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Abstract: This study focuses on developing a model for the precise determination of ultrasound 
image density and classification using convolutional neural networks (CNNs) for rapid, timely, 
and accurate identification of hypoxic-ischemic encephalopathy (HIE). Image density is measured 
by comparing two regions of interest on ultrasound images of the choroid plexus and brain pa-
renchyma using the Delta E CIE76 value. These regions are then combined and serve as input to the 
CNN model for classification. The classification results of images into three groups (Normal, 
Moderate, and Intensive) demonstrate high model efficiency, with an overall accuracy of 88.56%, 
precision of 90% for Normal, 85% for Moderate, and 88% for Intensive. The overall F-measure is 
88.40%, indicating a successful combination of accuracy and completeness in classification. This 
study is significant as it enables rapid and accurate identification of hypoxic-ischemic encephalo-
pathy in newborns, which is crucial for the timely implementation of appropriate therapeutic 
measures and improving long-term outcomes for these patients. The application of such advanced 
techniques allows medical personnel to manage treatment more efficiently, reducing the risk of 
complications and improving the quality of care for newborns with HIE. 

Keywords: hypoxic-ischemic encephalopathy; ultrasonography; density difference; convolutional 
neural network; neonates; intensive care; image classification; brain parenchyma; choroid plexus; 
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1. Introduction 
Due to its immaturity, the brain of preterm infants is at risk for numerous lesions. 

The most common of these include intraventricular hemorrhage from the germinal ma-
trix (IVH), ventricular system enlargement, cerebellar hemorrhage, and white matter 
damage known as periventricular leukomalacia (PVL) [1]. Brain injury resulting from 
perinatal asphyxia is known as hypoxic-ischemic encephalopathy (HIE). The incidence of 
HIE ranges from 1 to 7 cases per 1000 live births, with significantly higher numbers in 
developing countries [2]. 

Hypoxic-ischemic insult progresses through three phases: the primary phase, in-
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volving cell necrosis due to oxygen deprivation; the latent phase, characterized by 
reperfusion and temporary restoration of blood flow, which can lead to additional 
damage; and the secondary phase, involving apoptosis, or programmed cell death, which 
further aggravates brain injury in the days following the initial event. Based on clinical 
evaluation, which includes assessing the level of consciousness, muscle tone, tendon re-
flexes, autonomic disturbances, and the presence of seizures along with EEG findings, 
HIE can be graded as mild, moderate, or severe using the Sarnat score [3,4]. 

Neuroradiological methods that enable visualization of brain structures include ul-
trasonography (US), computed tomography (CT), and magnetic resonance imaging 
(MRI). Ultrasound of the central nervous system (CNS US) is the most commonly used 
diagnostic method for studying brain lesions and their potential outcomes. Due to its 
accessibility, safety, reliability, and low cost, ultrasound has become an integral part of 
equipment in almost all intensive care units [5]. 

Brain ultrasonography is performed through the anterior fontanelle, which remains 
open and serves as an acoustic window until the tenth month of life. Convex probes with 
frequencies of 5–6.5 MHz or 5–10 MHz are used for this procedure, and they must be 
small enough to allow visualization of brain structures through a very narrow fontanelle. 
Visualization of superficial brain structures can be achieved using linear probes. Stand-
ard ultrasound planes include coronal and parasagittal sections. The coronal section 
provides an overview of the brain hemispheres and allows their comparison, while the 
parasagittal section enables visualization of the ventricular and paraventricular struc-
tures [6,7]. 

Diagnosis of PVL based on brain ultrasound is performed by comparing the echo-
genicity of the white matter (brain parenchyma) and the choroid plexus. The echogenicity 
of the white matter can be classified into three categories [8]: 
1. Normal echogenicity: the echogenicity of the white matter is normal compared to 

the choroid plexus, usually without cystic changes. 
2. Mild echogenicity: mild hyperechogenicity of the white matter, which may indicate 

the early stages of PVL but without the formation of cystic changes. 
3. Intensive echogenicity: significant hyperechogenicity of the white matter, which 

may indicate more severe lesions and could lead to cystic changes. 
Based on CNS ultrasound, PVL is described through four grades [8]: 

Grade I: Transient hyperechogenicity of the white matter without the formation of cystic 
changes (may correspond to normal or mild echogenicity); 

Grade II: Presence of cystic changes in the frontal or frontal-parietal regions (may corre-
spond to mild or intensive echogenicity); 

Grade III: Cystic changes affecting the parieto-occipital regions (may correspond to in-
tensive echogenicity); 

Grade IV: Cysts extending to the subcortical region, resembling porencephalic cysts (may 
correspond to intensive echogenicity). 
The drawbacks of this classification in daily practice include the subjectivity in as-

sessing the degree of hyperechogenicity, which can lead to diagnostic variations among 
different examiners. Additionally, in extremely preterm infants, especially those younger 
than 28 weeks of gestation, the choroid plexus may be more echogenic, increasing the risk 
of cystic changes occurring without previously observed hyperechogenicity. These fac-
tors can complicate the accurate diagnosis of PVL and require additional attention and 
experience in interpreting ultrasound findings [9]. 

In contrast to cystic PVL, for the diagnosis of diffuse white matter injuries, such as 
diffuse white matter lesions (DWMLs), MRI is considered a more reliable method. MRI 
allows for more detailed visualization of brain tissue and detects even the smallest 
changes in the structure and composition of white matter, making it very useful for di-
agnosing diffuse white matter injuries [10]. 
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Therapeutic hypothermia is applied as the only effective treatment for newborns 
with moderate to severe HIE. This therapy involves controlled lowering of the infant’s 
body temperature to approximately 33–34 °C for a specific period, usually 72 h, to reduce 
brain damage caused by oxygen deprivation during birth. However, despite the applica-
tion of therapeutic hypothermia, a significant number of newborns still develop serious 
neurological impairments [2,5]. 

Long-chain omega-3 polyunsaturated fatty acids (PUFAs), particularly docosahex-
aenoic acid (DHA), have been shown to be beneficial in therapy following acute brain 
injuries due to their neuroprotective, anti-inflammatory, and antioxidant properties. 
DHA is an essential fatty acid that is a key component of the structure of cell membranes 
in the brain and central nervous system. Some studies have suggested that DHA sup-
plementation may have a positive therapeutic effect following acute brain injuries. DHA 
may help reduce inflammation and oxidative stress, which can contribute to minimizing 
further brain tissue damage and accelerating the recovery process [11]. 

The introduction of artificial intelligence (AI) in medicine is significantly trans-
forming various areas of healthcare, and neonatology is no exception. Artificial intelli-
gence, particularly convolutional neural networks (CNNs), is bringing revolutionary 
changes to the diagnosis and treatment of newborns. A CNN, as a part of deep learning, 
enables efficient analysis of medical images by recognizing complex patterns and anom-
alies. There are several reasons why it is crucial to use CNNs in neonatology. First, rapid 
and accurate diagnosis is essential for timely intervention and treatment. Newborns are 
especially vulnerable, and every moment is critical to preventing permanent damage. 
Second, a CNN reduces the risk of human error, which is particularly important in the 
stressful and demanding situations of neonatal units. Third, the use of CNNs allows 
neonatologists to focus on critical clinical observations and decision-making while algo-
rithms take over the routine tasks of image analysis [12,13]. 

One example of the application of a CNN in neonatology is the identification of 
catheters and tubes on radiological images. R.D.E. Henderson and colleagues developed 
a CNN-based tool using ResNet-50, which has demonstrated significant utility in medical 
diagnostics [12]. Additionally, A. O’Shea et al. created a CNN for the detection of neo-
natal seizures, a complex and precise task in interpreting EEG waves, providing objective 
support in identifying seizures and timely alerting clinicians [13]. 

Furthermore, S. Ervural and M. Ceylan used a CNN to assess temperature and 
thermal symmetry, which is crucial for monitoring health status and predicting potential 
risks in newborns [14]. Additionally, S.F. Abbasi et al. demonstrated that the identifica-
tion of quiet sleep in infants using CNNs provides a fast, inexpensive, and reliable 
method for monitoring sleep, which is important for assessing brain maturation and 
identifying potential health issues [15]. 

In the field of ophthalmology, N. Salih et al. developed a CNN-based classification 
algorithm for the early detection and treatment of retinopathy, reducing the risk of 
childhood blindness. These advanced algorithms enable faster and more accurate diag-
nostics, reducing the burden on physicians and minimizing the risk of human error [16]. 

The integration of CNNs into the daily practice of neonatology improves treatment 
outcomes, reduces mortality rates, and enhances the quality of care provided to the 
youngest patients. These advanced algorithms enable faster and more accurate diagnos-
tics, reducing the burden on physicians and minimizing the risk of human error. 

Given the current importance of the topic and the intensive research in the field of 
HIE, as well as the potential improvements in existing diagnostic procedures, the focus of 
this research is on developing a methodology for assessing the difference in density of 
brain ultrasound images, as well as classifying these images using a CNN. This approach 
aims to enhance understanding and achieve objectivity in assessing brain damage in 
newborns with HIE. 
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2. Materials and Methods 
2.1. Patients 

This study included 51 preterm infants born before 37 weeks of gestation who were 
hospitalized from the central and southwestern regions of Serbia (from 13 maternity 
hospitals) to the Center for Neonatology, Clinic for Pediatrics, University Clinical Center 
Kragujevac. Their gestational maturity ranged from 27 to 36 weeks. The type of delivery 
for each newborn was recorded, with 58.82% delivered by normal delivery and 41.18% by 
cesarean section. Birth weight ranged from 960 g to 3100 g. Asphyxia was established 
after analyzing gas exchange in arterialized capillary blood, accompanied by a progres-
sive decrease in pO2, an increase in pCO2, and a decrease in blood pH levels. 

The parents of the preterm infants were informed of the examination procedure in 
accordance with the rules of the Declaration of Helsinki and Good Clinical Practice, with 
the approval of the local ethics committee (approval number 01/22/26 from 24 January 
2022), and they voluntarily agreed to participate in this study. 

The primary criteria for including patients in this study were as follows: 
• Preterm infants (born before 37 weeks of gestation) with signs of hypoxic-ischemic 

lesions of the CNS; 
• Preterm infants who tolerated enteral feeding, allowing for supplementation from 

the 8th day of life; 
• Preterm infants whose parents signed informed consent for participation in this 

study. 
The exclusion criteria for this study were as follows: 

• Preterm infants with congenital anomalies; 
• Preterm infants whose supplementation was discontinued after the 8th day of life 

due to complete cessation of oral intake (for medical reasons); 
• Preterm infants whose supplementation was discontinued after discharge but before 

the third month of life; 
• Preterm infants whose parents did not sign informed consent for participation in 

this study. 
All patients included in this study were given a daily supplement of 100 mg of 

omega-3 fatty acids starting from the eighth day of life. 
For all cases included in this study, the following parameters were monitored: 

• Maternal history: age, parity, gravidity, previous miscarriages, stillbirths, neonatal 
deaths, as well as acute and/or chronic illnesses; 

• Anthropometric measurements of the newborn at birth: body weight, body length, 
head circumference, chest circumference, Apgar scores; 

• Laboratory analyses: complete blood count, C-reactive protein, glucose levels, gas 
analysis (pH-CO2-O2-HCO3-BE) in arterialized capillary blood; 

• Ultrasound scans: CNS brain images were monitored. 

2.2. Statistical Analysis 
To conduct a detailed analysis of the results for newborns who experienced brain 

asphyxia, descriptive statistics were applied to provide insight into key parameters. This 
analysis serves as the basis for further interpretation and discussion of the results. 

Additionally, a comparative analysis of gas levels was performed within the first 6 h 
after birth. Another analysis was conducted two weeks after the introduction of omega-3 
fatty acid supplementation. This was done once the respiratory function was stabilized 
and oxygen therapy was discontinued. A paired samples t-test was used for this com-
parison. This statistical approach allows for the identification of significant changes in 
gas analyses following asphyxiated lesions and after the respiratory stabilization of the 
patients. 
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2.3. Ultrasound Image Processing 
Previous studies on HIE in the brain mainly relied on the subjective assessment of 

physicians based on the density of brain ultrasound images of newborns [17–19]. The 
assessment was done by comparing two ultrasound images: the choroid plexus and the 
brain parenchyma. Based on these images, conclusions were made about whether the 
damage was Normal, Moderate, or Intensive. A Normal condition is characterized by 
homogeneous brain tissue density without visible abnormalities (Figure 1a). Moderate 
damage shows subtle changes in tissue density, which may include small hyperechoic or 
hypoechoic zones (Figure 1b). Intensive damage shows significant changes in density, 
indicating more severe hypoxic-ischemic injuries, including large hyperechoic or hy-
poechoic areas (Figure 1c). 

  
(a) (b) 

(c) 

Figure 1. Ultrasound images of brain parenchyma and choroid plexus (magnification: 3×): (a) 
Normal, (b) Moderate, and (c) Intensive. 

Ultrasound images of the newborns’ brains were collected at the University Clinical 
Center Kragujevac to ensure consistency and accuracy of the results. The volumetric ul-
trasound recordings were converted into .jpg format with a resolution of 1024 × 1024 
pixels. The used images were two-dimensional brain images in two parallel planes, 
which allowed for visual identification of the choroid plexus and brain parenchyma, 
whose densities were compared. For each patient, images were collected at 12 different 
time points, with key collections occurring on the first day of life within the first 6 h after 
birth, on the 7th day of life, and on the 100th day of life. All images were reviewed and 
verified by a specialist physician who performed the ultrasound examination to ensure 
the quality of the images. 

The US image processing was carried out at the Center for Integrated Product and 
Process Development and Intelligent Systems at the Faculty of Engineering, University of 
Kragujevac, using MATLAB programming environment (www.mathworks.com, ac-
cessed on 20 March 2024). The applied model for classification and density difference 
determination on ultrasound images is shown in Figure 2. The presented model consists 
of two key components: a classification algorithm and a density difference determination 
algorithm. 

The use of both approaches contributes to a more comprehensive analysis by 
providing unique information about the characteristics of the images. The classification 
algorithm focuses on categorizing images into specific groups based on their features, 
while the density difference determination algorithm provides quantitative information 
about color changes between images. The integration of these approaches allows for a 
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better understanding and interpretation of the images, resulting in more accurate and 
reliable results in the classification of hypoxic-ischemic brain injuries. 

 
Figure 2. Algorithm for image classification and density determination. 

2.3.1. Density Difference Determination. 
After converting the ultrasound volumetric images to .jpg format, the images are 

imported into the algorithm where they are transformed from the RGB color space to the 
CIE Lab color space. This transformation is crucial for more accurate color analysis 
compared with the RGB color space, especially when dealing with the shades and inten-
sities characteristic of medical brain images (Figure 3). 

There are several reasons for choosing this method of density measurement, with 
some of the most important being independence from lighting, greater sensitivity to 
light, and more precise analysis of color shades. 

The user manually defines the area of the image to be analyzed by setting the 
boundaries of that area. This step allows for a precise definition of the region of interest 
for analysis [20]: 𝐼௖௥௢௣௣௘ௗ = 𝐼(𝑟𝑜𝑤ଵ: 𝑟𝑜𝑤ଶ, 𝑐𝑜𝑙ଵ: 𝑐𝑜𝑙ଶ), (1) 

where 
I—the original image in matrix format; 
row1—the starting row of the region to be cropped from the original image; 
row2—the ending row of the region to be cropped from the original image; 
col1—the starting column of the region to be cropped from the original image; 
col2—the ending column of the region to be cropped from the original image. 

After the regions are selected, the mean values of the lightness, red-green, and 
blue-yellow channels are calculated for both cropped images. These values are crucial for 
further analysis of the color density differences between regions in the images and can 
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provide important information about potential changes. Mean values are computed by 
summing the respective channel values for all pixels in the region and then dividing by 
the total number of pixels: 𝐿ത = ଵே ∑ 𝐿௜ே௜ୀଵ , 𝑎ത = ଵே ∑ 𝑎௜ே௜ୀଵ , 𝑏ത = ଵே ∑ 𝑏௜ே௜ୀଵ . 

(2) 

where  𝐿ത—the mean value of the lightness channel; 𝑎ത—the mean value of the red-green channel; 𝑏ത—the mean value of the blue-yellow channel; 𝑁—the total number of pixels in the selected region; 𝐿௜—the lightness value of the i-th pixel in the region; 𝑎௜—the red-green value of the i-th pixel in the region;  𝑏௜—the blue-yellow value of the i-th pixel in the region. 

 
Figure 3. Algorithm for determining density differences between two US images. 

After the mean values of the 𝐿ത, 𝑎ത, and 𝑏ത channels are calculated for both cropped 
images, the next step is to apply the Delta E CIE76 metric to quantify the color difference 
between them. This metric, part of the Commission Internationale de l’Eclairage (CIE) 
standards, measures the Euclidean distance between two color points in the CIE Lab 
color space. Mathematically, the color difference ΔE is calculated as follows: ∆𝐸 = ඥ(∆𝐿)ଶ + (∆𝑎)ଶ + (∆𝑏)ଶ, (3) 

where 
∆L—the difference in the mean values of the lightness channel between the two images; 
∆a—the difference in the mean values of the red-green channel between the two images; 
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∆b—the difference in the mean values of the blue-yellow channel between the two im-
ages. 
This metric enables precise measurement of color differences and quantification of 

even subtle changes, which is crucial in the analysis of medical brain images. 
Finally, after calculating the color difference, the images are categorized into the 

appropriate groups: Normal, Moderate, or intesive hypoxic-ischemic brain injury, by 
setting thresholds based on the measured difference. This categorization is performed 
using the following mathematical expression: 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ቐ 𝑁𝑜𝑟𝑚𝑎𝑙, 𝑖𝑓 ∆𝐸 > 𝑇ே,𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑖𝑓 ∆𝐸 > 𝑇ூ  ⋀ ∆𝐸 ≤ 𝑇ெ𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒, 𝑖𝑓∆𝐸 ≥ 𝑇ூ , (4)

where 
∆E—the calculated color difference between the two images; 
TN—the threshold for the Normal category; 
TM—the threshold for the Moderate category; 
TI—the threshold for the Intensive category. 

After examining the existing image database and conducting the initial analysis of 
color density, we observed that the ΔE difference values were less than 10 for images 
categorized as Intensive, between 10 and 40 for images categorized as Moderate, and 
greater than 40 for images categorized as Normal. Based on this examination, we estab-
lished these thresholds. 

After analyzing the color difference between the cropped images, the two images are 
combined vertically, side by side, to form a single composite image. This combined image 
is then fed into a CNN for classification. 

2.3.2. US Image Classification Using CNN 
The classification model is based on the application of a CNN and consists of two 

main components: feature extraction and classification (Figure 2). 
For training the model, a dataset of 200 images with dimensions of 100 × 200 pixels 

was used. These images were categorized into three groups: Normal, Moderate, and In-
tensive damage (Figure 4). The collected images were organized into a unified database 
and classified based on their density assessment. To adequately train the network, the 
image database was divided into three sets: a training set (70%), a validation set (15%), 
and a test set (15%). In addition to the standard data split, to further assess the generali-
zation and stability of the model, we also applied a 5-fold cross-validation. 

 
Figure 4. Categories in the training dataset. 

To adequately prepare the network for introducing new examples, all images were 
previously scaled to the same dimensions. For each image in the dataset, with dimen-
sions MxNxC where M and N are the width and height of the image, and C is the number 
of channels (e.g., 3 for RGB images), the transformation to new dimensions PxQ (where P 
and Q are the new width and height) was performed linearly, as follows: 𝑑௜(𝑟𝑒𝑠𝑖𝑧𝑒𝑑) = 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝑑௜, 𝑃, 𝑄) (5) 

Once the images are prepared in this manner, a CNN is constructed, consisting of 
layers with different structures and parameters [21]: 



Diagnostics 2024, 14, 1342 9 of 20 
 

 

𝐿 = (𝐿ଵ, 𝐿ଶ, 𝐿ଷ, … , 𝐿ே) (6) 

where 
L—the entire set of layers in the CNN; 
L1, L2, L3, …, LN—individual layers in the CNN (input layer, convolutional layers, pooling 

layers, and fully connected layers), each with specific roles and parameters. 
Together, they enable the extraction of relevant features from the images, dimen-

sionality reduction, and the final classification of images into appropriate categories. 
Layers and the characteristics of the proposed CNN model are listed in Table 1. 

The convolution operation is applied to each part of the image x using the filter h, 
yielding the result y, defined as follows [15,21]: 𝑦ሾ𝑖, 𝑗ሿ = ∑ ∑ 𝑥ሾ𝑚, 𝑛ሿ ∙ ℎሾ𝑖 − 𝑚, 𝑗 − 𝑛ሿ௡௠ , (7) 

where 𝑦ሾ𝑖, 𝑗ሿ—the result of the convolution operation at position (i, j); 𝑥ሾ𝑚, 𝑛ሿ—the value of the image x at position (m, n); ℎሾ𝑖 − 𝑚, 𝑗 − 𝑛ሿ—the value of the filter h at position (i − m, j − n). 
Convolution is a key operation in CNNs that enables the extraction of features from 

input data. Filters, also known as kernels, are small matrices of predefined values that 
move across the input image. At each position, element-wise multiplication is performed 
between the filter values and the corresponding values in the section of the input image. 
The results of these multiplications are then summed to produce a single value that be-
comes part of the output image. This process allows the network to identify and retain 
relevant features such as edges, textures, and shapes. These features are crucial for tasks 
such as object recognition and image classification. 

Table 1. Layers of the proposed CNN model and their characteristics. 

Layer Stride Output Dimensions Output Channels Kernel Size 
Input - 100 × 100 × 3 -  
Conv1 1 100 × 100 16 3 × 3 

BatchNorm1 - 100 × 100 16 - 
ReLU1 - 100 × 100 16 - 

MaxPool1 2 50 × 50 16 2 × 2 
Conv2 1 50 × 50 32 3 × 3 

BatchNorm2 - 50 × 50 32 - 
ReLU2 - 50 × 50 32 - 

MaxPool2 2 25 × 25 32 2 × 2 
Conv3 1 25 × 25 64 3 × 3 

BatchNorm3 - 25 × 25 64 - 
ReLU3 - 25 × 25 64 - 

MaxPool3 2 12 × 12 64 2 × 2 
Conv4 1 12 × 12 128 - 

BatchNorm4 - 12 × 12 128 - 
ReLU4 - 12 × 12 128 - 

Fully Connected - 1 × 1 3 - 
Softmax - 1 × 1 3 - 

Classification - 1 × 1 3 - 

Pooling layers, also known as aggregation layers, typically function by selecting the 
maximum values within each sub-matrix of a defined size. These layers play a crucial role 
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in CNNs by reducing the dimensionality of the output features and summarizing the 
information. The most commonly used method is max pooling, which extracts the 
maximum value within each 2 × 2 sub-matrix of the input data. The formula for max 
pooling is as follows [15,21]: 𝑦ሾ𝑖, 𝑗ሿ = 𝑚𝑎𝑥(𝑥ሾ2𝑖, 2𝑗ሿ, 𝑥ሾ2𝑖, 2𝑗 + 1ሿ, 𝑥ሾ2𝑖 + 1,2𝑗 + 1ሿ), (8) 

where 𝑦ሾ𝑖, 𝑗ሿ—the output value at position (i, j) after pooling; 𝑥ሾ2𝑖, 2𝑗ሿ, 𝑥ሾ2𝑖, 2𝑗 + 1ሿ, 𝑥ሾ2𝑖 + 1,2𝑗 + 1ሿ—the values in the 2 × 2 sub-matrix of the input da-
ta. 

This process not only lowers computational cost and model complexity but also 
helps prevent overfitting by aggregating information, making the model more resilient to 
variations and noise in the input data. 

The ReLU (Rectified Linear Unit) function is used to introduce non-linearity into 
neural networks. It is defined as follows [15,21]: 𝑓(𝑥) = max (0, 𝑥), (9) 

where 
f(x)—the output of the ReLU function; 
x—the input to the ReLU function. 

The softmax function is often used as the final layer in classification models to cal-
culate the probabilities of belonging to different classes. For an input vector with K ele-
ments, the softmax function is defined as follows [21]: 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧)௝ = ௘೥ೕ∑ ௘೥ೖೖ಼సభ , (10) 

where 
softmax(z)j—the output probability for the j-th class; 
zj—the input value for the j-th class; 
K—the total number of classes. 

An illustration of the image processing through different layers of a CNN is shown 
in Figure 5. The input image fed into the network passes through a series of convolu-
tional and pooling layers, where various features of the image (such as edges, textures, 
and colors) are highlighted. After passing through the pooling layers, the features are 
summarized, and the dimensionality of the image is reduced. The output from the fully 
connected layer combines features from the previous layers. In this layer, all the features 
extracted from the preceding layers are integrated to form the final output vector. The 
values of this output vector are displayed in a graph and represent the network’s results 
before the final classification. The output from the softmax layer provides the prediction 
probabilities for different classes. The graph displays the probabilities for three classes, 
clearly showing the dominant class with a probability close to 1, corresponding to the 
Intensive category. 

 
Figure 5. Illustration of image passing through different layers of a CNN. 
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With the prepared training set, defined CNN architecture, and training options, the 
network training is performed. Training the network is mathematically described as the 
process of adjusting the weights of the neural network to minimize the loss function. This 
process is usually implemented using an optimization algorithm; in our case, RMSProp 
was used, which adjusts the weights W using the learning rate η and the gradient of the 
loss function J(Wt) [22]: 𝑊௧ାଵ = 𝑊௧ − 𝜂 ∙ ∇𝐽(𝑊௧), (11) 

where 
Wt—the weights of the network at the current iteration; 
η—the learning rate; 
J(Wt)—the loss function; ∇J(Wt)—the gradient of the loss function. 

This process is repeated through multiple iterations (epochs) until the loss function 
is sufficiently minimized. At the end of this process, we obtain a trained network model 
with optimal weights tailored to solve a specific task. 

Figure 6 illustrates the network training process. The upper graph shows the change 
in accuracy over 200 iterations. At the start of training, accuracy was relatively low, with a 
rapid increase during the first 40 iterations, reaching values close to 60%. As the number 
of iterations increases, training accuracy continues to rise and stabilizes above 90%. The 
accuracy of the validation data set follows a similar trend, with an initial surge and sub-
sequent stabilization above 90%. The graph indicates that after approximately 40 itera-
tions, the accuracy becomes stable and maintains a nearly constant value. 

 
Figure 6. Training process. 

In Figure 6, the lower graph depicts the change in loss over 200 iterations. At the 
beginning of training, the loss was high, peaking around 20–30 iterations, after which it 
significantly decreased and stabilized near zero after approximately 100 iterations. The 
loss on the validation data set also shows a similar trend, with an initial increase, fol-
lowed by a decrease and stabilization near zero. These graphs clearly demonstrate how 
the model’s performance improves during training, with an increase in accuracy and a 
decrease in loss. 

The initial increase in loss during the first 30 epochs can be attributed to the process 
of optimization and adjustment of the model’s parameters. During early epochs, the 
model undergoes random initialization of weights, rapid adjustments due to a higher 
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learning rate, and encounters complex patterns in the data. As training progresses, the 
model learns more efficiently, resulting in a subsequent decrease in loss and stabilization. 

Based on these observations, training was stopped at 200 epochs as the model had 
reached stable accuracy and minimal loss, minimizing the risk of overfitting and ensuring 
good generalization on the validation set. Continuing training beyond 200 epochs would 
likely not yield significant performance improvements and could lead to overfitting. 

2.4. Performance Evaluation 
To evaluate the performance of the proposed classification model using the CNN 

algorithm, we analyzed a range of key indicators, including accuracy, confusion matrix, 
precision, recall (sensitivity), F1 score, and AUC (area under the curve) analysis 
[15,16,23]. The calculation of these performance indicators was based on the elements of 
the confusion matrix, namely True Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN). 

Sensitivity measures how well the model detects actual positive cases: 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑁) (12) 

Specificity provides information about the model’s ability to accurately identify 
negative cases: 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁(𝑇𝑁 + 𝐹𝑃) (13) 

Accuracy indicates the overall correctness of the model in classification, including 
True Positive and True Negative identifications: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑁 + 𝑇𝑃)(𝑇𝑃 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) (14) 

Precision assesses how accurate the positive predictions are as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃(𝑇𝑃 + 𝐹𝑃) (15) 

F-measure is calculated as the harmonic mean of precision and sensitivity: 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦  (16) 

AUC measures the model’s ability to distinguish between the presence and absence 
of defects, providing a value between 0 and 1, with higher values indicating better per-
formance. These metrics together provide a comprehensive analysis, allowing us to gain 
a clear insight into the algorithm’s effectiveness 

3. Results 
For a clearer understanding of the data distribution monitored in this study, Table 2 

presents the key values of the clinical parameters observed. 

Table 2. Clinical parameters in neonates with asphyxia. 

Parameter Range Min Max Mean ± S.D. Skewness ± S.D. 
Gestational week 9 27 36 32.36 ± 2.29 −0.49 ± 0.34 
Weight, g 2140 960 3100 1879.10 ± 505.38 0.28 ± 0.34 
Apgar score, % 7 2 9 6.79 ± 1.55 −0.93 ± 0.34 
Before_pH, / 0.34 7.01 7.35 7.23 ± 0.07 −0.98 ± 0.34 
After_pH, / 0.30 7.20 7.50 7.38 ± 0.06 −0.34 ± 0.34 
Before_pCO2, kPa 9.60 3.50 13.10 7.65 ± 1.54 0.79 ± 0.34 
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After_pCO2, kPa 4.90 3.80 8.70 5.09 ± 1.01 1.49 ± 0.34 
Before_pO2, kPa 9.10 3.10 12.20 6.43 ± 1.84 0–57 ± 0.34 
After_pO2, kPa 7.50 3.20 10.70 7.03 ± 1.22 0.21 ± 0.34 
Before_HCO3, mmol/L 13.40 13.20 26.60 20.62 ± 2.58 −0.61 ± 0.34 
After_HCO3, mmol/L 10.30 19.70 30.00 23.88 ± 2.32 0.34 ± 0.34 
Before_BE, mmol/L 53.30 −44.00 9.30 −4.54 ± 6.79 −3.97 ± 0.34 
After_BE, mmol/L 13.50 −6.70 6.80 −0.76 ± 3.41 0.37 ± 0.34 

Legend: pCO2—partial pressure of carbon dioxide; pO2—partial pressure of oxygen; 
HCO3—bicarbonate concentration; BE—base excess; S.D.—standard deviation. 

The subjects are relatively uniform in age, as indicated by the mean gestational age 
of 32.36 weeks, with a range from a minimum of 27 weeks to a maximum of 36 weeks. 
The birth weight of the neonates varies from 960 g to 3100 g, averaging 1879.10 ± 505.38 g 
and demonstrating considerable diversity in body mass. The Apgar score reflects the 
varied clinical conditions at birth, ranging from 2 to 9, with an average score of 6.79 ± 
1.55. In the first 6 h of life, the average pH value is 7.23 ± 0.07, which increases to 7.38 ± 
0.06 by the third week, suggesting an improvement in acid-base balance. The pCO2 av-
erages 7.65 ± 1.54 mmHg in the first 6 h of life and decreases to 5.09 ± 1.01 mmHg by the 
third week, indicating improved ventilation. The average pO2 is 6.43 ± 1.84 mmHg in the 
first 6 h of life, rising to 7.03 ± 1.22 mmHg in the third week, indicating better oxygena-
tion. The mean HCO3 values in the first 6 h of life are 20.62 ± 2.58 mmol/L, increasing to 
23.88 ± 2.32 mmol/L in the third week, reflecting an improvement in metabolic balance. 
The BE averages −4.54 ± 6.79 mmol/L in the first 6 h of life and improves to −0.76 ± 3.41 
mmol/L in the third week, showing a significant reduction in metabolic acidosis. Data 
distribution varies, with skewness ranging from −3.97 to 1.49, indicating differing dis-
tribution characteristics among the parameters. 

Basic statistics related to the pairs, as well as the correlation, are presented in Table 3. 
A paired samples t-test analysis was applied. 

Table 3. Paired samples t-test statistics and correlations. 

Paired Parameters Mean ± S.D. Correlation Sig. 

pH 
Before_pH 7.23 ± 0.07 

−0.04 0.81 After_pH 7.38 ± 0.06 

pCO2 
Before_pCO2 7.65 ± 1.54 

−0.17 0.25 After_pCO2 5.09 ± 1.01 

pO2 
Before_pO2 6.43 ± 1.85 

0.14 0.33 After_pO2 7.03 ± 1.22 

HCO3 
Before_HCO3 20.62 ± 2.58 

0.24 0.09 After_HCO3 23.88 ± 2.32 

BE 
Before_BE −4.54 ± 6.79 

0.25 0.08 After_BE −0.76 ± 3.41 
Legend: pCO2—partial pressure of carbon dioxide; pO2—partial pressure of oxygen; 
HCO3—bicarbonate concentration; BE—base excess; S.D.—standard deviation; Sig.—significance. 

In the first 6 h of life, the average pH value is 7.23 ± 0.07, increasing to 7.38 ± 0.06 by 
the third week, implying an improvement in acid-base balance. The pCO2 decreases from 
7.65 ± 1.54 kPa to 5.09 ± 1.01 kPa, indicating better ventilation. Similarly, the pO2 rises 
from 6.43 ± 1.85 kPa to 7.03 ± 1.22 kPa, reflecting enhanced oxygenation. The correlation 
between measurements in the first 6 h of life and in the third week of life is not statisti-
cally significant for most parameters, suggesting that the changes are not consistent 
among the subjects. The mean HCO3 values increase from 20.62 ± 2.58 mmol/L to 23.88 ± 
2.32 mmol/L in the third week, indicating an improvement in metabolic balance. The 
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correlation of HCO3 between the first 6 h of life and the third week is close to statistical 
significance, suggesting a potential connection between these measurements. BE shows a 
significant reduction in metabolic acidosis, from −4.54 ± 6.79 mmol/L in the first 6 h of life 
to −0.76 ± 3.41 mmol/L in the third week. The correlation of BE between the first 6 h of life 
and the third week also indicates a possible association between these values, although it 
is not statistically significant. 

Table 4 presents the differences between paired parameters, including the assess-
ment of the mean differences, standard deviation, standard error, 95% confidence inter-
val, t-value, degrees of freedom, and p-value (two-tailed). 

Table 4. Paired differences. 

Paired 
Parameters 

Mean ± S.D. Std. Err. 
95% Conf. Int. of the Diff. 

t df Sig.  
(2-Tailed) Lower Upper 

pH −0.15 ± 0.09 0.02 −0.18 −0.13 −11.44 50 0.00 
pCO2 2.56 ± 1.98 1.98 2.00 3.13 9.17 50 0.00 
pO2 −0.61 ± 2.06 2.06 −1.19 −0.02 −207 50 0.04 

HCO3 −3.27 ± 3.03 3.03 −4.13 −2.41 −7.62 50 0.00 
BE −3.78 ± 6.79 6.79 −5.71 −1.85 −3.93 50 0.00 

Legend: pCO2—partial pressure of carbon dioxide; pO2—partial pressure of oxygen; 
HCO3—bicarbonate concentration; BE—base excess; S.D.—standard deviation; Sig.—significance. 

For the pH parameter, a significant mean difference of −0.15 ± 0.09 was observed 
between values in the first 6 h and the third week of life, within a narrow 95% confidence 
interval. The pCO2 shows a mean difference of 2.56 ± 1.98, also with a narrow confidence 
interval. For the pO2 parameter, a difference of −0.61 ± 2.06 was recorded, accompanied 
by a wider confidence interval. The mean HCO3 value displays a difference of −3.27 ± 
3.03, also with a wider confidence interval. BE exhibits a difference of −3.78 ± 6.79, again 
with a wide confidence interval. Parameters pH, pCO2, HCO3, and BE demonstrate sta-
tistically significant changes, given that the p-values are less than 0.05. The pO2 parameter 
has a significance value of 0.04, indicating a statistically significant change. These changes 
collectively suggest improvements in ventilation, oxygenation, and metabolic balance in 
patients in the third week of life. 

Determining density differences between two ultrasound images and classification 
using a CNN is thoroughly described in Section 2, specifically in Sections 2.3.1 and 2.3.2. 
Figures 2, 3 and 5 visually illustrate the processing stages, providing a visual insight into 
the operation of the models used. 

For the purpose of evaluating the results, a confusion matrix was created. It shows 
that the model has a high degree of accuracy in classifying each of the three groups. The 
total number of correct classifications in each class is significantly higher than the number 
of incorrect classifications, confirming the reliability of the model (Table 5). 

Table 5. Performance metrics of the proposed classification model. 

 Normal Moderate Intensive Specificity Recall Precision Accuracy F-measure AUC 
Normal 92.5% 2.5% 5% 96.25% 92.5% 90% 89.17% 91.22% 0.95 

Moderate 5% 87.5% 7.5% 91.25% 87.5% 85% 87.67% 86.22% 0.89 
Intensive 2.5% 10% 87.5% 93.75% 87.5% 88% 88.84% 87.75% 0.91 
Overall    93.08% 89.17% 87.67% 88.56% 88.4% 0.92 

The classification results of images into three groups (Normal, Moderate, and In-
tensive) showcase the high efficiency of the model. Specifically, the specificity for the 
Normal, Moderate, and Intensive groups is 96.25%, 93.75%, and 91.25%, respectively, 
highlighting its accuracy in identifying negative instances. Sensitivity rates are 92.5% for 
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Normal, 87.5% for Moderate, and 87.5% for Intensive, demonstrating the model’s effec-
tiveness in detecting positive cases. Overall accuracy is 88.56%, reflecting a balance be-
tween precision and recall. Precision values are 90% for Normal, 85% for Moderate, and 
88% for Intensive, while the overall F-measure is 88.40%, indicating a successful blend of 
accuracy and recall in classification tasks. The AUC values stand at 0.95 for Normal, 0.89 
for Moderate, and 0.91 for Intensive, with an overall score of 0.92, underscoring the 
model’s high performance, especially in scenarios with imbalanced classes (Figure 7). 

 
Figure 7. ROC curve. 

Additionally, a 5-fold cross-validation was performed to further validate the mod-
el’s performance and generalization capability. The results of the cross-validation are 
summarized in Table 6. 

Table 6. Performance metrics of the proposed classification model (5-fold cross-validation). 

 Normal Moderate Intensive Overall 
Accuracy 85 ± 0.98% 83.5 ± 1.12% 84 ± 1.05% 84.17 ± 1.10% 

Recall 87.27 ± 0.87% 81.07 ± 1.23% 86.5 ± 1.10% 84.95 ± 1.05% 
Precision 87.29 ± 0.92% 83.06 ± 1.14% 85.5 ± 1.07% 85.28 ± 1.08% 

F-measure 87.08 ± 0.88% 81.47 ± 1.19% 86 ± 1.06% 84.85 ± 1.07% 
AUC 0.85 ± 0.02 0.82 ± 0.03 0.84 ± 0.02 0.84 ± 0.02 

The cross-validation results demonstrate the model’s strong performance across 
different classes. For Normal cases, the average accuracy is 85 ± 0.98%, with a precision of 
87.29 ± 0.92%, recall of 87.27 ± 0.87%, and F-measure of 87.08 ± 0.88%. For Moderate cases, 
the model shows an average accuracy of 83.5 ± 1.12%, precision of 83.06 ± 1.14%, recall of 
81.07 ± 1.23%, and F-measure of 81.47 ± 1.19%. In Intensive cases, the model achieves an 
average accuracy of 84 ± 1.05%, alongside a precision of 85.5 ± 1.07%, recall of 86.5 ± 
1.10%, and F-measure of 86 ± 1.06%. The overall AUC value is 0.84 ± 0.02, with specific 
values of 0.85 ± 0.02 for Normal, 0.82 ± 0.03 for Moderate, and 0.84 ± 0.02 for Intensive, 
indicating the model’s ability to effectively distinguish between the three classes. 

These results confirm the robustness and reliability of the algorithm in image clas-
sification. 

4. Discussion 
The presented study examined HIE, which represents brain damage resulting from 

perinatal asphyxia. The causes of perinatal asphyxia can be categorized into three main 
groups: prepartum, intrapartum, and postpartum. Prepartum and intrapartum asphyxia 
occur due to issues in gas exchange during pregnancy and labor. These conditions may 
be caused by pathological events related to the mother, fetus, or uteroplacental circula-
tion. On the other hand, postpartum asphyxia occurs after birth, often due to respiratory 
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problems, meconium aspiration, or cardiac issues in the newborn. Asphyxia is a critical 
factor in the development of brain ischemia and hypoxia, where insufficient blood flow, 
along with a lack of oxygen, triggers a series of cascading reactions. This includes the 
onset of acidosis, the release of inflammatory mediators, and the formation of free radi-
cals, all of which further damage the brain [24]. 

The results show that the neonates included in this study initially had poor blood 
gas analysis findings, with low partial pressure of oxygen (pO2) and high partial pressure 
of carbon dioxide (pCO2) in the first 6 h of life. These findings indicate the presence of 
hypoxia and possible acidosis, consistent with the diagnosis of HIE. Comparing our re-
sults, particularly with data from a large study from the United States, we observe sig-
nificant similarities in the clinical indicators of HIE. For example, pH values from um-
bilical cord blood and base deficit were within a similar range, confirming consistency in 
the diagnostic criteria for HIE. Blood gas parameters from umbilical cord blood, com-
bined with brain ultrasound findings, are useful in diagnosing and assessing the severity 
of HIE [25]. 

A study conducted in Italy presents interesting findings on therapeutic hypothermia 
applied to neonates, with a particular focus on a group of patients who were on me-
chanical ventilation compared to those who were breathing spontaneously. This research 
showed that the base excess values, which are negative, were more pronounced in pa-
tients on mechanical ventilation [26]. A similar phenomenon was observed in our study, 
where the base excess values were also more negative initially. This trend can be ex-
plained by the fact that the neonates on mechanical ventilation had poorer respiratory 
capacity compared to those who were breathing spontaneously. 

Z. Haider et al. conducted a study aiming to determine the relationship between 
severe umbilical artery metabolic acidosis and neonatal encephalopathy. Comparing the 
acid-base status parameters in HIE cases, our results show significantly better metabolic 
stability in our patients compared with those in their study. Higher pH and HCO3 values, 
as well as less negative BE values, suggest more effective intervention or less severe cases 
of HIE in our neonatal population, which may contribute to better outcomes [27]. 

In addition to blood gas analyses, diagnostic procedures that enable precise visual-
ization and analysis of the brain play a crucial role in diagnosing HIE. In our study, we 
used cerebral ultrasonography, which has proven to be a very reliable, non-invasive, and 
widely accessible method. The positive effects of ultrasound application were also 
demonstrated by K.V. Annink et al. and M.M. Hossain et al. in their studies [28,29]. 
However, one of the main drawbacks of these studies is the subjectivity in assessing po-
tential diseases, as the interpretation of ultrasound images can vary among different 
specialists, affecting the consistency and accuracy of diagnoses. To reduce the possibility 
of errors, we developed a method for assessing potential HIE through the analysis of 
density differences between two brain segments (brain parenchyma and choroid plexus), 
followed by further classification using CNN. 

The significance of our research lies in the two-stage image classification process. 
For instance, if the CNN classifies the damage as Moderate, but the color density analysis 
indicates a higher value within this category, it suggests that the patient is likely to ex-
perience a faster recovery. This dual approach not only enhances the accuracy of the di-
agnosis but also provides a more nuanced understanding of the patient’s condition, al-
lowing for more tailored and effective treatment plans. By integrating both CNN classi-
fication and color density analysis, we can better predict patient outcomes and improve 
overall care for those affected by HIE. 

Density analysis in images has found applications in many fields [30]. To more ac-
curately analyze colors compared to the RGB color space, we converted the images to the 
CIE Lab color space. This space allows for independent measurement and analysis of 
colors, resulting in more precise and objective results, independent of lighting and other 
external factors. Since we were comparing two cropped images, the CIE Lab space was 
much more suitable as it separates the luminance component from the color components, 
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allowing for more consistent and accurate comparisons. Through multiple iterations, we 
determined threshold values for the density differences, based on which we could clas-
sify whether the value belongs to Normal, Moderate, or Intensive HIE [31]. 

After analyzing the color density difference, the images are sent to the CNN for 
further classification. This strategy is employed because the combination of information 
from the two images allows for a deeper analysis and better understanding of structural 
changes in the brains of neonates in HIE cases. Such an approach enables more precise 
and reliable diagnostic decisions based on complex criteria. 

In recent years, the use of deep learning, particularly CNNs, has become increas-
ingly significant in medical practice. CNNs are crucial in medicine because they can 
identify complex patterns in images and data, significantly improving the accuracy and 
speed of diagnosis. Their ability to automate and enhance the analysis of medical images 
contributes to the identification of subtle changes that might go unnoticed with tradi-
tional methods, thus enabling timely and effective patient treatment [12–16,32]. 

In many studies, CNNs have been applied, particularly in the field of neonatology. 
For example, K. Cui et al. developed a multimodal model based on artificial intelligence 
to assist clinicians in the early diagnosis of necrotizing enterocolitis. This model was 
trained and validated with a high accuracy of 0.94 and an area under the curve of 0.91 
[33]. S. Zhao et al. developed a model for the automatic assessment of neonatal endotra-
cheal intubation using a dilated CNN, achieving an average classification accuracy of 
92.2% [34]. J.M. Brown et al. investigated whether a deep learning-based algorithm could 
diagnose plus disease in retinopathy of prematurity, achieving an accuracy of 91% [35]. 
The results of these studies suggest that algorithms can objectively and efficiently diag-
nose certain diseases. Evaluating the performance of our model, we demonstrated high 
values in precision, accuracy, F-measure, and AUC, consistent with previous research. 
Furthermore, the 5-fold cross-validation results also confirmed the robustness and relia-
bility of our model, with consistent performance across different data subsets. 

The architecture of our network is based on a simpler model compared with the 
networks presented in previous studies [29,30]. Although it consists of fewer layers, we 
achieved stable accuracy and loss curves during the training process after a certain 
number of iterations, indicating a satisfactory level of learning and generalization of the 
model [36]. Such a simpler architecture contributes to faster execution, requires fewer 
resources, reduces the tendency for overfitting, facilitates interpretation, and lowers the 
risk of overfitting, especially in clinical settings where rapid diagnosis is crucial. 

Although we achieved significant results in color density analysis and classification 
using CNN, it is important to highlight some limitations of this study. First, the limited 
sample size may restrict the generalization of our result [37,38]. While we achieved high 
performance in our sample, further research is needed on a larger number of patients to 
better understand the general applicability of our approach. There is also a need for ad-
ditional protocols to standardize or assess the reliability of result interpretation [39]. 
Despite our efforts to minimize these limitations, their impact should be considered 
when interpreting the results. Furthermore, this study included only newborns who were 
not delivered by emergency cesarean section to ensure a more homogeneous group, and 
we did not have access to data on fetal distress during labor, as these details are typically 
recorded in gynecological records and observed via cardiotocography (CTG). 

5. Conclusions 
This study investigated hypoxia caused by perinatal asphyxia and its impact on 

newborns, with a particular focus on HIE. By analyzing various clinical indicators, in-
cluding blood gas analysis, pH values, and metabolic status, characteristic patterns in 
newborns with HIE were identified. The application of ultrasound diagnostics and the 
development of methods such as density difference analysis and CNN classification 
contributed to better diagnostics and understanding of structural changes in the brains of 
newborns. 
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Opting for simpler deep learning architectures enabled faster execution, lower re-
source requirements, easier interpretation, and reduced overfitting, facilitating clinical 
application. The results showed high algorithm performance in precision, accuracy, 
F-measure, and AUC, confirming the utility of simple algorithms. 

Future research will focus on expanding the sample size to validate the generaliza-
bility of our findings. Successful implementation of our method in clinical practice will 
require collaboration with healthcare professionals, adequate training on the technology, 
and necessary infrastructure adjustments. These steps aim to enhance the diagnosis and 
treatment of HIE, providing more precise, faster, and reliable results to improve neonatal 
healthcare. 
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