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 Abstract 

Knowing the material properties is of a crucial importance when planning to manufacture some struc-

ture. That is true for the steel structures, as well. Thus, for the proper planning of a certain steel part 

or a structure production, one must be aware of the properties of the material, to be able to make a 

qualified decision, which material should be used. Considering that the manufacturing of steel prod-

ucts is constantly growing in various branches of industry and engineering, the problem of predicting 

the material properties, needed to satisfy the requirements for the certain part efficient and reliable 

functioning, becomes an imperative in the design process. A method of predicting four material prop-

erties of the two stainless steels, by use of the artificial neural network (ANN) is presented in this 

article. Those properties were predicted based on the particular steels’ known chemical compositions 

and the corresponding material properties available in the Cambridge Educational System EDU PACK 

2010 software, using neural network module of MathWorks Matlab. The method was verified by com-

paring the values of the material properties predicted by this method to known values of properties for 

the two stainless steels, X5CrNi18-10 (AISI 304), X5CrNiMo17-12-2 (AISI 316). The difference be-

tween the two sets of values was below 5% and, in some cases, even negligible.  
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1. Introduction 

Application of steels in technics began to grow with the dis-

covery of Bessemer’s process, back in 1856. From then on, 

almost all new structures and machines began to incorporate 

steel parts, extending the service life of parts in that way. 

Nowadays, in the so-called conventional engineering, such as 

mechanical, civil, automotive etc., steel is still the most ap-

plied material. One of the reasons for such a situation is the 

significantly lower price of steels, as compared to other metal 

materials, such as aluminum or titanium, or composite mate-

rials, new-nano materials and others. However, there exist 

some disadvantages that are limiting their even wider applica-

tion. The first and definitely the biggest is phenomenon of cor-

rosion, i.e., reacting of steel with oxygen, forming the corro-

sive layer on the components surface, and, in the more severe 

cases, penetrating deeper into the material bulk. The corro-

sion, to put it simple, is an irreversible process of material de-

struction. Problems related to corrosion could lead to greater 

problems, such as material loss, as well as sudden compo-

nents’ failures that can have catastrophic consequences, not 

only regarding financial losses, but endangering human lives, 

as well (Jovanović et al., 2017). 

The solution to this problem was found in 1913 with discov-

ering of steels that are resistant to corrosion, the so-called 

stainless steels. The resistance to corrosion comes as a conse-

quence of those steels’ chemical composition, consisting of 

minimum of 10.5 to 12% of chromium dissolved in steel solid 

solution. At present, there exist thousands of stainless steels 

grades, carefully engineered to meet the specific requirements 

of the parts that are to be made of them, all regulated by spe-

cific standards, (EN 10088-1:2005; EN 10088-2:2005; EN 

10088-3:2005; EN 10088-4:2009; EN 10088-5:2009). Be-

sides chromium, the stainless steels also contain other chemi-

cal elements, such as nickel, molybdenum, vanadium and oth-

ers.  Stainless steels with adequate addition of niobium are 

known as austenite (or austenitic) stainless steels, since their 

austenitic structure remains even at room temperatures. The 
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reason for that is the action of Ni i Mn, which expand the re-

gion of stable austenite within the Fe-Fe3C phase diagram. 

The microstructure is the main criterion for classification of 

the stainless steels: ferritic, austenitic, austenitic-ferritic (the 

so-called duplex steels), martensitic, precipitation hardening. 

Differences between mechanical and physical properties of 

carbon and stainless steels are important for the structural 

safety. They include principal material properties (Young 

modulus, yield stress and ultimate strength), as well as stain-

less steel behavior (the stress-strain curve i.e., the σ–ε dia-

gram, behavior during the cold working or at elevated temper-

atures). Those differences must be considered when the 

ultimate and serviceability limit states are being formulated 

during the structures design (Tylek and Kuchta, 2014). 

When designing any steel structure, one must obey adequate 

standards (EN 1990:2002; EN 1993-1-1:2005; EN 1993-1-

2:2005; EN 1993-1-3:2006; EN 1993-1-4:2006), respecting 

the material properties. The designer must be, in advance, 

aware of properties of different steels, so that he can decide 

which of the steels is the best for manufacturing the certain 

part or a structure. One of the methods for predicting some 

material properties of the two stainless steels is presented in 

this paper. The method is based on application of the artificial 

intelligence, precisely the artificial neural networks. 

Artificial Neural Networks (ANN) are created from artifi-

cial neural cells (artificial neurons), which are modelled based 

on the principle of functioning of the biological neural cells 

(bio-neurons). Interpretation of the bio-neuron’s working 

principle is the following: all the signals received on dendrites 

are summed in the neuron’s body. If a sum of all the signal 

values exceeds the critical value, the signal is sent through 

axon to further layers and cells. Similar is the interpretation of 

working principle of artificial neurons. The difference be-

tween the two is that in the case of artificial cells, numbers 

values are used instead of signals. The artificial neuron’s 

working principle is as follows: if the value of number re-

ceived from other cells, multiplied by value of a weight coef-

ficient, and added to a bias value, exceeds some critical value, 

the transfer function is activated and it sends the obtained 

value to the next layer.  

It is of a great importance to emphasize that the artificial 

neural network’s ability to predict some value is based on its 

training. The training of ANN means that adequate set of data 

is supplied to the network. Each data set has two parts, input 

and output. For each input there is a known output. Based on 

that, the ANN arranges weight and bias values so that the input 

data, after summing and multiplying through ANN, gives al-

ready known output. The smaller the difference (the error) be-

tween the known output and calculated output, the better is the 

ANN, i.e., the better it is constructed, (Lisjak, 2004). 

Application of the ANNs covers a wide spectrum of areas 

(Qamar and Ali Zardari, 2023), such as medicine (Basheer and 

Hajmeer, 2000), text recognition and classification (Kim, 

2023), railway transport (Bursać et al., 2022), geology 

(Varenina et al., 2018), solid mechanics (Sorić, Stanić and Le-

sičar, 2023), material types (Ciocan et al., 2000), material 

composition and microstructure (Kusiak and Kuziak, 2002), 

prediction of mechanical behavior of metal matrix composites 

(Mukherjee et al., 1995), mechanical properties of steels (Do-

brzanski and Sitek, 1999; Knap et al., 2008; Knap et al., 2014), 

influence of alloying elements on steel properties (Sitek et al., 

2022), modelling of high-speed steels‘ properties (Sitek et al., 

2004), etc. 

2. Literature review 

Qamar and Ali Zardari (Qamar and Ali Zardari, 2023) have 

recently summarized all the basic data on artificial neural net-

works, explaining the ANN’s basics, the fundamental neuron 

and the artificial computer model. They described the net-

work’s 3-layer structure (input layer, hidden layer and output 

layer), and network learning and training methods. They em-

phasized the basic advantages of the ANN applications, adap-

tive learning, self-organization, real-time operation and the 

fault tolerance. 

(Sorić et al., 2023) presented a review of machine learning 

methods employing the neural network algorithm, and dis-

cussed the most commonly used neural networks, such as 

feedforward NN, including deep learning, the convolutional 

NN, the recurrent NN, and the physics-informed NN, with 

special emphasis on their applications in solid mechanics. 

Based on application of ANNs on two simple examples au-

thors concluded that the NN approaches show lower compu-

tational costs, as compared to the finite element method 

(FEM), simultaneously preserving the high accuracy of com-

puting. 

(Ciocan et al., 2000) have considered the recognition of dif-

ferent types of austenitic steels with an ultrasonic system that 

provided the necessary data for the two different neural net-

works. The input vector for the first ANN contained processed 

data (propagation velocity and ultrasonic attenuation), while 

for the second ANN it contained the amplitude of digitized 

radio-frequency signal and its numerical Fourier transform. 

Two thirds of acquired data for three kinds of steels were used 

in the learning process, while the last third was used in the 

testing process. Both neural networks gave similar results on 

input data, above 98% of steels classification probability.  

(Kusiak and Kuziak, 2020) presented research of applying 

the ANN for predicting the volume fraction and mean size of 

the phase constituents in a steel subjected to the thermome-

chanical processing and cooling. The network was trained on 

the data obtained in the laboratory tests, and next validated us-

ing the data from the industrial measurements. Authors pre-

sented results which show that the prediction of the micro-

structure and mechanical properties of the considered steel is 

in a good agreement with the experimental data. They claimed 

that the ANN based model could predict, with good accuracy, 

such microstructural features as the ferrite grain size, ferrite 

fraction, as well as the steel’s yield stress and ultimate tensile 

strength. The accuracy of values evaluated by the ANN model 

was much higher than that obtained from calculations using 

the classical, experimental models. 

(Sitek et al., 2004) were modelling the relationship between 

the chemical composition and hardenability of structural alloy 

steels, using the artificial neural network and multiple regres-



DJORDJE IVKOVIĆ ET AL. / PRODUCTION ENGINEERING ARCHIVES 2024, 30(2), 225-232 

 227                                                                      ARCHIWUM INŻYNIERII PRODUKCJI 

 

sion models, and using large set of experimental data contain-

ing required information on the chemical compositions and 

corresponding Jominy hardenability curves for over 400 data 

steel sheets with variety of chemical compositions. Authors 

demonstrated the full practical usefulness of the developed 

model in selection of materials for particular applications with 

intended performance in the area of application. They also 

concluded that the developed ANN model can be used for sim-

ulations of the relationship between hardness at a given dis-

tance from the Jominy bar specimen face and the chemical 

composition of the steel, as well. 

(Knap et al., 2008) were studying the possibility to predict 

the hardness profile – hardenability of the constructional steel, 

based on its chemical composition, using the ANN model. The 

database consisted of hardness profile measurements from the 

Jominy test samples and it contained almost twenty thousand 

data vectors, with extensive range of steels chemical compo-

sitions. The authors reported that, in spite of the great varia-

tions of the chemical compositions of each steel grade and the 

data base itself, the ANN made very accurate predictions of 

each steel’s hardenability.  

In continuation of their research, (Knap et al., 2014) pre-

sented an attempt to model the effect of differences in chemi-

cal composition on material hardenability within one steel 

grade. They used very broad and heterogeneous database. 

They concluded that, if the database is big enough, predictions 

of hardenability would be accurate and of high quality. How-

ever, for a less comprehensive database there appeared differ-

ences in hardness predictions for various chemical composi-

tions of the considered steel grade. 

Application of artificial neural network has been proven to 

be reliable for use in diagnostics of various technical systems 

(Menasri and Aimeur, 2023). 

3. Prediction of stainless steels mechanical prop-

erties using ANN 

3.1. Input and output data preparation 

Four properties, the yield stress, tensile strength, elongation 

and hardness, of the two stainless steels, X5CrNi18-10 (AISI 

304), X5CrNiMo17-12-2 (AISI 316), were predicted using 

ANN. Input and output data for training of the artificial neu-

rons were created using the Cambridge Education Software 

Edu Pack 2010 (CES EDU PACK 2010). As four properties 

were investigated, four input and four output data sets were 

needed. In all the four cases, properties were predicted based 

on chemical composition of 57 other stainless steels available 

in the used software, so the input set of data in all four cases 

was common. The four output sets consisted of values of each 

investigated property for those 57 other stainless steels. The 

complete process of properties prediction was conducted in 

MathWorks Matlab software using its Neural Network Mod-

ule. 

For the prepared data, four neural networks with three layers 

were prepared. The first (input) layer consisted of 18 neurons, 

each representing one element from the steel’s chemical com-

position. The second layer had 10 neurons. This value was 

software default number of neurons for the second layer and it 

could be changed. However, for these purposes adequate pre-

cision was obtained, thus this number has not been changed. 

Number of neurons in the third (output) layer is equal to num-

ber of properties predicted by neural network. In all the cases 

that number was one, as only one property’s values were pre-

dicted. 

Table 1. Chemical composition of the X5CrNi18-10 steel, wt% 

1 2 3 4 5 6 7 8 9 

C Cr Mn Ni N P Si S Fe 

0.08 19.0 0 9.0 0.10 0.04 0.7 0.02 Bal. 

Table 2. Chemical composition of the X5CrNiMo17-12-2 steel, 

wt % 

1 2 3 4 5 6 7 8 9 

C Cr Mn Ni N P Si S Fe 

0.025 19.5 1.98 11.4 8.0 0.037 0.72 0.02 Bal. 

Note: since the first layer has 18 neurons and the chemical composi-

tion contains 9 elements, the neurons 10 to 18 have been assigned the 

value of 0 

3.2. Prediction of the yield stress values of austenitic 

stainless steels 

The neural network was created according to previously ex-

plained construction, three layers, 18 neurons in the input 

layer, 10 neurons in the hidden layer and 1 neuron in the out-

put layer – for the yield stress value. The activation function 

between the layers was chosen to be the same for activation 

between the first and the second layer, as well as for activation 

between the second and the third layer, the tan sigmoid tan 

function. The Bayesian Regularization algorithm was chosen 

as the training algorithm. Structure of this network is shown 

in Figure 1, where W is notation for the weight coefficient and 

b for the bias value. 
 

 

Fig. 1. Structure of the neural network for predicting the yield 

stress values 

The created network was trained using parameters given in 

Table 3. Application of given parameters resulted with follow-

ing regression displayed in Figure 2. Entering the chemical 

composition values of steels X5CrNi18-10 and X5CrNiMo17-

12-2, predicted values of the yield stress, shown in Table 4 

were obtained.  

 

Table 3. Values of parameters used for network training 

Parameter Value 

Maximum number of epochs 1000 

Time  Infinite 

Goal 0 

Min gradient 0.0000001 
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Maximum number of fails 0 

Initial momentum value 0.005 

Incline momentum 0.1 

Decline momentum 10 

Maximum momentum value 10000000000 

 

 

Fig. 2. Display of obtained regression values r = 0.933 

The predicted values of the yield stress are graphically dis-

played in Figure 3. For the X5CrNi18-10 steel obtained value 

for the yield stress is 247.57 MPa, which is 10.43 MPa smaller 

than the experimental value (found in the CES software). As 

for the steel X5CrNiMo17-12-2, the predicted value of the 

yield stress is for almost 12 MPa smaller. Regarding the error 

percentage, for the first steel it is 4% , and for the second it is 

somewhat bigger, little below 5% Figure 4. Since the error 

values are lower than 5% for both steels, it could be concluded 

that the results predicted by the ANN are close to the real val-

ues. Thus, the constructed ANN provided for the reliable re-

sults and it could be used for predicting the yield stress values 

of other austenitic stainless steels. 

Table 4. Predicted values of the yield stress, MPa 

Steel X5CrNi18-10 X5CrNiMo17-12-2 

CES EDU PACK 258 240 

ANN 247.5739 228.3207 

 

 

Fig. 3. Graphical display of predicted yield stress values 

 

Fig. 4. Error values for the yield stress values prediction 

3.3. Prediction of the tensile strength values of aus-

tenitic stainless steels 

A special neural network was constructed for the tensile 

strength values predicting. The input data set was the same as 

for the case of yield stress prediction. The output data set was 

prepared from the tensile strength values for other stainless 

steels available in the CES software. 

The neural network structure was built from three layers, as 

in the previous case. The activation functions between the lay-

ers were selected differently, with respect to the previous case. 

The tan sigmoid function was chosen as the activation func-

tion between the first and the second layer, same as in the first 

network.  The linear function was selected for activation be-

tween the second and the third layer. The Levenberg-Mar-

quardt algorithm was selected as the training algorithm for this 

neural network, the structure of which is presented in Figure 

5.  

 

 

Fig. 5. Structure of the neural network for predicting the tensile 

strength values 
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Created network was trained using parameters given in Ta-

ble 5. Application of given parameters resulted in the regres-

sion presented in Figure 6. The values of the tensile strength 

for the two considered steels were predicted by entering chem-

ical composition values for steels X5CrNi18-10 and 

X5CrNiMo17-12-2 and using values of tensile strength from 

the CES EDU PACK 2010 software. Results are shown in Ta-

ble 6. 

Table 5. Values of parameters used for network training 

Parameter Value 

Maximum number of epochs 1000 

Time  Infinite 

Goal 0 

Min gradient 0.0000001 

Maximum number of fails 6 

Initial momentum value 0.001 

Incline momentum 0.1 

Decline momentum 10 

Maximum momentum value 10000000000 

 

 

Fig. 6. Display of obtained regression values r = 0.815 

Tensile strength values from the CES software and values 

predicted by the ANN are shown in Figure 7. For the 

X5CrNi18-10 steel the predicted value for tensile strength is 

549.7284 MPa, which is almost 17 MPa smaller than the value 

obtained by experiment.  

Table 6. Predicted values of the tensile strength, MPa 

Steel X5CrNi18-10 X5CrNiMo17-12-2 

CES EDU PACK  565 570 

ANN 549.7284 571.825 

 

On the other hand, the predicted value for the steel 

X5CrNiMo17-12-2 is 571.825 MPa, which is almost 2 MPa 

bigger than the experimentally obtained value. Regarding the 

error percentage of the predicted values, for the first steel it 

was little below 3% and for the second steel it was approxi-

mately 0.3%, Figure 8. Since in this case the error values are 

practically negligible, it can be concluded that this ANN is 

suitable for predicting the values of tensile strength for other 

austenitic stainless steels, as well. 

 

 

Fig. 7. Graphical display of predicted tensile strength values 

 

 

Fig. 8. Error values for prediction of the tensile strength values 

3.4. Prediction of the elongation values of austenitic 

stainless steels 

The neural network for predicting the elongation values of 

stainless steels was created in a similar manner as for the first 

two cases: three layers with 18, 10 and 1 neurons, respectively. 

The input data set, as mentioned, is the same in all the cases. 

The output data set is prepared from elongation values for 

other stainless steels from the CES software. The network 

structure, regarding the activation functions between the lay-

ers, is the same as for the case of predicting the yield stress 

values, in both cases the activation function is tan sigmoid 

function, Figure 1. The difference with respect to that case is 

that the training algorithm is selected to be the Levenberg-

Marquardt algorithm.  

The created network was trained using parameters given in 

Table 7. Application of given parameters resulted with the re-

gression values displayed in Figure 9. After entering the chem-

ical composition values for steels X5CrNi18-10 and 

X5CrNi17-12-2 in the neural network, elongation values were 

obtained, which are given in Table 8. 
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Table 7. Values of parameters used for network training 

Parameters Value 

Maximum number of epochs 1000 

Time  Infinite 

Goal 25 

Min gradient 0.00000001 

Maximum number of fails 6 

Initial momentum value 0.01 

Incline momentum 6 

Decline momentum 6 

Maximum momentum value 10000000 

 

 

Fig. 9. Display of obtained regression values r = 0.923 

Table 8. Predicted values of elongation, % 

Steel X5CrNi18-10 X5CrNiMo17-12-2 

CES EDU PACK  52.5 40 

ANN 47.9 42.1652 

 

Graphical presentation of the predicted elongation values of 

the two stainless steels is shown in Figure 10. The predicted 

elongation value for steel X5CrNi18-10 is 47.9%, which is al-

most 4.6% smaller than the value obtained by experiment. For 

the steel X5CrNiMo17-12-2, the predicted elongation value is 

42.17% and it is 2.17% bigger than the experimentally ob-

tained value. The error value for the first steel is little below 

10% (9.6%) and for the second steel it is 5%. Since the values 

predicted by this ANN have errors between 5% and 10%, it 

could be concluded that the predicted values are slightly off 

with respect to values obtained by experiments. Results ob-

tained by this ANN need to be further investigated. The ob-

tained error values are displayed in Figure 11. 

 

 

Fig. 10. Graphical display of predicted elongation values 

 

Fig. 11. Error values for elongation values prediction 

3.5. Predicting the hardness values of austenitic 

stainless steels 

The neural network for predicting the hardness values of 

stainless steels was created in the same way as in the previous 

cases, with the same set of input data and the output data set 

prepared from hardness values for other stainless steels from 

the CES software. 

The neural network structure was the same as in the previ-

ous cases. Activation functions between layers were selected 

in the same way as in the case of predicting the tensile strength 

values, Figure 5. Between the first and the second layer the 

activation function was the tan sigmoid function, while be-

tween the second and the third layer the activation function 

was a linear function. The training algorithm for this case was 

the Bayesian Regularization algorithm. 

The created network was trained using parameters given in 

Table 9.  

Table 9. Values of parameters used for network training 

Parameters Value 

Maximum number of epochs 1000 

Time  Infinite 

Goal 100 

Min gradient 0.000001 

Maximum number of fails 0 

Initial momentum value 0.1 

Incline momentum 10 

Decline momentum 10 

Maximum momentum value 1000000000 
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Application of given parameters resulted in the regression 

values displayed in Figure 12. Entering the chemical compo-

sition values for steels X5CrNi18-10 and X5CrNi17-12-2 in 

the neural network, hardness values were predicted for these 

two stainless steels that are presented in Table 10. 

 

 

Fig. 12. Display of obtained regression values r = 0.799 

Table 10. Predicted values of hardness, HV 

Steel X5CrNi18-10 X5CrNiMo17-12-2 

CES EDU PACK  190 205 

ANN 195.529 195.234 

 

The predicted hardness values are shown in Figure 13. For 

steel X5CrNi18-10 the predicted value is 195.529 HV, which 

is for 5.529 HV bigger than the experimental value. As for the 

steel X5CrNiMo17-12-2, the predicted hardness value is 

195.234 HV, which is for 9.76 HV smaller than the experi-

mentally obtained value. Error value for the first steel is 3% 

and for the second steel it is somewhat below 5% (4.76%), 

Figure 14. Both error values are lower than 5%. Thus, it could 

be concluded that this ANN is suitable for predicting the hard-

ness values of austenitic stainless steels. 

  

 

Fig. 13. Graphical display of predicted hardness values 

 

Fig. 14. Error values for hardness values prediction 

4. Conclusions 

Stainless steels were discovered in 1913 with idea to over-

come one of the greatest disadvantages of structural steels – 

corrosion. It was found that addition of minimum 12% of 

chromium to steels solid solution enables steel to become cor-

rosion resistant. Besides Cr, other alloying elements could be 

found in various steels chemical composition (Ni, Mo, V etc.).  

One of the artificial intelligence methods for replicating hu-

man thinking process are the Artificial Neural Networks 

(ANN). They are made of multiple artificial neuron cells, 

which are connected in layers. The most frequent application 

of the ANN is for prediction of values based on known input 

values. 

The topic of this paper was to investigate if the ANN could 

predict four mechanical properties (yield stress, tensile 

strength, elongation and hardness) of austenitic stainless 

steels, with sufficient accuracy. The data sets for the ANNs 

were created from CES EDU PACK software, in which infor-

mation about various steels could be found. The input data set 

(with 18 neurons) consisted of chemical composition of con-

sidered steels and the output data sets (wit 1 neuron for each 

network) were the investigated properties of those steels. The 

hidden layer consisted of 10 neurons, which was the default 

property of the used software and it was not changed since it 

provided for sufficient precision of the network(s). 

After the data sets were prepared, the four neural networks 

were created and trained. Two stainless steels X5CrNi18-10 

(AISI 304) and X5CrNiMo17-12-2 (AISI316) were used to 

validate results obtained from the ANNs. Based on obtained 
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results it can be concluded that for all properties obtained re-

sults were close to previously known experimentally obtained 

values, where the error for predicted values of considered 

properties were under 5% and in some cases negligible.  

The slight exception was the result for elongation where the 

error values were between 5 and 10%, which are also low, but 

they cannot be ignored. If one would use this ANN to predict 

elongation of unknown steel it would be necessary to confirm 

results experimentally. This problem should be further inves-

tigated. Adding other input parameters besides the chemical 

composition of considered steels, would probably increase the 

precision of predicted values. As for the other ANNs, one 

could state that they are able to predict mechanical properties, 

with great precision, as the error values are low. Certainly, 

precision would increase if the number input variable types is 

increased. 
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