental investigation of TiNi SMA specimens a) full-loop 

loading; b) subloop loading [13] 

4 Numerical verification 
For numerical verification, we decided to demonstrate the TiNi SMA constitutive model, i.e., the PFDM 

implementation response at the unit cube example, which can be considered a wire segment. The unit 

dimensions are chosen to exclude the scale and FEM mesh sensitivity of the structure as respective 

variables and to demonstrate the functionality of the proposed solution. The material parameters are 

calibrated by manually fitting the stress–strain curves obtained by simulations and experimental 

investigation. For the experimental research, the same TiNi SMA material is used, but the stress–strain 

responses have slight differences in material parameters. 

4.1 Different options for simulation of TiNi SMA behavior 
The implementation of the theory in the FEM software is tested to show which option offers the best 

results. The observed simulation options are as follows: 

1) the pure TiNi SMA constitutive model, without the PFDM, as described in subsection 2.1; 

2) the TiNi SMA constitutive model with the PFDM presented in subsection 2.2 but without the fatigue 

function described using Eqs. (31)–(36); 

3) all cases, i.e., the TiNi SMA constitutive model with the PFDM and fatigue function. 

The simulations are performed using the same material parameters listed in Table 1 and Table 2. As 

shown in Figure 5, for both full-loop and subloop loading cases, the pure modified SMA constitutive 

model without the PFDM and fatigue function cannot satisfactorily capture the experimental response. 

The stress–strain hysteresis is constant and does not change during the loading–unloading cycles. For 

the case with the PFDM, the stress–strain response is the same for the full-loop loading case; however, 

a difference can be noticed in the case of subloop loading when the fatigue function is used. According 

to the behavior shown in Figure 5b, the fourth cycle stress plateau decreases because of the fatigue in 

the material described by Eqs. (35) and (36). 

According to the damage–strain dependence depicted in Figure 6a, the fatigue function does not affect 

the accumulation of damage for the full-loop loading case. Conversely, in the subloop loading case 

(Figure 6b), in the fourth cycle, the damage increases during elastic reloading because the threshold 

value defined by Eq. (36) is achieved. Using the proposed PFDM–damage function implementation, 
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we can control the increase in damage in various regimes, allowing for good qualitative and quantitative 

simulation results in a real-world scenario. 

The martensitic volume fraction value must be accurately computed because the amount of inelastic 

transformation strain is strongly related to the computed value according to Eq. (2). Figure 7 illustrates 

the martensitic volume fraction with respect to strain for all three simulation options. For both full-loop 

and subloop loading cases, we have the same diagrams for the PFDM implementation with and without 

the fatigue function. However, in the case of the pure TiNi SMA model, there is a slight difference: 

there are no residual strains after unloading because we established the relationship between the damage 

value and martensitic volume fraction. 

  
a) b) 

Figure 5 Stress–strain response for different options of PFDM and fatigue function implementation: 

a) full-loop loading; b) subloop loading 

  
a) b) 

Figure 6 Damage–strain diagram for different options of PFDM and fatigue function implementation: 

a) full-loop loading; b) subloop loading 
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a) b) 

Figure 7 Martensitic volume fraction–strain diagram for different options of PFDM and fatigue 

function implementation: a) full-loop loading; b) subloop loading 

4.2 Full-loop loading case verification 
The unit cube is loaded by the prescribed displacement on one side, while the other is constrained in 

the loading direction (z-axis). The material parameters of TiNi SMA are calibrated to the experimental 

results and are listed in Table 1. Isothermal loading conditions are assumed at a constant temperature 

of 353K , which is the same as that under experimental conditions. Loading–unloading is solved in 

3200 equal time steps in a strain-controlled manner using the loading–unloading function. The stress–

strain response is shown in Figure 8. 
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Table 1 Material parameters for one-element examples, full-loop loading [40] 

AE  ME  A   M   

80 GPa 40 GPa 6 122.0 10 K   
6 122.0 10 K   

MsT   MfT  
AsT   AfT  

257 K 247 K 320 K 323 K 

maxH      
As   Ms   

0.057 0.33 10.55MPa K    
10.35MPa K   

cl   VG   tol 
refT   

0.1 mm 150 MPa 1.e-7 353 K 

 

 

Figure 8 Comparison of experimental and simulation stress–strain response for full-loop loading case 

4.3 Subloop loading case verification 
The subloop loading is performed in four cycles according to the loading function shown in Figure 3b. 

Isothermal loading conditions are assumed at a constant temperature of 353K  for the same reasons as 

those in the previous case. The example is solved in 7440 equal loading steps. The stress–strain response 

is shown in Figure 9. 
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Table 2 Material parameters for one-element examples, subloop loading [40] 

AE  ME  A   M   

80 GPa 40 GPa 6 122.0 10 K   
6 122.0 10 K   

MsT   MfT  
AsT   AfT  

243 K 230 K 320 K 323 K 

maxH      
As   Ms   

0.064 0.33 10.55MPa K    
10.35MPa K   

cl   VG   tol 
refT   

0.1 mm 140 MPa 1.e-7 353 K 

 

 

Figure 9 Comparison of experimental and simulation stress–strain response for subloop loading case 

5 Simulation of NiTi SMA wire segment 
After the calibration of the material parameters listed in Table 2, the wire segment is modeled according 

to the loading and boundary conditions during the experimental investigation described in Section 3. 

The segment of the TiNi SMA rectilinear wire is modeled in the 20-mm gauge length of the 

extensometer. One-eighth of the wire segment is modeled because of the symmetry. 
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Figure 10 Finite element mesh of TiNi SMA wire segment with boundary and loading 
conditions 

A finite element mesh is prepared to show the localization of the martensitic volume fraction and 

damage in the middle zone (Figure 10). The cross-section of the middle is reduced by 1%. In this zone, 

the finite element mesh discretization is finer, whereas it is coarser at the ends of the wire. The loading 

conditions are controlled using the prescribed displacements shown in Figure 3b. The force–

displacement diagram is transformed into stress–strain by the following relations: 

 
0 0

;
F l

A l
 


  ,  (85) 

where F  represents the total constrained force at the prescribed displacement nodes, 0A  denotes the 

nominal cross-sectional area of the wire, l  denotes the elongation of the wire, and 0l  denotes the 

nominal length of the wire. The results are presented in Figure 11. The diagram is similar to the 

simulation results of the one-element example; however, some differences can be observed because of 

the localization of both the damage and martensitic volume fraction in the middle of the wire segment. 

After the initial linear elastic loading, a sudden decrease in stress can be observed because of the 

localization of the martensitic volume fraction in the middle of the specimen and its unequal propagation 

along the wire. However, after the initial instability, the stress–strain diagram becomes smooth and 

follows the results obtained from one-element simulations. 

By analyzing the development of damage and martensitic volume fraction, the most interesting results 

at the end of the loading–unloading cycles are shown in Figure 12 and Figure 13. The points of interest 

are marked in Figure 11, where (a) and (b) denote the end of loading and unloading in the first cycle, 

(c) and (d) denote that in the second cycle, (e) and (f) denote that in the third cycle, and (g) and (h) 

denote that in the fourth cycle, respectively. 
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Figure 11 Stress–strain diagram for TiNi SMA wire segment loaded by prescribed 
displacements 

         
(a) (b) (c) (d) (e) (f) (g) (h)  

Figure 12 Damage to TiNi SMA wire segment at the end of loading–unloading cycles 
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In Figure 12, the damage field is given at points (a)–(h) denoted in Figure 11. Damage occurs in the 

middle of the specimen and increases after each cycle up to the maximal value localized at the middle 

of the wire segment. 

         
(a) (b) (c) (d) (e) (f) (g) (h)  

Figure 13 Martensitic volume fraction of TiNi SMA wire segment at the end of loading–
unloading cycles 

In Figure 13, the martensitic volume fraction field is shown at points (a)–(h) denoted in Figure 11. The 

development of martensite in the wire can be observed during loading, whereas unloading is followed 

by reverse transformation. As evident from the result, martensite phase initiates at the highest stressed 

locations during the loading process, and propagates along the specimen axis. During the unloading 

process, reverse transformation progresses backward from the last location where martensitic 

transformation occurred. This phenomenon aligns with a well-known behavior in TiNi SMA [57 - 60]. 

6 Discussion and conclusions 
The investigation of TiNi SMAs is a source of exciting phenomena that should be described, and 

simulation techniques should be considered. In this study, the authors decided to extend the research 

toward subloop loading conditions, which are essential for many applications of TiNi SMA devices. 

Previously obtained experimental results have been reviewed, and new observations are presented. 

According to the experimental results with respect to the obtained simulation results, under full-loop 

loading–unloading conditions, the maximal transformation strain is lower than that under subloop 

loading conditions because the elastic loading after martensitic transformation increases stress up to 

700 MPa, whereas, in the case of subloop loading, the maximal stress after martensitic transformation 

is 570 MPa. 

In addition to the maximal transformation strain, the martensitic start and finish temperatures are higher 

for full-loop loading than for subloop loading because the hardening of the material is strongly related 

to the maximal transformation strain. 
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The accumulated (residual) transformation strain after unloading is higher for subloop loading than for 

full-loop loading. The accumulation of the martensitic transformation strain is noticed in loading 

branches, where the elastic strain energy increases; thus, the subloop loading has repeated loading–

unloading cycles, which results in a higher accumulation of transformation strain. 

The relationship between the computed damage of the material and the accumulated martensitic 

transformation strain is of interest. This study demonstrates a different relationship between the full-

loading and subloop loading cases. In the subloop loading case, 60% of the damage value is considered 

the accumulated martensitic transformation strain value. In contrast, in the case of full-loop loading, 

because of the strong increase in damage in the elastic branch after martensitic transformation, only 

10% of the damage value is the accumulated martensitic transformation strain. These results are a topic 

of interest for further research and will be investigated in the future. 

In the experimental investigation, the peaks can be observed at the beginning and end of the forward 

and reverse transformations. This behavior can be explained by the instability of the transformation 

process, accompanied by the appearance of Lüders bands. The proposed model cannot capture these 

peaks; however, these possibilities will be investigated in the future. 

The authors proposed the PFDM as a cutting-edge numerical technique for the modified TiNi SMA 

constitutive model with the application of the fatigue function to simulate the change in stress–strain 

hysteresis during subloop loading and its influence on the accumulation of martensitic transformation 

strain. A relationship between damage and residual strain is proposed, and excellent qualitative and 

quantitative results are obtained. 
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