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ABSTRACT

A development of simulated data and discussion on potential use in processing photoacoustic measurement data,
as well as in solving of an inverse problem are presented in the paper. Simulated experimental values are obtained
based on theoretical-mathematical model of photoacoustic response, described in the paper. Credibility of the data
is acquired due to the experimental measurements. Simulated data validity was proven with the satisfactory accuracy,
precision, and reliability of the several machine learning models which were trained on the designed database and
are applied in processing photoacoustic measurement data. Presented results show that if a huge dataset of high-
quality data is generated, solving issues of inverse photoacoustic problem is successful, computing is cost effective,
and process rate of machine learning models is suitable for real time work.
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1. INTRODUCTION

When some kind of pattern exists between input and output parameters of machine learning algorithm, and sufficient
data is available for training of the algorithm, the pattern can be discovered or approximated. Eventually, newly dis-
covered pattern will enable accurately calculating of output for inputs of interest outside the training dataset. If the
training set quantity and quality are adequate, output for any future input could be estimated [1]. Hence, machine
learning algorithms, and especially artificial neural networks (ANN), are widely accepted as tools for reliable and fast
prediction in various domains. In the last few years, they are considered suitable for decision making in photoacous-
tics (PA), as one of photothermal (PT) methods, for solving issues that resisted standard procedures: the elimination
of noise in image identification using photoacoustics [2], the improvement of atmosphere gases monitoring - con-
temporaneously laser beam spatial profile and polyatomic molecules relaxation time definition in gases in real time
[31[4], the reconstruction of optical profile based on measured PT response [5], etc.

The material properties the most affect the recorded PA signal, but the measuring chain, particularly the microphone,
also impacts the recorded signal, especially on its ends. This influence of the measured chain can significantly narrow
the measurement range and reduce the accuracy of the solution to the inverse PA problem. Therefore, it is very im-
portant to recognize and describe the influence of the components of the measurement system. Neural networks are
proving to be a very effective method for solving this problem.
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Namely, physical properties resolution of the examined sample from its PA response is the goal of PA measurements.
All PT methods are indirect measurement techniques, so is photoacoustics. Mathematically, it is an inverse problem.
Generally, obtaining physical properties by model-dependent methods is done in two steps:

1. Thefirst stepis the development of the direct model. Mathematical model that adequately represent phys-
ical processes influenced by incident optical radiation and resulting in thermal response is created. Theoret-
ical-mathematical modeling of temperature distribution within the sample, on sample surface, both front
and back is done first. Secondly, modeling of PA response using obtained temperature variations is done...

2. The second step is the development of the inverse procedure. Sample physical properties determination
due to gathered effects of designed mathematical model, measured PT response and common input param-
eters preset, such as characteristics of optical excitation - modulation frequency and intensity. Multiparame-
terfitting, complex numerical procedures and ANN are some of the inverse procedures. Concerning demand-
ing examiner commitment and time consumption in a case of numerical procedures and fitting, they are not
suitable regarding scientific and industrial application. These applications require real time procedures.
ANNS s are logical choice as a very effective ML algorithm.

The first requirement for the successful application of neural networks is quantity and quality of data, ANN is data
hungry [6]. On the contrary, the facts with PA measurements are: firstly, numerous experimental collection that satisfy
ANN request is hard to achieve, and on the other hand experimental data are risky due to influence of the measure-
ment system, which is hidden in PA response [7]. The paper suggests another solution for obtaining a huge dataset:
software which generates numerical experiments or simulated experimental data. A record in the obtained database
consists of amplitude and phase instances of sampled simulated PA response. Credibility of simulated data is of great
importance for precision of the new method. It is obtained thanks to expert knowledge.

In the past few years, the trend in machine learning is application of simulated data for training [8][9][10]. Concept of
using simulated experimental data or numerical experiments generated by specially designed software based on
developed theoretical-mathematical model for training ML models is new, as far as we know.

Firstly, the article explains a complete method of making a massive datasets of high-quality simulated data which will
be used for training of ANN as the inverse solution of the inverse problem. Then, the review of latest achievements in
PA material characterization research gained based on simulated data for aluminum are presented.

2. THEORETICAL-MATHEMATICAL MODEL OF PHOTOACOUSTIC RESPONSE

Photoacoustics is the first and most used photothermal method. All photothermal methods are based on the photo-
thermal effect (the effect of generation of heat due to the absorption of the incident electromagnetic radiation from
a wide spectrum of wavelengths). The heat generated in this way causes the disorder of the thermodynamic state of
the sample (pressure, temperature, density) which propagates through the sample and the nearby environment, pro-
ducing a number of detectable phenomena. Depending on the phenomenon being measured, there are different
photothermal methods. In this article, we talk about gas-microphone photoacoustics where the oscillation of air pres-
sure in PA cell, as a consequence of exposing the investigated sample to the modulated light beam, has been de-
tected by a microphone[11].There are two types of photoacoustic cell, the first one is a so-called “reflection configu-
ration”, in which the source and the microphone are located on the same side of a sample, and the second one is the
“transmission configuration”, where a sample is placed between the source and the microphone. In our experimental
setup, the minimum volume cell configuration is used. The minimum volume cell configuration is a kind of transmis-
sion cell configuration in which the sample is put directly on the top of the microphone, as presented in Figure 1,[12],
so the microphone chamber becomes the PA cell, closed by the sample on one side and the microphone diaphragm
on the other one. This kind of PA cell becomes the reason for disorders of the recorded signal on its endings [13], so
if we want to utilize the whole measured frequency range, it is needed to know the behavior of the microphone.

On the other hand, in the case of reflective, or transparent and semitransparent materials, another layer is needed to
increase the recorded signal level or to protect the microphone. Reflective materials have experimentally obtained
signals low and in order to make the level of the recorded signal higher than the level of the noise (real-flicker noise,
coherent signal deviation, and random noise), the absorption of the sample has to be large, and reflection has to be
small, so we have to add another layer. In the case of transparent (or semitransparent) samples, the coefficient of
transmission has to be increased because of the microphone protection.

In the case of transmission configuration, photoacoustic response is represented as sum of thermoconducting and
thermoelastic component as two dominant signal components. Periodic heat flow from the sample to the surround-
ing gas (thermal-piston effect) influences thermoconducting component and thermoelastic banding of the sample
(drum effect) influences thermoelastic component [14][15]1[16][171[181[19][201[211[22][25]1[26].

26 M. Jordovi¢ Pavlovi¢ et al.



Vol.2+(2023) - No.2 Engineering Today

Figure 1: Photoacoustic experimental setup [12]

In our experiments two-layer structure is employed. The first layer is black coating, and the second layer is the inves-
tigated sample. Black coating is very thin, so it can be obtained as the first layer of the two-layer system on the one
hand [23 - 26], but it also can be observed as a surface absorber of the incident radiation, and because of it as the
surface heat source [14 - 20]. In the case of a large difference in the thickness of these two layers, it is better to use a
theoretical mathematical model for a sample with surface absorption of incident radiation, because the influence of
its thermal and elastic properties could not be observed in measuring range. Theoretical-mathematical expressions
of PA response of both systems, used for obtaining the dataset, are given by following expressions:
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Dot is total pressure recorded by photoacoustic, py is the thermoconducting component and p,.is the thermoelastic
component. P, represents cell presser, V, represents cell volume (V, represents the volume of the chamber cavity in
the case of the minimum volume cell), y is the heat capacity ratio, ar is the thermal expansion coefficient, R is the
radius of the chamber in front of the microphone diaphragm, while I is the sum of the thicknesses these two layers,
and in the case of the very thin coating it can be observed as the thickness of the investigated sample. 8(x) act for
temperature variations inside the samples and 6(/;) act for surface temperature variation on the rare surface, and dif-

ferent expressions are used for these temperature variations for these two cases (one-layer or two-layer system) [14
-20].

Figure 2a) and 2b) describe appearance of simulated total pressure amplitude and phase characteristics, respectively.
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Figure 2: Simulated curves (amplitude and phase) ) of the total photoacoustic signal, p.«(f), obtained by the de-
signed software based on theoretical-mathematical model (solid line) and corresponding components p:(f)
and p..(f) (dotted lines).

Microphone acts as acoustic-electric converter and is the main part of the detector system in PA experiment of mini-
mum volume cell [27]. Construction, applied geometry and membrane type influence microphone transfer function
in both frequency and time domain. Concerning the literature [7] and experiments done by us, microphone behavior
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could be described as filtering, thus at low frequencies (< 1 kHz) as electronic high-pass filters and at high frequencies
(> 1 kHz) as acoustic low-pass filters.

The following mathematical expressions describe total transfer function of measurement chain influence, concerning
the microphone as the component that has the greatest impact on signal distortion:
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i
erpy 1
H(f)=— ) (5)
1-j=
fZ f2
Ha f — 3 4
( ) f32_f2+jff3§3+ﬁ‘2_f2+jff4é:4 (6)
Hmic (f):H;(f)H:)ra/ (f) (7)
Hroral(f)zHr(f)Hmic(f) (8)

Where, electronic characteristic of the influence of the other components like the sound card in the measurement
chain is represented by H; (f) and characteristic frequency f,. This frequency is considered constant due to experi-
mental experience. Electronic and acoustic characteristics of microphone are presented as H; (f) and H%(f). f, corre-
sponds to the characteristic frequency of the electronic high-pass filter and f, and f, to the characteristic frequencies
of the acoustic low-pass filters of the microphone, &, and &, are reciprocial values of the quality factor, or, in other
words, the double value of the damping factor. By multiplication these two components, microphone response is
obtained. Microphone response amplitude and phase deviations are present and particularly persistent at the begin-
ning and the end of frequency range. Different transfer functions are usual for different microphone types, but the
difference happens even in the case of two microphones of the same type. There is no two identical microphones in
practice. By multiplication of the total pressure and the total transfer function, theoretical-mathematical model for
the total photoacoustic signal, recorded by the minimum volume cell photoacoustic experimental set up, is obtained:

S(f)zo-prota/(f)Htotal(f) (9)

Considering this equation and well known experiment preset, the database of simulated data or numerical PA exper-
iments is obtained. Figure 3a) and 3b) depict amplitude and phase of distorted photoacoustic signal. According to
experimental experience, the shape of all the curves is expected. Outliers do not exist.
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Figure 3: Distorted photoacoustic signals a) amplitude and b) phase. Curves with different
microphone characteristics belong to dataset used for network training [28]

3. DATABASE DESCRIPTION

Software for database generation is designed using Matlab programming IDE. Preset of defined values corresponding
to microphones: ECM30B, ECM60 and WM66, commonly used in PA experiments, is given in Table 1. One more mi-
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crophone type will be observed here, and thus it is present in the dataset. So called ideal microphone (IM) is micro-
phone of ideal behavior and is very important for distorted PA response correction. Response of PA ideal microphone
is flat in a frequency range of interest that proves identical sensitivity and frequency independence. In the case of IM,
PA response is not distorted, so corrections are needless and time is preserved.

The black dye-aluminum structure was investigated during the process of the examination. The thickness of alumi-
num plate used in experiment is 197 pm and its radius is 10 um. The thickness of black ink dye layer that covers the
plate is 2 um. Table 1 presents predefined set of characteristics.

Table 1: Theoretical values for aluminum sample

Dye Aluminum
Thermal conductivity [Wm'K™] 70 210
Thermal diffusivity [m2s™] 2.5-10° 8.6:10°
Thermal relaxation time [s] 10 10712
Absorption coefficient [m™] 108 145-10°

Credibility of numerical experiments is obtained thanks to expert knowledge. Value ranges for each microphone pa-
rameter is specifically set due to its stability. Namely, considering repeatability in every measurement, different sta-
bility is appraised for individual microphone parameter. Microphone frequency f, is connected to its RC characteris-
tics, so it is the most stable parameter. Only three values were set for creating simulated data. For microphone
ECM30B, one central value f,, =25 and two values less and bigger comparing to central value for 5% are set. Central
value for ECM60, WM66 and IM are 14.25 Hz, 61.75 Hz, 0.475 Hz respectively and other corresponding values are 15Hz
and 15.75 Hz, 65 Hz and 68.25 Hz, 0.5 Hz and 0.525 Hz. Characteristic frequencies f;and f, are less stable than f, be-
cause of their dependency on experimental conditions, so ten values in particular ranges are set for the description
of their experimental behavior. The distance between these ten values is equal. 8930-9866 Hz is the range for f, and

13965-15432 is the range for f, in the case of ECM30B microphone. Same ranges for frequencies f, and f,, 7980-
8817Hz and 13015-14383 Hz, respectively are chosen for microphones ECM60 and WM66. 190000-209998 Hz is the
range for IM frequency f, and 285000-314997 Hz is range for IM frequency f, . The most unstable parameters are
damping factors of the second order low-pass filter, &, and &, , which are strongly dependent on experimental
conditions. Based on the peak position at frequency axe of second order filter amplitude characteristics, value ranges
for & and &, , were chosen. In limitary situation characterized with signal ultra damping, critical value of quality fac-
tor is Q=0.5. In the case of value changes from 1 to 100 for Q significant curve change happens, so 4“3'4 €[0.99, 0.015].

For each type of microphone 15 values in selected range are randomly chosen.

Simulation of all possible experimental conditions was the aim of the assumed distribution. In our previous work [29],
comparative analysis of concepts for solving the inverse problem in PA is presented. 65,000 paired curves, meaning
both amplitude and phase data, are created, so the database has 65,000 records for every microphone type. Each
record contains 200 instances of amplitude and 200 instances of phase sampled in the range 10Hz to 100kHz, in total
400. Presented distribution is set for electret microphones, frequently used in PA measurements but there is possibil-
ity of use microphones which membrane is made of different materials such as grapheme, mylar and nickel, that is
way wide frequency domain is chosen.

Phase, 9, [deg)
°o

1074 10 10 10
Amplitude, A, [a.u.)

Figure 4: Scatter diagram of dataset [30]

Figure 4 provides data visualization in the form of scatter diagram. Two features describe each point on a scatter
diagram, amplitude and phase. Data points belonging to different microphone types are differently colored. It can be
concluded that classification to four classes is completely clear in upper-right part of the diagram which corresponds

FMCE Kraljevo 29



Engineering Today Vol.2+(2023) - No.2

to low frequency domain. Points are mixed in lower-left part of the diagram, curves (or classes) overlap, so it is ques-
tionable to which class point belongs. Training, validation and test set are obtained by dividing shuffled dataset in
relation 90%, 5%, 5%, respectively. Randomly splitting provides generalization and reduces overfitting. Training set
consists of 243 000 records, validation and test set have 13500 records each.

4. ESEARCH RESULTS AND DISCUSSION

This section is a review of research achievements based on simulated data for aluminum described earlier. The aim is
to prove that simulated data created on the way suggested in the article are good solution and right research direc-
tion for training the models which provide answers for the inverse photoacoustic problem.

4.1. Application in photoacoustic measurement calibration

In the photoacoustic measurement setup (open-cell configuration photoacoustic spectroscopy) described in the pre-
vious section, the microphone with associated electronics and a phase-frequency (lock-in) amplifier plays a major
role. Concerning distortions, the microphone has the greatest impact, and it should be further processed. A complete
description of the microphone frequency response is necessary for the signal correction procedure. In order to obtain
microphone transfer function, specific details that can be classified into several different classes and are related to the
transfer function shape and the different levels of signal amplification and attenuation are needed. There are flat
microphone response and generally shape microphone response. A flat response curve is an almost straight line,
indicating that the measuring chain is approximately equally sensitive along the entire frequency range, so that the
photoacoustic signal is transmitted without distortion. That is a case of the ideal microphone. Microphones frequently
used in photoacoustic almost always have shape response curve. Its peaks and valleys indicate that the microphone
is more sensitive at certain frequency bands compared to the others. The result is signal transmission with a certain
degree of distortion, which must be detected.

Photoacoustic
Response
Laser beam sample ANN classification " : . .
b 4 Selection of database
detector of detectors
= EMC30B
210y
5~
f ol (Class0 DB(EMC30B)
30l Classt
I:> DB(EMC60) I:>
0" . )
> Interpolation o> [Class2 ﬁDB(WMBB)
EMC30B I
e Class3
&
.
Modulation frequency, / (Hz)
L
Amplitude of photoacoustic response
ANN regression, Microphone transfer T
estimation of detector function True” signal
parameters
Filters of first and
second order Ampl itude
> correction >
2 ‘
o> ) lbtaion rfenes,

EMC30B

s

7. ! Phase
H \ => correction =

Figure 5: Photoacoustic measurement signal autocorrection method [28]
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Figure 5 is block scheme of photoacoustics measurement signal autocorrection method which is result of our previ-
ous research. Microphone transfer function is detected from distorted PA experimental signal (sampled in a certain
number of points) [28]. Main blocks of the scheme are regression and classification model trained on database of the
mentioned numerical experiments. Method couples the results of regression and classification models. The form of
transfer function corresponding to a specific microphone type is recognized by classification model. Then the regres-
sion model predicts numerical values of parameters (f5, f3, f4, G, () attributed to the shape of the transfer function [28].
Derived data are used by signal correction procedure, and as a result, transfer function of microphone used as a de-
tector is subtracted from the real signal. The output of the method is undistorted experimental signal originated only
from the used material sample. Obtained signal is used in the process of material characterization and finally physical
parameters of the tested sample are accurately, precisely and reliably defined.

30 M. Jordovi¢ Pavlovi¢ et al.



Vol.2+(2023) - No.2 Engineering Today

The classification model, Figure 6b) used in autocorrection method has the role of accelerating the process of pro-
cessing photoacoustic measurement data by recognizing the type of frequency response curve: if a flat curve is de-
tected, the photoacoustic signal is not distorted and is automatically forwarded to the output, if the signal is distorted,
the classification model has the task to recognize which type of microphone has such a response. Depending on the
recognized microphone type particular database is selected, which will be used for regression model training, Figure
6b). Database for each observed type of microphone is obtained on the way explained in the article. The creation and
hyperparameters tuning of classification model was subject of our earlier research [30]. It is simple neural network
architecture due to learning with large dataset, which embeds into the model huge knowledge about PA experi-
mental conditions. Classifier is thus optimized to one hidden layer with 2 neurons. Its hyperparameters are presented
in Table 2. Also, learning process was extremely efficient, it lasted 100 epochs or a few minutes. The input vector of
classification model consists of 400 elements, 200 of them present samples of amplitude and the remaining 200 are
samples of phase characteristics of the analyzed photoacoustics response. Performance of the classification model is
defined in Table 3.

xl
class0

X2

classi

Samples of amplitude
and phase characteristics

and phase-fr

class2
X400
x400 Hidden layer num.1

Inputlayer (2 neurons)
“ {400 neurons) class3

Output layer

5
(5 neurons) Output layer
{4 neurons}

Figure 6: Classification and regression model [30] [31]

Table 2: Neural networks structure and tuning [28]

Dev. set -
No. of . ) Mini
No. | No.of | No. of N L dimension .
. neurons |Activation | Training set Learning | Momentum - No. of
Model of out- |hidden| . " . . . =
. in hidden | function | dimension rate | parameters | batch | epochs
inputs| puts | layers Test set .
layers . - size
dimension
nl11=30 B1=0.9
Regression | 400 5 2 n[2]:17’ tanh() 57,500 5,000 10 B2=0999 | 32 3000
e=10%
tanh( B1=0.9
Classification| 400 4 1 n[1] =2, ! 243,000 13,500 10 B2=0.999 128 100
softmax() c=10°

Table 3: Performance of the classification model [30]

Frequency range Accuracy Number Prediction time
q yrang (train, dev, test) of epochs
20 -20000 Hz 99.99%, 99.99%. 99.99% 100 17ms

In our previous research [31] regression model and detailed analysis of hyperparameters choice are illustrated. Model
was tested on samples of different materials and diverse microphones, so its accuracy and reliability has been proven,
Table 4. Its design is depicted on Figure 6a) and its hyperparameters are shown in Table 2. The input vector has the
same number of features as input vector of the classifier.

Both, classification and regression model are precise enough and work in real time, so thus satisfy requirements of
the PA experiment. They are reliable, classification model 100% recognizes microphone type maintained with simu-
lated data, [30] and the average error that regression model makes on these tests is negligible [31].

Table 4: Performance of the regression model [31]
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Average deviation from the accurate value expressed in percentage of the accurate value
on the training set for microphone EMC30B (frequency range 20-20000 Hz), accuracy = 98.68%

f2 f3 f4 3 ¢a
0.07132456 0.14649154 005109024 0.74361974 0967724

Average deviation from the accurate value expressed in percentage of the accurate value
on the validation set for microphone EMC306 (frequency range 20-20000 Hz), accuracy = 98.73%

Parameter f2 f3 f4 & ta
0.07109252 0.14936025 0.05018261 0.73954904 0.95961267

Average deviation from the accurate value expressed in percentage of the accurate value
on the test set for microphone EMC306 (frequency range 20-20000 Hz), accuracy = 98.46%

Parameter

Parameter f2 f3 f4 a3 ta
0.07197632 0.14702412 0.05081375 0.78105694 1.0586549
Prediction time microphone EMC306 (frequency range 20-20000 Hz)
CPU time Computation time
14 ms 40 ms

Average deviation from the accurate value expressed in percentage of the accurate value
on the training set for microphone EMC60 (frequency range 20-20000 Hz), accuracy = 98.5%

f2 f3 4 3 ¢a
0.08030392 0.06785115 0.06096664 0.7990959 1.0014774

Average deviation from the accurate value expressed in percentage of the accurate value
on the validation set for microphone EMC60 (frequency range 20-20000 Hz), accuracy = 98.5%

Parameter

f2 f3 f4 a3 Ca
Parameter
0.07929239 0.0674798 0.06169094 0.76554894 1.0300709
Average deviation from the accurate value expressed in percentage of the accurate value
on the test set for microphone EMC60 (frequency range 20-20000 Hz), accuracy = 98.44%
f2 f3 f4 & 4
Parameter
0.08065586 0.06766558 0.06113705 08405477 1.0059946
Prediction time microphone EMC60 (frequency range 20-20000 Hz)
CPU time Computation time
13 ms 35ms
Average deviation from the accurate value expressed in percentage of the accurate value
on the training set for microphone WM66 (frequency range 20-20000 Hz), accuracy = 98.87%
f2 f3 f4 & (4
Parameter
0.07622549 0.07398161 0.06836206 0.6666061 0.7081819

Average deviation from the accurate value expressed in percentage of the accurate value
on the validation set for microphone WM66 (frequency range 20-20000 Hz), accuracy = 98.93%

f2 f3 f4 & 4
Parameter
0.07429651 0.07452826 0.06824242 0.6592338 0.6810206
Average deviation from the accurate value expressed in percentage of the accurate value
on the test set for microphone WM66 (frequency range 20-20000 Hz), accuracy = 98.68%
f2 f3 f4 (3 4
Parameter
0.07601995 0.07425365 0.06885304 0.7398573 0.7364045
Prediction time microphone WM66 (frequency range 20-20000 Hz)
CPU time Computation time
14 ms 41 ms

4.2. Application in the development of a self consistent inverse procedure (SCIP)

In the publication [29], a regression based method for parameter estimation is presented, which is aimed, in particular,
at the determination of linear thermal expansion coefficient and thermal diffusivity, based on transmission photoa-
coustic measurements performed on solids. The idea makes use of a novel methodology in the solving of inverse
problems: firstly, the ANN-based study is performed regarding the presence of the microphone characteristics in the
recorded signal, which is, secondly, removed. Afterwards, the SCIP is performed on the obtained data, widening the
frequency range in use in comparison to previously developed methods, and improving the accuracy. The efficiency
of the developed method is proven on aluminum.
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The behavior of thermo-physical properties, such as DT, and aT, in the frequency range of the performed PA meas-
urements (20 Hz - 20 kHz), is quite complex when surface absorbents, like metals, are used. The estimation of these
parameters by means of regression based fitting is error-prone, which is amplified in real-life experimental conditions,
where the influence of measurement chain is notable. This influence is significantly reduced by means of the devel-
oped ANN-based method, which estimates a set of parameters needed for the filtration of the mentioned disturbance.

In Figure 7, the PA response lines (both amplitude and phase) based on theory are shown in parallel to the experi-
mentally obtained signal and the ANN-processed data. At low and at high frequencies, signal disturbances can be
observed (red lines), attributed mostly to the microphone [32], which are successfully suppressed using the men-
tioned method: the green lines show significant similarity to the blue lines, as opposed to the red ones.

Al, 280 microns

10%¢ 50

—THEORY
EXPERIMENT (ANN processed)

——EXPERIMENT single point

match
'/

usability region

amplitude [A.U.]

400
10

10°

10% 10’ 10%

f[Hz)

10°

10' 10%

Figure 7: Theoretically obtained PA response of aluminum at 280 um (blue line) vs. experimentally
gained data (red line) vs. ANN-corrected experimental data (green line), [32]

Overall, the amplitude line is successfully processed under 2500 Hz in comparison to higher frequencies, while in the
case of the phase line, the correction may be considered satisfying above 100 Hz. Therefore, the usability region is
much wider than it used to be at the first place: it is visible that, in this region, the mean square deviation of both PA
response lines from the obtained ANN-processed data is much smaller in comparison to the case when it is subtracted
from experimentally obtained signal directly.

The validation of the procedure is firstly done on a controlled numerical experiment [29, 32] with the relative estima-
tion error between estimated and preset values acting as the index of success:

Table 5: SCIP results on numerical experiment [32]

Parameter combina-| Drs - assembly, Drs - assembly, Drs - random, Drs - random,
tion ar- assembly ar-random ar - assembly ar - random
rel estimate | Drs 0 0 0.01 0.009
error [%] ar 0 0.006 0.01 0.011
max. iter. N° 4 3 3 4

When the SCIP is performed on the experimentally obtained signals (frequency PA response measurement on Alumi-
num at 197 um and 280 um) the results are considered very good. As shown in Table 6, the estimated parameters are
quite close at both thickness levels, while the resulting reconstruction, presented in Figure 8, shows remarkable re-
semblance between lines based on preset and estimated parameter values.

Table 6: SCIP results on experiment [32]

Sample thickness [ um] 197 280
Parameter estimate Drs[x10° m*/s] 8.59 8.36
ar[x10°K"] 234 21
iter.N° 4 2

The self-consistency of the SCIP is demonstrated through its convergence in the application on the established nu-
merical experiment, with relative error not exceeding 0.02 % and finishing always under six iterations. Afterwards it
is confirmed in the application on experimentally obtained PA response of Aluminum samples at two thickness levels
(197 and 280 um), with resultin estimates in accordance with literature expectations and iterations remaining equally
low.
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Figure 8: ANN preprocessed experimental results (green) obtained from a 197 um (a) and 280 pm (b)
thick sample alongside reconstructed data, based on the estimated parameters (black) [32]

4.3. Application of the neural network in the inverse solution of the photoacoustic problem

After applying the network in microphone classification, Table 3, and recognizing the instrumental influence, Table
4, on the measured photoacoustic signal, deconvolution of useful signal and removing of instrumental influence can
be done by (4-9). The obtained signal of the aluminum sample can be analyzed by standard fitting methods by com-
parison with the theoretical model (1-3), developed procedures (SCIP), or by applying neural networks in determining
the sample parameters. Thus, the sample can be characterized very precisely by determining the parameters from
the amplitude and phases of the photoacoustic signals in the frequency domain. The neural network was applied in
the frequency domain 10 to 20kHz and trained on 1089 photoacoustic signals of the theoretical model, unit (1-3) for
the aluminum sample, with the aim of predicting three parameters: thermal diffusivity, thermal expansion coefficient
and sample thickness, Figure 9. Sample thickness parameter is introduced as a control parameter. During training,
testing and validation, the neural network learns from the data stored in the neurons. Neurons represent values that
are associated with a non-linear function. Training takes place during several epochs until one of the criteria is met,
which determines the termination of further training [33].

The simple structure of the neural network in supervised training forms a tool obtained by error minimization, so that
the parameters: thickness /", thermal diffusivity D™, and linear expansion " of the experimentally measured alu-
minum sample with a thickness of 197 um, Figure 8(a) can be determined precisely with errors <1%, Table 7 [33,34].

Table 7. Thickness I"", thermal diffusivity D}, and linear expansion o1 parameters determined by neural network

analyzed by standard fitting methods by comparison with the theoretical model, and measured photoacoustic sig-
nal, with deconvolution of the useful signal with removed instrumental influence.

type exp PAS " [um] D [1 O’szsq o™ [K*J
standard PAS 196.78 8.5559 2.3149
measured useful signal 197.45 8.5812 23114
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Figure 9. Training network for determining aluminum parameters

5. CONCLUSION

The idea of using simulated data in the processing real PA measurement data is completely explained and justified.
Developed theoretical-mathematical model was a base for software design, intended for data generation. Expert
knowledge is crucial for credibility to the experiment. Several machine learning models were trained on the obtained
database. Models are precise regarding requirements of the PA experiment and work in real time. In terms of reliabil-
ity, the average model errors are negligible in testing maintained with real and numerical experiments. The potential
of using simulated data is of great importance for processing PA measurement data: simplifying and accelerating two
procedures - the procedure of extraction of microphone transfer function from distorted PA signal for the reason of
its correction from instrumental deviations and procedure of material characteristics determination.
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