
 

 

 

 

PROCEEDINGS OF PAPERS 

Zbornik radova 

 

(Ic)ETRAN 2019 
6th International Conference on Electrical, Electronic and Computing 

Engineering 

in conjunction with 

 

ETRAN 
63rd National Conference on Electrical, Electronic and Computing 

Engineering 

 

 

 

 
  



 

Proceedings of Papers – 6th International Conference on Electrical, 
Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, 
June 03 – 06, 2019  

Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, 
računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 
2019. godine 

Main Editor / Glavni urednik 
Dejan Popović 

Editors / Urednici 
Slobodan Vukosavić, Boris Lončar  
 
Published by / ETRAN Society, Belgrade, Academic Mind, Belgrade 
Izdavači / Društvo za ETRAN, Beograd i Akademska misao, Beograd  
 

Production / Izrada 
Academic Mind, Belgrade / Akademska misao, Beograd 

Place and year of publication / Mesto i godina izdanja 
Belgrade, 2019. / Beograd, 2019. 

Circulation / Tira� 
200 primeraka / 200 copies 

ISBN 978-86-7466-785-9 

www.etran.rs  

  



 

Abstract— Deep learning has successfully been implemented in 
various domains, including photoacoustics. The collection and 
creation of massive datasets creates new possibilities. Deep 
learning methods, when applied on massive datasets, are able to 
extract very useful patterns. This can lead to solutions to many 
problems. In this paper we discuss and develop deep learning 
application for the recognition of a detector influence pattern on 
recorded responses of a measurement chain in model-dependent 
experimental measurements. This enables the fast calibration of 
the method, which is necessary for its further application in the 
characterization or scanning of the examined objects with 
satisfactory accuracy. Frequency gas-microphone photoacoustic 
measurements were taken as the case study. The paper presents
three models for the solution of instrument influence on true 
signals in photoacoustic experiments. We analyze the influence of 
neural network depth and the number of outputs on the prediction 
accuracy, and then we discuss the choice of the optimal solution.   

 
 
Index Terms—Deep learning; regression; massive dataset; 

photoacoustics; model-dependent diagnostic; microphone. 
 

I. INTRODUCTION 

Deep learning is the area of machine learning which has seen 
the most intensive growth in the past few years. By bringing 
new techniques, algorithms and implementations, deep 
learning has produced impressive results. These methods have 
dramatically improved the state-of-the-art in speech 
recognition,  visual object recognition, object detection, and 
many other domains [1]. Generally, deep learning is applicable 
in many fields of science, medicine, business, and in other real-
world problems. Deep learning algorithms can potentially be 
used in every field of medicine, from drug discovery to clinical 
decisions. In those applications, like many others, deep 
learning is far ahead of other machine learning algorithms. 
Deep convolutional networks have been proven as a good 
solution for medical image classification, localization, 
detection, segmentation, and registration [2].  

Deep learning in bioinformatics has many applications: 
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sequence analysis, biomolecular property prediction, 
biomedical image processing and diagnosis [3].  

Another reason for the present and future successes of deep 
learning is that it requires very little engineering by hand, so it 
can easily take advantage of increases in the amount of 
available computation and data. Deep-learning methods are 
representation-learning methods with multiple levels of 
representation, obtained by composing simple but non-linear 
modules, each of which transform a representation at one level 
(starting with the raw input) into a representation at a higher, 
slightly more abstract level. With the composition of a 
significant number of such transformations, very complex 
functions can be learned. Methods may very well discover 
interesting structures in large datasets [1][4][5]. Those are the 
reasons why they are very suitable for application in many 
domains.  

This paper will show that deep learning is applicable in 
model-dependent diagnostic techniques with no calibration 
method, which enables the exclusion of measurement chain 
influence and in particular the influence of the microphone 
characteristics. This influence is not at all simple and eludes the 
usual kinds of differential calibration and standardization on 
the referential sample. Having said that, characterization done 
by those methods cannot give the exact properties which could 
satisfy fundamental scientific research. The case study was 
carried out for gas-microphone frequency photoacoustic 
technique. Justification of deep neural network application in 
photoacoustics relative to shallow neural networks is presented. 

II. DEEP LEARNING IN PHOTOACOUSTICS  

 Physical parameters that configure in the physical model of 
the photoacoustic response  are mostly nonlinearly dependent, 
very often with unknown and unavailable characteristics of the 
transformation process of the examined physical quantity in the 
electric signal. It is expected that the development and 
application of neural networks in photoacoustics and all similar 
model-dependent methods which use detectors of a common 
purpose is a good decision because deep learning is able to 
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approximate any nonlinear mapping with very high accuracy  
and reliability, and in that manner recognize and extract pattern 
of influence of individual parameters on true signal enabling 
calibration of the method. Also, classification models of 
different nonlinear mappings could be designed with very high 
accuracy using deep neural networks, which are applicable in 
the selection of different source influences on the true signal.   

Neural networks are present in photoacoustics and other 
model-dependent measurement techniques which have been 
developed for scientific research and biomedical diagnostics 
for a very long time.  

In [6], a shallow neural network is used for the reconstruction 
of the optical profile of optically gradient materials based on 
the frequency, magnitude and phase of the measured PT 
(photothermal) response.  

In paper [7] shallow neural network with forward signal 
propagation was designed and used to simultaneously 
determine main physical parameters, such as: thermal 
diffusivity, thermal expansion coefficient and thickness, from 
transmission, frequency modulated photoacoustic response of 
the sample. 

Examples of deep learning application in photoacoustics for 
the past few years are numerus.  

Paper [8] presents deep convolutional network application 
for noise removal in photoacoustic recognition of images. 
Photoacoustic imaging is a method for the visualization of 
point-like targets. Using this method, detection of  anatomical 
features or metal implants in the human body is possible, which 
can further be used in cancer detection, monitoring blood vessel 
flow, detecting and guiding surgeries, etc. Laser beam 
transmission in the presence of highly echogenic structures has 
consequences for the creation of a reflection artifact that may 
appear as a true signal. Deep convolutional networks turn out 
to be a good solution for the classification of a true signal from 
other artifacts with high accuracy and reliability.  

A deep learning framework for image reconstruction in 
photoacoustic tomography (PAT) is presented in [9]. A sparse 
data problem is discussed. A direct and highly efficient 
reconstruction algorithm based on a deep convolutional neural 
network was developed. Neural network weights are adjusted 
prior to the actual image reconstruction based on a set of 
training data. The proposed reconstruction approach can be 
interpreted as a network that uses the PAT filtered 
backprojection algorithm for the first layer, followed by the U-
net architecture for the remaining layers. Numerical results 
demonstrate that the proposed deep learning approach 
reconstructs images with a quality comparable to the state-of-
the-art iterative approaches for PAT.  

In [10] the authors used an MLP (Multy Layer Perceptron) 
for the simultaneous determination of the laser beam spatial 
profile and relaxation time of the polyatomic molecules in 
gases in real time within trace atmosphere gas monitoring. The 
spatial profile of the laser beam is variable, so its simultaneous 
determination contributes to the precision of the photoacoustic 
experiment, because it will correct the resulting variations. The 
same authors go a step forward in [11], so a feedforward MLP 
recognizes both the spatial profile of the laser beam and the 

values of the laser fluence, which contribute to additional 
precision in the measurement of different pollutant 
concentration in a wide range of values in a urban and rural 
environment. 

However, as far as we know, neural networks have not yet 
been applied to the recognition of the influence of processes 
that are happening inside the detector. Data used for 
characterization are dependent on those processes. This 
influence cannot be understood as noise, but as a systematic 
influence which depends on the detector, and two completely 
identical detectors do not exist in practice. Accordingly, 
detector recognition is a kind of measurement set calibration, 
particularly in situations of detector changes when higher gain 
or a different measurement range is needed for different 
materials and structures or because of the failure of the existing 
detector in the serial measurements of the same sample. Such a 
calibration is a necessary step for a further inverse problem 
solution, apropos the determination of the examined sample 
characteristics with an accuracy required for fundamental 
research, which is significantly higher than the accuracy 
required for the application of some materials and structures or 
for biomedical diagnostics. In this paper the methods are based 
on deep neural networks which are able to effectively and very 
quickly recognize detector influence so that the calibration of 
the used experimental set can be done as suggested.  

 

III. MASSIVE DATASET REGRESSION MODELS FOR 

DETECTOR PARAMETER PREDICTION  

Our aim is to incorporate computational intelligence, 
especially deep learning, in the so-called “intelligent 
measurement system”, which will be able to perform complex 
commands. We expect that such a system will be able to learn 
and to adapt to specific problems and to maintain high 
accuracy, reliability, and measurement rate. In the beginning, 
our intelligent measurement system will have the possibility of 
signal autocorrection relative to instrument influence. 
Although the case study was done on gas-microphone 
photoacoustic frequency measurements, the method 
application can easily be extended to a great number of model-
dependent measurement systems with variable detectors.  

 
Fig.1.  Schematic diagram of a cell of minimal volume. 

 

We previously created a simple and cheap photoacoustic 
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measurement device [12], Fig.1. The common characteristic of all photoacoustic measurement systems is the high distortion 
of experimental signals due to the electronic or acoustic 
properties of the used instruments in the frequency domain 
[13], Fig.2. Based on the analysis of a great number of executed 
measurements on different materials and a comparison with the 
theoretical predictions which assume the detector to be ideal,  it 
can be concluded that the microphone as the basic part of the 
detector measurement system brings most of the disturbances 
into the experiment. 
 

 

 
Fig. 2.  Simulated a) amplitude and b) phase of the total photoacoustic signal 

(black line) and distorted experimental signal (red line) 

 
A database of 67500 records was obtained from a well-

known theoretical model.  We obtained a massive dataset, and 
it is in precisely such datasets that deep learning recognizes 
interesting and useful structures, as well as patterns of non-
linear dependence. The dataset was structured and labeled.  The 
theoretical data corresponded to the commercial microphone 
ECM30B. Based on the statistical analysis of the collection of 
experimental measurements, it was concluded that frequency 
𝑓2 is the most stable one compared to the observed parameters, 
and three values were taken for network training: the central 
value 25 Hz and two values which are ±5 % of the central value 
(23,75 Hz and 26,25 Hz). Also based on the statistical analysis, 
it was concluded that 10 values should be taken for each of the 
frequencies 𝑓3  and 𝑓4, distributed at equal distances in the 
range 8930-9866 Hz and 13965-15432 Hz, respectively. The 
least stable parameters are the damping factors of the second
order low-pass filter, and they were presented with 15 values 
which were irregularly distributed from 0.015 to 0.99. Some of 
the curves from this dataset are presented in Fig. 3 (2250 lines). 
Every curve is presented with 200 points, and every point is 
presented with two characteristics, an amplitude and phase. In 
this way, one record in the database is presented with 400 

features, 200 amplitudes and 200 phases. The dataset was first 
shuffled and then divided into a training set of a total of 57500 
records or 82.6% of the total number of recordings, a validation 
set and a test set both of 5000 records or 8,7% of the total 
number of recordings. In this way, the training, validation and 
test sets were obtained randomly.  

 

 
 

 
Fig.3. Curves: a) amplitude and b) phase of distorted 
photoacoustic signals with different microphone characteristics 
from the dataset used for network training [14].  
 

Our aim is the development of a regression model for the 
prediction of five specific microphone parameters connected to 
its electronic and geometric features, which are not determined 
by the producers and could not be found in the specifications 
for the particular microphone. Based on our analysis of the 
theoretical models of the microphone as a sensor and a 
converter  of pressure changes into an electrical signal, as well 
as those carried out on electrical measurements, it was shown 
that a five-parameter description of the detector influence on 
every detected signal is enough. In that way, microphone 
influence on the experimental signal can be determined.  Now 
it is possible to correct the experimental signal in order to reach 
a “pure” signal, generated only from the excited sample. An 
MLP was our choice because of higher accuracy.  
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In this paper we present three regression models. The first 
model has an MLP with three layers, two of which are hidden, 
the first one with 30 neurons, and the other with 17 neurons, 
and one output layer with 5 neurons. The second model has 5 
MLPs with three layers, two hidden, the first one with 30 
neurons and the second with 17 neurons, and one output layer 
with 1 neuron. The third model has an ANN (Artificial Neural 
Network) with one hidden layer with 47 neurons, and is a 
shallow neural network. The network outputs represent the 
targeted microphone parameters:  f

2
, the characteristic 

microphone frequency connected to its RC characteristics, f
3
, 

f
4
 characteristic acoustic resonances of the microphone, and 

𝜉3  and  𝜉4 reciprocal quality factors. The characteristics of a 
lock-in amplifier, whose role is played by the sound card 
described with parameter  f

1
, is considered known (𝑓1=15Hz). 

The input vector has 400 features, Fig. 4 
 

 
Fig. 4.  Structure of Model1, Model2 and Model3 

 
The normalization of the input vector was achieved by 

dividing each element xi of the input vector by the maximum 
absolute value, determined over all the examples at the "𝑖"   
frequency. This normalization type proved itself as the best 
solution for our model, then some others.  With the application 
of this normalization type and without a value change in the 
other parameters, an acceptable value for the accuracy of the 
model was obtained in the iterative process of model parameter 
selection. We tested two more types of normalization, 
normalization obtained by subtracting the mean value of all 
examples at the "𝑖" frequency from each element xi and by 
dividing it by a standard deviation, as well as N2 or the 

Frobenius norm, but the results were not acceptable. The output 
vector y is normalized in a similar manner.  

We chose a tanh activation function and the Xavier 
algorithm for weight initialization. [15]

We applied supervised learning for the model training. The
Adam algorithm for error function evaluation was applied in 
order to achieve optimal weight values in the backprop [16]. 
The optimization is intensified by the Mini-batch technique, 
which is applied when the dataset is big enough (as it is in this 
case). This technique provides visible results of parameter 
optimization even in the first epoch, thanks to the division of 
the given dataset into smaller ones, which are treated as a 
whole, and applies error function evaluation on these smaller 
datasets. The learning rate for all the models has the same value 
of 10-4.  

The open source platform for machine learning, Tensorflow, 
was used for the realization of the models. Tensorflow is very 
popular for the realization of deep neural networks. It is based 
on a data flow graph. The graph nodes represent mathematical 
operations, while the graph edges represent the 
multidimensional data arrays (tensors) that flow between them. 

Metrics for the models were defined, the same for all three 
models: deviation from the accurate value is less or equal to 
5%, and that corresponds to the photoacoustic experiment. 
Model accuracy was analyzed relative to the set metric. The 
error function value on the training set and the validation set 
are similar, so we can conclude that model generalizes well and 
is not overfitted. 

In accordance with Table1, it was concluded that the best 
results were achieved with Model 2, and the worst with Model 
3.  By dividing the same number of neurons into two layers, we 
got an  accuracy approximately 2% higher in Model 1 than in 
Model 3. This difference will be bigger if the network is trained 
on experimental values, because theoretical models present 
idealizations, i.e. an approximation of real conditions. Is 2% 
small enough not to make a difference between the models? It 
depends on the application, for the photoacoustic experiment 
for industrial application it is significantly high. The 
importance of neural network depth for learning was proven by 
the increase of the accuracy of the model with more layers, 
under the same conditions (learning rate, number of epochs).  
Model 2 proves the fact that the deeper the neural network is, 
the better the recognition of behavior patterns in the data.  
Reducing the deviation from the accurate values in Model 2 in 
relation to Model 1 shows that the multilayer neural network 
can approximate the nonlinear output quite well. In Model 2 the 
neural network concentrates all its power on one output and 
achieves a very high accuracy for 3 of the 5 microphone 
parameters, as much as 99.99%, while training lasts for a far 
smaller number of epochs. 
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TABLE I: 
A COMPARATIVE ANALYSIS OF THREE REGRESSION MODELS FOR THE PREDICTION OF THE MICROPHONE 

PARAMETER 
 

 Accuracy Cost Numbers of epochs  
Model 1 98.59% 0.000001 5000 
Model 2 99.99%,99.99%,99.99%,99.61%, 

99.596% 
<0.000001,<0.000001,<0.0000

01,0.000001, 0.000001 
1500,1500,1500,3000,3000 

Model 3 0.969833 0.000003 5000 
Average deviation from the accurate value expressed in the percentage of the accurate value on the training set 
Paramet
er 

𝑓2 𝑓3 𝑓4 𝜉3 𝜉4 

Model 1 0.02025029 0.08571574 0.03485037 1.0117933 0.59135133 
Model 2 0.00367374 0.04975093 0.02321718 0.44225055 0.28317332 
Model 3 0.03180477 0.1299281 0.06766562 1.9676312 1.1875261 
Average deviation from the accurate value expressed in the percentage of the accurate value on the validation 
set 
Paramet
er 

𝑓2 𝑓3 𝑓4 𝜉3 𝜉4 

Model 1 0.02028082 0.08540299 0.03530468 0.998583 0.60733956 
Model 2 0.00359443 0.05007159 0.02289878 0.4521597 0.31682032 
Model 3 0.03162626 0.12913962 0.06732392 1.9448547 1.1696345 
Average deviation from the accurate value expressed in the percentage of the accurate value on the test set 
Paramet
er 

𝑓2 𝑓3 𝑓4 𝜉3 𝜉4 

Model 1 0.02026834 0.0861348 0.0351213 0.9855594 0.5777709 
Model 2 0.0037558 0.04898341 0.02315352 0.45252872 0.2967481 
Model 3 0.03270168 0.13082047 0.06930758 1.9330658 1.2145972 

Prediction time
 CPU time Computation_time(CPU +load time)  
Model 1 14 ms 31 ms 
Model 2 14 ms 5x30 ms 
Model 3 12ms 29ms 

 
 

In Model 1 the neural network splits its power to the five 
outputs, so the accuracy of this model is smaller. The same 
MLPs in Model 2 for different microphone parameters achieve 
different accuracies. This difference is just more proof that the 
network approximates the real situation very well. Parameters 
𝜉3 𝑖 𝜉4 are very unstable photoacoustic quantities which depend 
on many other parameters. The theoretical model is not able to 
approximate the parameters very well. The neural network 
discovered this instability in the data.  

IV. CONCLUSION 

In this paper we discussed deep learning application in the 
calibration of model-dependent measurement techniques with 
nonlinear detector influence on the measured signal.  Few 
examples of successful application were presented. The 
analysis of three regression models for microphone parameter 
predictions in photoacoustic experiments was presented. It was 
shown that higher accuracy was achieved by models with two 
hidden layer neural networks compared to  a  model with one 
hidden layer neural network, for the same total number of 

neurons. Based on this, it can be concluded that it is the depth, 
not the size of the neural network that matters. In the 
development of the regression model for the purpose of 
correcting the measuring chain influence in photoacoustic 
experiments, we selected a two hidden layer neural network 
structure, not one with more hidden layers, because the 
achieved accuracy was satisfactorily high. We accomplished 
the set metric. However, we intuitively know that models with 
a higher depth will be our actual research direction for some of 
future applications in model-dependent measurements, 
especially for the case of complex nonlinear dependences of 
input and output quantities.    

For the purpose of a “smart” measurement system 
development,   we chose Model 1 as the most practical solution 
for our needs. The application of this regression model for  
calibration of experimental set could be generalized on similar 
problems in other measurement or transmission problems. We 
consider Model 1 and Model 2 as the real choices relative to 
the given requirements.   
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