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Abstract: This paper explores the potential of using simulated 
data in calibration of photoacoustic measurement system. The 
database of simulated experimental values is created using 
software developed on the bases of the theory-mathematical 
model. Reliability of the data was gained thanks to the expert 
knowledge. An artificial neural network as a precise prediction 
tool is trained on the developed database of simulated data to 
recognize type of the microphone used as a detector in 
photoacoustic experiment. The result is classification model 
satisfies the basic requirements of a photoacoustic experiment: 
accuracy, reliability and real time operations. The paper discusses 
the optimization of classification model in terms of used 
computational power, required precision and process rate in 
relation with defined problem. The obtained results justify the 
idea of using simulated data in photoacoustic. Presented theory-
mathematical model and classification model are part of 
developed machine learning framework for processing 
photoacoustic measurement data. 
Keywords: Machine learning, artificial neural networks, 
simulated data, classification, photoacoustics, microphone 

 
I. INTRODUCTION 

 Machine learning techniques are considered suitable 
tool for intelligent decision making, and therefore they have 
found application in various domains. When input and output 
parameters are linked with some kind of pattern, and sufficient 
data is available, this pattern can be discovered or 
approximated by machine learning algorithm being trained on 
that same data. Subsequently, output for particular inputs 
outside the learning dataset can be calculated (with more or less 
accuracy) using this newly discovered pattern. This means that 
if the quality and the quantity of the data used for learning are 
sufficient, and the discovered pattern also exists for events that 
were not part of the learning dataset, the produced result can be  
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used to approximate the outputs based on any future 
input[1]. Machine learning algorithms, and, in particular, 
artificial neural networks (ANN), are frequently used as 
reliable and fast prediction tools. They are often used in 
photoacoustics (PA), a popular method in photothermal 
(PT) science in the last few years, for: noise removal in 
photoacoustic recognition of images [2], simultaneous 
determination of the laser beam spatial profile and 
relaxation time of the polyatomic molecules in gases in 
real time within the trace atmosphere gases monitoring 
[3][4], reconstruction of optical profile of optically 
gradient materials based on frequency, magnitude and 
phase of measured PT response [5], etc. 

 In this paper, a few of the several results achieved 
in PA measurement system characterization research are 
presented. The ultimate goal is material characterization. 
The aim of the PA measurements is the determination of 
physical properties (thermal, optical, mechanical, elastic, 
electronic and other related ones) of the examined 
structure from its PA response. All PT methods are 
indirect measurement techniques, and so is the 
photoacoustics, meaning that these methods are model 
dependent. In terms of mathematics, obtaining physical 
properties by these methods is considered an inverse 
problem that can be assessed in two steps: 

1. Development of the direct (forward) 
model – direct solution of the inverse problem, i.e. 
developing the mathematical model that sufficiently well 
describes physical processes leading from the optical 
excitation to the thermal response. First step is 
theoretical-mathematical modeling of temperature 
distribution within the sample, on front and back sample 
surfaces and in its surroundings, and then theoretical- 
mathematical modeling of the specific PT response (in 
this case the PA response) 

2. Development of the inverse procedure – 
inverse solution of the inverse problem, i.e. the 
determination of physical properties of the sample based 
on measured photothermal response, developed 
mathematical model and well known preset of input 
parameters (the intensity and modulation frequency of 
the incident optical radiation). Some of the inverse 
procedures are fitting, numerical procedures and neural 
networks. Fitting and numerical procedures are time 
consuming procedures, demanding the engagement of the 
researcher. These are drawbacks regarding scientific and 
further industrial application of the method, where a real 
time procedure is appreciated. The reasonable choice  is
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artificial neural networks as a very efficient machine learning 
algorithm. Because of the complexity of the inverse problem 
more than one ANN is needed. 

 Firstly, the characterization of the sample and the 
prediction of its thermal, mechanical and optical properties 
based on its PA response, require the use of one ANN. This is 
already done in [6]. But the necessary precondition is that the 
PA response in use is influenced only by the sample, which, 
unfortunately, is not the case. The PA response is non- linearly 
affected not only by the sample but also by the measurement 
instrument chain and the appearing noise. So, the PA response 
has to be corrected first, in order to obtain the so called “true” 
signal. In the first preprocessing procedure that was developed, 
noises are removed during data acquisition. In the second 
preprocessing procedure, calibration of the measurement 
system has to be done. Because of the dominant impact of the 
microphone on the distortions in the measurement instrument 
chain, as the consequence of using minimum volume cell 
configuration of the PA experimental set-up, calibration of the 
measurement system boils down to the calibration of the 
microphone. The key of this brand new idea is the determination 
of microphone transfer function. Furthermore, the division of 
PA response amplitude data by corresponding microphone 
characteristics and its subtraction from the PA response phase 
data will result in gaining the so called “true” signal, 
originating only from the sample. Unfortunately, microphone 
specifications provided by the manufacturer are not precise 
enough, particularly in the case of phase transfer function. 
Besides, microphone cavity is not considered as the source of 
resonances, which is inevitable in PA measurements. Since, 
these specifications could not be used, the other solution is 
needed. Non-linear influence of the microphone on a PA 
response suggests ANN application. Having in mind that ANN 
seeks large datasets (is data hungry) [7], the first requirement 
for the application of neural networks is set. But this 
requirement is opposed to two facts related to PA 
measurements: firstly, such a numerous experimental 
collection is very difficult to obtain, and secondly, based on the 
experience, real experimental data can hide a very serious 
problem of the influence of the measurement system on the 
estimated parameter values [8]. Therefore, another solution for 
database creation is presented: the idea of theoretical-
mathematical model as a base for designing a software for the 
simulation of PA experimental values. Thanks to the 
developed software, amplitude and phase data of the simulated 
PA response are obtained. Here, satisfactory credibility to the 
experiment is of essential importance in order to make the 
newly created method precise enough. Therefore, expert 
knowledge (i.e., the preset input parameters) is crucial for the 
solution of this problem.  

 Simulated data have often been used for training in 
machine learning problems in the past few years [9][10][11], 
but as far as we know, the idea of using simulated experimental 
values, obtained by developed software based on a theoretical 
- mathematical model, for training a machine learning model 
is new. This article presents a few steps of a complex 

correction procedure performed in photoacoustic 
measurements. Firstly, a complete method of making a large 
amount of reliable simulated data as a precondition for 
applying neural networks as the inverse solution of the inverse 
problem is explained. Secondly, a process of designing 
classification model for microphone type recognition as the 
first step in recognizing measurement system characteristics is 
discussed on the base of optimal computational complexity, 
required precision and process rate in relation to the given 
problem and available data set. Classification of microphone 
type will determine the shape of the transfer function and the 
levels of signal exaggeration and attenuation. Once the class of 
the microphone is defined, characterization of microphone will 
be simplified by limiting the database made for various types 
of microphones to a database of a particular microphone type. 
This idea is presented in our previous work [12]. That way, 
time, and computational power are saved, which are real 
benefits of the classification model. Learning on the defined 
database of classified microphone type, ANN based model for 
microphone characterization [13] predicts characteristic 
microphone parameters with satisfying accuracy, which 
together with the corresponding shape, precisely determine 
microphone transfer function [12].  

 This paper shows that if a massive dataset is obtained 
and the quality of data is high, less computation power is 
needed, and higher process rate is gained for the solution of 
machine learning problem. 

 

II. THEORETICAL -MATHEMATICAL MODEL OF 
PHOTOACOUSTIC RESPONSE 

Photoacoustics, as one of photothermal methods, is 
based on the photothermal effect. The photothermal effect is 
the effect of generation of heat as a consequence of the 
absorption of the incident electromagnetic radiation, from a 
wide spectrum of wavelengths, in different relaxation and de-
excitation processes. This way generated heat causes the 
disruption of the thermodynamic state of the sample (pressure, 
temperature, density) which propagates through the sample and 
the nearby environment, producing a number of detectable 
phenomena. In photoacoustics, the first and the most used 
photothermal method, a sample is placed inside the 
photoacoustic cell that contains air and microphone. It is 
exposed to a modulated light beam which causes periodic 
sample heating. As a consequence, the air pressure in the PA 
cell oscillates, which can be detected by a microphone [14].The 
photoacoustic cell can be designed in a so called “reflection 
configuration”, with the source and the microphone set up on 
the same side of a sample,  or the “transmission configuration”, 
where a sample is placed between the source and the 
microphone. In our experimental set up, the minimum volume 
cell configuration is employed. It is kind of transmission cell 
configuration where sample is mounted directly on the top of 
the microphone, instead of the dust cover, as presented in figure 
1, [15]. This way, the microphone chamber acts as the PA cell, 
closed by the sample on one side and the microphone 
diaphragm on the other one, which causes disruptions of the 
recorded signal on its endings [16]. 
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Power levels of experimentally recorded signals are, 
generally, low. In order to make the level of the recorded signal 
higher than the level of the noise (real – flicker noise, coherent 
signal deviation and random noise), the absorption of the 
sample has to be large. In the case of materials with significant 
reflection, the additional coating is needed, while in the case of 
transparent (or semitransparent) samples, the coefficient of 
transmission has to be augmented.  However, due to high level 
of transmission, the absorption of the incident radiation in the 
surrounded air can`t be neglected and the recorded signal 
begins to contain unnecessary information. The problem is 
even bigger in the case of the minimum volume cell 
configuration, where the microphone has to be protected 
because of the small dimensions of the cell. Another solution 
is, also, an additional layer of high absorption. 

 
 
 

 
 
 
 
 
 
 
 Fig. 1. Experimental setup 

 
 Photoacoustic response within the transmission 
configuration is the sum of two dominant signal components: 
thermoconducting and thermoelastic component. 
Thermoconducting component arises due to the periodic heat 
flow from the sample to the surrounding gas (thermal-piston 
effect) and thermoelastic component arises due to the 
thermoelastic banding of the sample (drum effect) 
[17][18][19][20][21][22][23][24][25]. 
 In our experiments two-layer structure is employed. 
The first layer is black coating, and the second layer is the 
investigated sample. Theoretical-mathematical model of PA 
response of a two-layer system, used for obtaining the dataset, 
is given by following expressions [26][27]: 

𝑝"!"! = 	 𝑝"!# + 𝑝"$% (1) 

𝑝"!# = 𝛿𝑃 = 	
𝛾𝑃&
𝑙'𝑇&

1
𝜎'-
𝜗/(𝑙() (2) 

𝑝"$% =
3𝛾𝑃&
𝑙$

𝑅)

𝑙(*
4𝛼+,6 7𝑥 −

𝑙(
2
;𝜗/(𝑥)𝑑𝑥

-!

&

+ 𝛼+) 6 =(𝑥 − 𝑙,)−
𝑙(
2
>𝜗/(𝑥)𝑑𝑥

-"

-!

? 

(3) 

Where ptot is total pressure that we want to record by 
photoacoustic, pth  is the thermoconducting component and pac 

is the thermoelastic component. Furthermore P0 is the presser 
in the cell, V0 is the volume of the cell (in the case of the 
minimum volume cell V0 represents the volume of the chamber 
cavity), γ represents the heat capacity ratio, αT is the thermal 
expansion coefficient, Rc is the radius of the chamber in front 
of the microphone diaphragm, l1and l2 are the thicknesses of the 
first and second layer, while ls is the sum of the thicknesses 
these two layers (l1and l2). ϑ(x) represents temperature 
variations inside the samples and ϑ(ls) is the surface 
temperature variation on the rare surface. Expressions for these 

temperature variations are given in the article [28][29]. The 
presented model described the total presser as photoacoustic 
response, and its components in the two-layer system 
surrounded by the air and it is based on the Generalized model 
of heat conduction that implies finite heat propagation speed. 
The system depicts volume absorption of incident optical beam 
in both layers [26][27][28][29]. 

Appearance of amplitude and phase characteristics of 
the theory-mathematical simulated total pressure are shown on 
figure 2a) and 2b) respectively. 

 

 
Fig. 2 Simulated amplitude and phase (solid line) of the total 

photoacoustic signal, ptot(f), as a function of the modulation frequency f, 
together with the appropriate components pth(f) and pac(f)   (dotted lines). 

 

In a minimum volume cell PA experiment [30], 
microphone is the fundamental part of the detector system. 
Microphone is an acoustic-electric converter, but its transfer 
function in frequency and time domain differ due its 
construction, applied geometry and membrane type. In the 
literature [8] and in our experimental experience, microphone 
behavior is described as filtering. At low frequencies (< 1 kHz), 
electret microphones (commonly used in PA) usually act as 
electronic high-pass filters, while at high frequencies (> 1 kHz) 
these microphones usually act as acoustic low-pass filters.  

The influence of the measurement chain, including the 
microphone as the component that has the greatest impact in 
signal distortion, is given by the following mathematical 
expressions describing total transfer function: 
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In previous equations, 𝐻!
"(𝑓) represents electronic 

characteristic of the influence of the other components in the 
measurement chain, first of all the sound card, and 𝑓! is the 
characteristic frequency that describes this system. Based on 
experimental experience, it is assumed that this frequency is 
constant. 𝐻#

"(𝑓)and Ha(f ) represent electronic and acoustic 
characteristics of the microphone.	𝑓# correspondes to the 
characteristic frequency of the electronic high-pass filter and 𝑓$ 
and 𝑓% to the characteristic frequencies of the acoustic low-pass 
filters of the microphone,  𝜉$ and 𝜉% are reciprocial values of 
the quality factor, or, in other words, the double value of the 
damping factor. The product of these two components 
represents the microphone response. As a consequence, the 
microphone response in frequency domain is deviated in 
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amplitude and phase, especially at the begging and at the end 
of frequency range. Different microphone types have different 
transfer functions, but transfer functions of two microphones of 
the same type are usually different, because, in practice, two 
identical microphones do not exist. Theoretical-mathematical 
model for the total photoacoustic signal recorded by the 
minimum volume cell photoacoustic experimental set up 
represents product of the total pressure and the total transfer 
function: 

 
𝑆(𝑓) = 𝜎𝑝!"!$-(𝑓)𝐻!"!$-(𝑓) (9) 

 
Based on this equation and numerical simulations of 

the experiments, the database is obtained. Amplitude and phase 
data of the simulated PA response are given in figure 3a) and 
3b). All the curves (amplitude and phase) of distorted 
photoacoustic signal have expected shape, according to 
experimental experience. There are no outliers. 

 

 
 
Fig. 3 Curves a) amplitude and b) phase of distorted photoacoustic 

signals with different microphone characteristics from the dataset used for 
network training[12] 

III. DATABASE DESCRIPTION 

Based on theoretical-mathematical model, software 
for creating simulated experimental values or numerical 
experiments is designed using programming IDE of Matlab. 
Microphone theoretical characteristics, corresponding to 
commercially available microphones ECM30В, ECM60 and 
WM66, are given in Table 1. Beside these microphone types, 
frequently used in PA experiments, simulations for another 
type of microphone are created, the so called ideal microphone 
(IM). Considering ideal microphone is of great importance for 
the correction procedure. If a microphone exerted ideal 
behavior, meaning it had flat PA response, that would mean 
that measurement chain would be equally sensitive in the whole 
frequency domain, so the correction procedure would be 
unnecessary. So, taking IM into account, we are saving the 
time. 

TABLE I 
THEORETICAL VALUES FOR ALUMINUM SAMPLE 

 Dye Aluminum 
Thermal conductivity [Wm-1K-1] 70 210 

Thermal diffusivity [m2s-1] 2.5*10-5 8.6*10-5 
Thermal relaxation time [s] 10-4 10-12 

Absorption coefficient [m-1] 108 145*106 

 
During the process of the examination, the black dye-

aluminum structure was investigated. Aluminum plate, 197 μm 
in thicknesses and with radius of 10 μm was covered in black 
ink dye, 2 μm in thicknesses. Thermal, thermal memory and 
optical parameters used for obtaining database are given in 
Table 1. 

Expert knowledge was crucial in obtaining similarity 
good enough with the experiment. Based on experimental 
experience, characteristic microphone parameters are 
considered to have different stability, regarding the 
reproducibility in each measurement. Accordingly, different 
value ranges were set for different parameters. Frequency  is 

the most stable parameter due to its origin from RC microphone 
characteristic, so three values ware taken for network training: 
central value  Hz for the microphone ECM30В and 

two values which are ± 5 % apart from the central value (23.75 
Hz and 26.25 Hz). By analogy, the values for the ECM60 are: 
14.25Hz, 15Hz and 15.75 Hz, for the WM66 they are: 61.75 
Hz, 65 Hz and 68.25 Hz, while for IM the values are: 0.475Hz, 
0.5	Hz and 0.525 Hz. Frequencies  and  are more 

dependent on experimental conditions then , so they are less 

stable than . Ten values, equally distanced in the 

corresponding ranges, were considered to be good enough for 
the description of experimental behavior related to those two 
frequencies. is taken in the range 8930-9866 Hz and is 

taken in the range 13965-15432 Hz for ECM30В. Microphones 
ECM60 and WM66 have the same ranges for frequencies 

and , 7980-8817 Hz and 13015-14383 Hz respectively. For 

IM 𝑓$		is in the range of 190000-209998 Hz while	𝑓% is in the 
range of 285000-314997 Hz respectively. Damping factors of 
the second order low-pass filter 𝜉$		 and 𝜉%		are strongly 
dependent on experimental conditions and they are the most 
unstable parameters. Each value range, for 𝜉$		 and 𝜉%, was 
chosen based on the peak appearing in the amplitude 
characteristic of the second order filter. Critical value of quality 
factor in the case of limitary situation where signal is extremely 
damped and respectively unforced is Q=0.5. Significant change 
happens from Q=1 to Q=100 hence 𝜉		 ∈ [0.99,0.015]. 15 
values, irregularly distributed in this range, were taken for the 
each type of microphone. This kind of microphone parameter 
distribution was assumed to be good enough to simulate all 
possible experimental situations. The discussion and 
comparison of inverse problem-solving concepts in 
photoacoustics is presented in our previous work [31]. There 
are 65,000 paired curves for each microphone type, as 65,000 
simulated experimental results, and those are 65,000 records of 
the database. Paired curves (two curves) mean that there are 
both amplitude and phase data for the given set of microphone 
parameters. Each curve contains data sampled at 200 frequency 
values in the range from 10Hz to 100kHz. By taking such a 
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wide frequency domain, the possibility of using microphones 
with different membrane material (mylar, nickel, graphene) is 
considered. In total, every record is represented with 400 
samples, 200 samples of amplitude and 200 samples of phase 
characteristics. Those are features for our machine learning 
problem. In other words each frequency is presented with two 
features, sample of amplitude and sample of phase, so we have 
resolution of two for every point on frequency axes. At the end 
of each database record, the information about which 
microphone type a particular record belongs to is written. The 
classification problem has 4 classes of microphones, 
symbolically presented with 0, 1, 2 and 3.  

 
 
 
 
 
 
 
 

 

 

Fig.4. Visualization of the data, different colors correspond to different 
microphone types 

 Visualization of the data used in classification 
modeling, the form of scatter diagram, is given in Fig. 2. 
Each point on a scatter diagram is one point of 200 points 
that corresponds to one curve of 270,000 curves in the 
database. Different classes of microphone are presented 
with different colors. Analyzing the diagram, one can 
conclude that points are completely classified to four 
classes or four microphone types in upper-right part of the 
diagram, meaning for certain distribution of amplitude and 
phase values it is clear to which class point belongs. That 
distribution of amplitude and phase values are happening 
in a low frequency domain. In lower-left part of the 
diagram points are mixed, meaning that for that 
distribution of amplitude and phase values it is not clear to 
which class point belongs, i.e. curves (or classes) overlap. 
Thus, classification model has more difficult task because 
of the overlap. Training, validation and test sets are 
obtained randomly because dataset is first shuffled and 
then divided into training, validation and test set. 
Generalization of the results is obtained on that way, thus 
243 000 records or 90% of the total number of records 
belongs to the training set, 13500 records or 5% belong to 
the validation set and the rest belongs to the test set.  

 

IV. RESEARCH RESULTS AND DISCUSSION 
Once, the topology of the model is chosen, the next 

step is fine-tuning of topology itself, parameters and 
hyperparameters of the model. It is done in iterative process 
idea-code-experiment, with a numerous attempt using literature 
suggestions [32][33] and experience. 

In pre-processing step, data scaling was done by 
performing the normalization of the input and output. Max 
normalization was chosen. It means that each element xi of the 
input vector is divided by its maximum absolute value, which 
is the maximum of absolute values of all the samples, a total of 

270000 values, at the i-th frequency. In other words, it is 
absolute maximum value of the i-th row of the input matrix. 
This way normalization of the input vector is done, all the 
values of the input vector are equal or less than unity. Similarly, 
normalization of the output vector is done. For weights 
parameters initialization, among others Xaviar algorithm [34] 
is chosen. The activation function tanh() is used for forward 
propagation and the Adam algorithm [35] is used for the 
optimization of weights in backpropagation. The optimization 
is intensified by the Mini-batch technique, size of 128. Because 
of the classification function softmax in the last layer, a cross 
entropy with logits is used as the error function and system 
performance measure during training. Neural network tuning 
on number of hidden layers and the number of neurons is 
presented in Table 2. 

TABLE II 
NUMBER OF HIDDEN LAYERS AND NUMBER OF NEURONS IN HIDDEN 

LAYER(S) ANALYSES 
No.of hidden layers 1 2 2 2 1 2 
No. of neurons of the 1. h. l. 10 8 7 9 5 3 
No. of neurons of the 2. h. l. / 2 3 1 / 2 
Train accuracy(%) 99.99 99.99 99.99 75.02 99.99 99.99 
Dev accuracy(%) 99.99 99.99 99.99 74.15 99.99 99.99 
Test accuracy(%) 99.99 99.99 99.99 75.45 99.99 99.99 
Number of epochs 100 100 100 100 100 100 
Prediction time (ms) 14.34 17.89 17.44 / 14.06 16.75 

 
 

2 1 2 2 1 2 1 
4 4 2 3 3 2 2 
1 / 2 1 0 1 0 
50.03 99.99 99.99 81.15 99.99 75.01 99.99 
49.19 99.99 99.99 82.09 99.99 75.03 99.99 
50.15 99.99 99.99 81.11 99.99 74.7 99.99 
100 100 100 100 100 100 100 

/ 13.89 16.89 / 13.73 / 13.93 

 
According to Table 2, for the defined classification 

problem and the dataset of 270000 records following 
conclusions can be drawn. One neuron in second hidden layer 
in configuration of two hidden layers is not appropriate and 
those topologies were dismissed, but 2 neurons in second 
hidden layer are satisfying. The reason are 4 classes at the 
output. There is no difference in accuracy in the case of the 
configuration with one hidden layer and in the case of 
configuration with two hidden layers with same total number 
of neurons. Based on experimental experience one can say that 
for other machine learning problems that was not a case. This 
is specificity of this particular problem. So, the topology and 
the choice of model parameters and hyperparameters are 
singularity of machine learning problem and the quantity and 
quality of available data. Minimum configuration that satisfies 
required accuracy is one hidden layer with 2 neurons. It is 
surprisingly small number of neurons, which can be justified 
with the large data set. It means that learning with large datasets 
decreases the number of computational units of ANN 
configuration, it becomes computationally simpler. Large 
dataset brings into the model huge knowledge about the 
problem, in the case of our classification problem knowledge 
about photoacoustic experiment environment. Using this 
knowledge ANN needs less computational power and less 
epochs for learning. Analyzing the obtained prediction time of 
different topologies of classification model, the most important 
influence on the processing rate has the number of hidden 
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layers, the number of neurons in layer has minor influence, 
even if there is significant difference in the number of neurons.  

Concerning the prediction, the network gives very 
high accuracy, train, dev and test accuracy are equal, 99.99%. 
Concerning the training, the network obtained good results 
even for very quick training, that lasts 100 epochs. According 
to the equal values of training, dev and test accuracy and low 
error function on the new data sets we can conclude that the 
network generalizes very well. There is no overfitting.  

The reliability of the model was tested on simulated 
data. Sixteen different independent datasets, meaning four 
different amplitude and phase characteristics for each type of 
microphone were created, where the microphone parameter 
values differed from those on which the network was trained, 
but in the given parameter range. Results are presented in Table 
3. According to Table 3 our model is reliable, it recognizes the 
microphone type precisely and gives an answer regarding the 
microphone type in real time.  

Results of the model on real experimental data are 
presented in [12]. 

 
TABLE III 

RESULTS OF INDEPENDENT TESTS 
Test 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Class. 1 3 0 2 1 2 3 0 2 3 1 2 1 0 3 0 

Accuracy ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
V. CONCLUSION 

   In this paper a complete explanation of the necessity for 
simulation data in the processing real photoacoustic 
measurement data is given. Software for simulations is 
designed based on the presented theoretical-mathematical 
model, while the credibility to the experiment is obtained using 
expert knowledge. Classification model for microphone type 
recognition is trained on the obtained database. Because of the 
huge, reliable dataset, knowledge about the photoacoustic 
experiment is embedded in the classification model so it could 
be optimized to a pretty simple topology, while the learning 
process was extremely efficient. In terms of precision and real 
time processing, classification model satisfies requirement of 
the photoacoustic experiment. In terms of reliability, 
classification model did not make any mistake in tests 
maintained with simulated data. The benefits of the presented 
model for PA measurements are multiple. By recognizing the 
microphone type the shape of transfer function and levels of 
signal exaggeration or attenuation are determined and that will 
simplify the further procedure of recognition of microphone 
characteristics in order to deprive PA signal of instrumental 
deviations. If the recognized microphone has flat 
characteristics the correction procedure is skipped. In the case 
of shaped response the correction procedure is done using only 
database of recognized microphone instead of whole database 
for all types of microphone. The processing time is saved this 
way. The generality of the model could be accomplished by 
extending the number of microphone types if such requirement 
of the experiment exists. In the future, we intend to explore 
modeling of noise distribution to generate data similar to real 
data and skip the first step of correction procedure, the noise 
removal. 
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