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Numerical Analysis of Optimal

Hybridization in Parallel Hybrid

Electric Powertrains for Tracked

Vehicles. Energies 2024, 17, 3531.

https://doi.org/10.3390/en17143531

Academic Editor: Giovanni

Lutzemberger

Received: 9 June 2024

Revised: 13 July 2024

Accepted: 15 July 2024

Published: 18 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Numerical Analysis of Optimal Hybridization in Parallel Hybrid
Electric Powertrains for Tracked Vehicles
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Abstract: Tracked vehicles are integral for maneuvering diverse terrains, with hybrid propulsion
systems offering potential benefits in terms of fuel efficiency and performance. However, research
in hybrid electric tracked vehicles remains limited, thus necessitating a comprehensive analysis
to maximize their advantages. This study presents a numerical analysis focusing on optimizing
hybridization in speed-coupled parallel hybrid electric powertrains for tracked vehicles. A dynamic
programming algorithm and custom drive cycle are utilized to determine optimal hybridization
factors and assess parameter sensitivities. The study reveals that a hybridization factor of 0.48 is
optimal for speed-coupled parallel configurations. Furthermore, the sensitivity analysis underscores
the substantial impact of factors such as the engine displacement and bore-to-stroke ratio on the
fuel economy, with a 10% change in these parameters potentially influencing the fuel economy by
up to 2%, thus emphasizing the importance of thorough consideration during powertrain sizing.
Parallel hybrid configurations exhibit considerable potential for tracked vehicles, thus highlighting
the viability of choosing them over series configurations.

Keywords: hybrid electric tracked vehicle; numerical simulation; hybridization factor; dynamic
programming; efficiency analysis; fuel economy

1. Introduction

Tracked vehicles have long been recognized as the optimal choice for traversing irreg-
ular surfaces and variable terrains, regardless of their specific purpose [1]. The versatility
of tracked vehicles in navigating challenging landscapes has made them indispensable in
various applications, including military. In recent years, there has been a growing interest
in hybrid propulsion systems for tracked vehicles. This interest stems from the fact that
hybrid propulsion systems provide improved fuel economy, a reliable on-board electricity
supply, and enhanced stealth operation capabilities [2]. Despite these advantages offered
by hybrid propulsion to tracked vehicles, research in this area remains relatively scarce.
This discrepancy is particularly noticeable when compared to the progress made in research
on hybrid wheeled vehicles. This underscores the need for further exploration and analysis
in this area to maximize the potential benefits of hybrid propulsion systems in tracked
vehicle applications.

In the context of hybrid electric tracked vehicles (HETVs), electromechanical transmis-
sion (EMT) modeling has been first employed to support steering motor control strategy
definition and electric motor size optimization in [3]. Dynamic simulations validated the
effectiveness of EMT in achieving the speed difference between tracks required for skid
steering, thus highlighting its potential for application in military tanks. Military applica-
tions of HETVs have also been explored in [4,5]. This research focuses on the component
sizing of series hybrid electric powertrains for military tracked vehicles, thus aiming to meet
desired mobility attributes through the careful analysis of power and torque requirements.
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This study highlights the potential for extended stealth operation and enhanced vehicle
performance while reducing energy losses. The findings revealed that a single-drive series
configuration, initially proposed in [3], surpasses the commonly used dual-drive series
configuration in HETV studies. It achieved a 30.27% reduction in fuel consumption while
maintaining vehicle performance and decreasing transmission weight. Another study [6]
addressed the optimal sizing and control of a dual-drive series HETV under real-world
driving conditions. By utilizing a driving schedule derived from field tests, researchers
achieved minimum fuel consumption through coupled optimizations of plant parameters
and control strategies. The dynamic programming technique was applied to find optimal
controllers, while component parameters were iteratively optimized, thus enabling the
simultaneous optimization of sizing and control. The results underscore the significance of
parameter selection in achieving optimal system design, with proper parameter matching
being a necessary prerequisite for achieving satisfactory fuel economy in hybrid tracked
vehicles. Series hybrid configurations, employed in most HETV studies for their simple
powertrain designs, face challenges such as high energy conversion losses and large propul-
sion motors. To address these issues, the multimode HETV has been introduced in [7],
thus offering high efficiency and superior overall performance, including straight driving,
turning, and reverse without additional steering mechanisms. Numerous studies have
addressed the energy management of HETVs [8]. In [9], in addition to component sizing for
a dual-drive series HETV, different energy management strategies (EMSs) such as the ther-
mostat control strategy, power follower control strategy, and optimal power source strategy
were assessed to determine their effects on fuel economy and battery state of charge (SOC)
variation. Several studies have focused on intelligent energy management strategies, thus
resulting in a notable reduction in fuel consumption [10–14] for the dual-drive series HETV.

To comprehensively assess optimization of the entire vehicle and design appropriate
hybrid propulsion, it is necessary to address at least three levels of optimization [15,16]:

• Optimization of the topology, where the goal is to find the best structure, i.e., the
powertrain configuration;

• Optimization of the size, i.e., the parameters of the powertrain elements for the se-
lected topology;

• Optimization of the control system, where the goal is to find the optimal supervisory
control strategy, i.e., the energy management system.

In reviewing the literature, it becomes evident that all existing studies focus on either
series hybrid configurations or complex multimode configurations. Notably, the majority
of available research emphasizes dual-drive series hybrid configurations, primarily due
to their simplicity compared to the more complex architectures of single-drive series con-
figurations and parallel configurations [17]. Furthermore, the majority of these studies
primarily address energy management strategies, with component sizing receiving compar-
atively less attention, except for in [6,7]. In [6], iterative component sizing was performed
for a dual-drive series configuration, while ref. [7] presented a novel topology-control-
size-integrated optimization approach for a complex three-degree-of-freedom powertrain
configuration. Other available literature sources typically address the sizing problem either
intuitively or within predefined parameters.

Among the literature on the HETV, only two published studies have explored parallel
hybrid configurations. Ref. [18] proposed a parallel hybrid configuration for a military
HETV, while ref. [19] introduced a multimode rule-based control strategy for the developed
parallel hybrid configuration. Considering the inferior performance of series hybrid config-
urations compared to parallel ones due to a longer energy conversion chain [20], especially
on drive cycles with minimal regenerative braking [21], in addition to the limited regenera-
tive braking potential in tracked vehicles [22] coupled with the relatively lower investment
and engineering effort required for parallel configurations [23], it becomes imperative to
address and explore parallel configurations for HETVs more comprehensively.

With that in focus, this paper addresses two primary objectives: quantifying the hy-
bridization needs, specifically optimizing the size of powertrain components in parallel
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HETV, and examining the influence of individual parameters on overall powertrain effi-
ciency. To achieve this, a scalable HETV model and a dynamic programming algorithm
were developed in MATLAB 2021a, thus facilitating a focus on dimensioning while iso-
lating the impact of the EMS on component sizing. To assess the influence of individual
parameters, a parameter sensitivity analysis was conducted for key powertrain design
parameters, including the engine displacement, bore-to-stroke ratio, battery capacity, and
electric motor torque factor. The objective of this analysis was to quantify the extent to
which each parameter impacts the overall powertrain efficiency.

The findings of this study demonstrated that parallel HETVs are feasible and capable of
charge-sustaining operation, thus underscoring the dependency of the hybridization factor
on the chosen drive cycle and highlighting the significant influence of engine parameters,
such as the displacement and bore-to-stroke ratio, on total fuel economy.

2. Materials and Methods

Given the crucial role of the hybridization factor (HF) in optimizing overall powertrain
efficiency for parallel hybrid configurations [20,24], it serves as the primary indicator of
optimal hybridization. The HF is defined as the ratio of the maximum power of the electric
motor to the sum of the maximum powers of motor Pem and internal combustion engine
(ICE) Pe. Thus, the HF is expressed as follows:

HF =
Pem,max

Pem,max + Pe,max
. (1)

In order to ensure adequate sizing, scalable models were developed for the ICE, motor,
battery, and vehicle.

Certain literature focusing on the optimal sizing and hybridization of hybrid electric
vehicles considers simple rule-based EMS, while others even disregard EMS altogether [25].
However, it has been reported that sizing the powertrain components of a hybrid vehicle
is closely intertwined with EMS to the extent that, when an optimal sizing problem is
theoretically solved, the optimized EMS problem cannot be neglected. This is because EMS
is inherently linked with optimal sizing in a hybrid vehicle and is inherently solved by
addressing the sizing problem [26]. By examining the characteristics of hybrid powertrains,
it becomes evident that effective component sizing relies heavily on the optimality of
the EMS.

In this paper, EMS was determined within the optimization algorithm, thus allowing
for the evaluation of all configurations at their optimal performance and providing an equal
basis for comparison. Given that the considered system is highly nonlinear and subject to
multiple complex constraints, the dynamic programming (DP) algorithm was chosen as a
suitable method to compute the optimal control input. Note that, in addition to EMS, the
gearshifting strategy was also determined by the DP algorithm.

2.1. HETV Modeling

The powertrain comprises two electric motors and an ICE linked via two planetary
gears, thus forming a configuration known as a speed-coupled parallel hybrid drivetrain,
as depicted in Figure 1. This arrangement was initially proposed in [18], where they indi-
cated its feasibility and potential for enhancing vehicle performance without necessitating
significant alterations to the original drivetrain, thus demanding less engineering effort
for construction compared to alternative hybrid configurations. This section presents the
vehicle model developed for a parallel HETV with such configuration. The model, imple-
mented in MATLAB, is a backward-looking quasistatic discrete model, thus following the
principles outlined in [16]. The model is designed to analyze vehicle behavior based on
known inputs such as vehicle speed and acceleration.
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Figure 1. Speed-coupled parallel configuration (LM and RM—left and right motor, respectively,
S—sun gear, R—ring gear, C—planet carrier).

The vehicle model consists of five main components: power demand, ICE, gearbox,
electric motor, and battery pack. Each component is described in detail, along with their
interactions within the model. For simplicity and focus, this study assumed no extra fuel
consumption during engine starting and no energy losses during gear shifting.

The HETV model is based on an infantry fighting vehicle with a weight of m = 13,850 kg
and equipped with a 235 kW ICE.

2.1.1. Power Demand

The resistance to motion of tracked vehicles is highly complex and depends on the
type and slope of the terrain, turning radius, pressure distribution, etc. [27]. Moreover, the
selection of a suitable drive cycle for HETVs has a significant impact on fuel economy [28].
Given the inadequacy of existing drive cycles to address real-world HETV operation [4], a
custom drive cycle was synthesized. This drive cycle encompasses various terrains, includ-
ing both hard and soft surfaces, as well as significant turning maneuvers, thus accurately
reflecting real-world operating conditions for HETVs on flat terrain. The synthesized drive
cycle is shown in Figure 2.

Figure 2. Drive cycle used for simulation.

The drive cycle contains two distinct segments: a 7.2 km hard terrain segment with
an average speed of 24 km/h, and a 2.5 km soft terrain segment with an average speed of
9 km/h. A simplified version of the motion equations outlined in [29] has been adopted for
this study. This simplification primarily focuses on accommodating flat terrain conditions,
thus effectively rendering it a specialized case derived from the general motion equations
applicable to flat terrain.
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The forces on inner Fi and outer Fo tracks are defined as follows:

Fo =

[
G
2
+

h
B

G · V2

g · R

]
· fr + Rc + Rb +

G · V2 · so

2g · R2 +
CD · ρ

4
· A · V2

+
δ · G · a

2
+

µ · G · l
4B

·
[

1 −
( V2

g·R
µ

)2]

Fi =

[
G
2
− h

B
G · V2

g · R

]
· fr + Rc + Rb −

G · V2 · so

2g · R2 +
CD · ρ

4
· A · V2

+
δ · G · a

2
− µ · G · l

4B
·
[

1 −
( V2

g·R
µ

)2]
.

(2)

where G, h, B, and l represent the weight, center-of-mass height, tread, and track length of
the HETV; fr denotes the rolling resistance coefficient; Rc and Rb denote the compaction
and bulldozing resistances, respectively; so represents turning center offset; δ stands for
the mass coefficient; a denotes the vehicle acceleration, CD represents the aerodynamic
drag coefficient; ρ denotes the air density, A represents the vehicle frontal area; g denotes
acceleration due to gravity; R represents the turning radius; and V and a represent the
vehicle speed and acceleration, respectively. Note that the compaction resistance Rc and
bulldozing resistance Rb are equal to zero in the first part of drive cycle. Coefficient of
lateral resistance µ is obtained by using the following empirical formula:

µ =
µmax

0.925 + 0.075 ·
(

R
B + 1

2

) , (3)

where µmax is the maximum µ for a given terrain at R = B/2.

2.1.2. Internal Combustion Engine

For ICE modeling, the Willans line method [30] was utilized. This approach employs
an affine approximation linking the available energy, thus representing the theoretically
accessible energy stored in the fuel’s chemical form, with the effective energy, which is the
energy outputted by the ICE:

pme = epma − pmloss, (4)

where e represents the internal engine efficiency, pma and pme denote the mean fuel pressure
and mean effective pressure, respectively, and pmloss accounts for friction losses. Similarly,
this equation can be expressed in terms of energy:

Wout = eWin − Wloss. (5)

The advantage of modeling engines using the Willans approximation lies in the sim-
plicity of motor scaling, i.e., changing the “size” of the engine (power, maximum torque
and speed). Despite its simplicity, this method remarkably reflects actual engine data, as
confirmed through verification on multiple engines, thus validating the suitability of the
Willans line approach for model-based extension of available engine maps to either down-
sized or upsized “virtual engines” assumed in model-based analyses [31]. Additionally,
it has proven to be suitable for the rapid modeling and computation of fuel consump-
tion [32]. Two main ICE characteristics, pme and pma, can be expressed using the following
parameters:

pme =
Te · 4π

Vd
,

pma =
Qlhv · 4 · π

Vd
· ṁ

ωe
,

(6)
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where Te and ωe are engine torque and speed, respectively, Vd is the displacement, Qlhv is
the fuel lower heating value, and ṁ is the fuel flow rate. Besides these, two other parameters
can be defined:

pmloss =
Tloss · 4π

Vd
,

cm =
S
π

· ωe,
(7)

where S is the piston stroke, and cm is the piston speed. These two new parameters are
functions of engine speed and load. The following parametrization can be applied [33]:

pme = [e0(cm)− e1(cm) · pma] · pma − pmloss(cm)

e1(cm) = e10 + e11 · cm

e0(cm) = e00 + e01 · cm + e02 · c2
m

pmloss(cm) = pmloss0 + pmloss2 · c2
m,

(8)

where e10, e11, e00, e01, e02, pmloss0, and pmloss2 are nondimensional parameters, which
remain unchanged for engines of the same type. This enables the scaling of an engine by
adjusting its displacement Vd and piston stroke S. Figure 3 illustrates the acquisition of
these parameters for the engine used in this paper through fitting real engine data.

Figure 3. Willams line approximation fit to real engine data.

2.1.3. Gearbox

The gearbox utilized in the system is a five-gear manual transmission featuring consis-
tent gear ratios across all hybridization configurations. Input parameters include carrier
speed ωH , carrier acceleration dωH , carrier torque TH , and gear number i (Figure 4). Mean-
while, output parameters comprise crankshaft speed ωe and acceleration dωe, along with
crankshaft torque Te. The gearbox operates with a constant efficiency for all gears, denoted
as ηgb = 0.95.

In this paper, although the gear ratios remain consistent across all configurations, note
that the gearshifting strategy varies. Specifically, each set of engine parameters necessi-
tates a corresponding gearshifting strategy [34], because utilizing the same gearshifting
strategy for all powertrain configurations could lead to biased results. Consequently, when
downsizing the engine, the gearshifting strategy must be adjusted accordingly. To address
this requirement, the determination of gearshifting strategy for each configuration was
facilitated by the dynamic programming algorithm.
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Figure 4. HETV transmission (right side simplified scheme).

2.1.4. Electric Motor

Electric motor was modeled based on simulation data obtained from ADVISOR [35].
Efficiency map ηem = f (Tem, ωem), torque vector Tem, speed vector ωem, and motor inertia
Jem were imported from ADVISOR. Drag torque is obtained as follows:

Tem,drag = Jem · ∆ωem. (9)

The electric motor power is defined as follows:

Pem =

{
Tem · ωem · 1

ηem(ωem ,Tem)
, Pem,d > 0

Tem · ωem · ηem(ωem, Tem), Pem,d < 0,
(10)

where Pem,d is electric motor power demand.
The detailed simulation data for Mannesmann Sachs 25 kW permanent magnet motor

was obtained from ADVISOR [35]. Efficiency map of this motor is shown in Figure 5.

Figure 5. Electric motor efficiency map ηm = f (ωm, Tm).

2.1.5. Battery Pack

Various methodologies exist for battery modeling, as discussed extensively in the
literature [36]. However, for the purposes of this study, an electrical circuit model was em-
ployed, thus leveraging data sourced from ADVISOR. Specifically, the battery input/output
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power was determined based on the total power requested (or supplied) by the electric
motor Pem,tot. The battery current is derived from the power balancing equation as follows:

Ibat(Pem,tot) =
Voc −

√
V2

oc − 4 · Ri · Pem,tot

2 · Ri
, (11)

where Voc represents the open circuit voltage of the battery, while Ri denotes the battery’s
internal resistance. The battery state of charge is calculated as follows:

SOCk+1 =
−Ibat · ηbat(Ibat)

3600 · Qbat
+ SOCk, (12)

where Qbat is the battery capacity, and ηbat is the battery charging efficiency, which is
defined as follows:

ηbat =

{
1.0 Ibat ≥ 0
0.9 Ibat < 0.

(13)

As an initial reference model, detailed simulation data for a 6.5 Ah NiMH battery
was acquired from ADVISOR. Subsequently, these data were adjusted to scale with the
specifications of the electric motor and other powertrain components.

2.2. Dynamic Programming

To evaluate the influence of varying HFs on fuel consumption, it is essential to devise
an appropriate EMS that ensures consistent behavior across all analyzed configurations. A
singularly defined EMS would most certainly not be optimal for varying parameters of the
powertrain. As previously mentioned, much of the available literature on component sizing
has either employed simple rule-based EMS or neglected EMS altogether [25]. However,
for optimal system-level design and to obtain valid, comparable results across different
powertrain configurations, both sizing and EMS derivation must be conducted together.
As highlighted in [37], powertrain component sizing is intricately linked to the EMS,
which determines the power split between different energy flow paths. The authors
in [26,38] concluded that EMS is invariably coupled with component sizing for hybrid
electric vehicles. Consequently, it is impossible to claim that any powertrain is optimal
unless the trajectory of the battery’s SOC and the distribution of power between energy
sources are optimally controlled. The EMS regulates the operating points of the ICE, thereby
controlling the charging and discharging of the battery.

In this study, the DP technique was employed to solve the optimal control problem.
By determining the optimal EMS for each analyzed powertrain configuration, maximum
performance is achieved, thus facilitating valid and unbiased comparisons. The DP opti-
mization algorithm operates on the principle of optimality, which traditionally requires
prior knowledge of the entire drive cycle. However, advancements in optimization methods
based on DP, such as predictive or adaptive techniques, eliminate this requirement, thereby
making DP applicable even under uncertain driving conditions [39]. Other techniques,
such as an adaptive EMS based on the artificial neural network Pontryagin’s principle of
minimization proposed in [40], could be applied. However, because the drive cycle was
known a priori in this study, along with the rest of the vehicle parameters, the standard DP
technique was used.

In the discrete time format, the model of the hybrid electric vehicle is expressed
as follows:

xk+1 = f (x(k), u(k)), k = 1, ..., N − 1, (14)

where x(k) represents the state vector of the system, while u(k) denotes the vector of control
variables, i.e., ICE and motor speeds, as well as gear shift command to the transmission.
The drive cycle was assumed to be known in advance, and a sampling time of one second
was selected for this control problem. The optimization objective is to determine the control



Energies 2024, 17, 3531 9 of 19

input u(k) that minimizes the fuel consumption. The fuel consumption cost function is
defined as follows:

N−1

∑
k=0

gk(xk, uk). (15)

Additionally, another factor gN(xN), representing the final cost, is introduced here
as follows:

gN(xN) =

{
0 SOC(N) = SOC(0) = 0.65
∞ otherwise

(16)

to enforce charge-sustaining operation. Although the initial value of SOC(0) is randomly
chosen, it has negligible impact on the total fuel consumption. The optimal control input
u(k) is thus determined to minimize the overall cost function:

J = gN(xN) +
N−1

∑
k=0

gk(xk, uk). (17)

The optimization problem is solved backward in accordance with Bellman’s Principle
of Optimality [41], whereby the optimal policy is obtained by first solving one-stage
subproblems involving only the last stage, thereby gradually extending to subproblems
involving the last two stages, and so forth, until the entire problem is resolved. This
approach decomposes the overall dynamic optimization problem into a sequence of simpler
minimization problems. A MATLAB implementation of DP, based on [42], was utilized that
includes one state variable, i.e., SOC. The SOC variable was constrained within the range of
[0.5, 0.8] to ensure that the battery operated efficiently while maintaining sufficient stored
electric energy. The initial and final SOC values were selected as 0.65, which are within
safe battery limits. This continuous state space was discretized into a grid with 61 points.
Accurate determination of the state of charge boundaries is crucial, as the optimal state of
charge trajectory ultimately intersects these boundaries during the final braking phase of
the drive cycle, thus facilitating maximal recuperation [43]. When employing DP, a torque
split factor is often utilized as a control variable [44–46] to determine the distribution of
torque between the engine and the motor. However, in the case where the motor and
engine are speed-coupled, such a factor becomes redundant. Instead, the motor speed
is employed as a control variable. Considering that the electric motor and the ICE were
speed-coupled, as depicted in Figure 4, this kinematic link allows for determining the speed
of the internal combustion engine when the speed of the electric motor is known by using
the following equation:

ωs = ωc · (1 + k)− ωr · k, (18)

where ωa, ωc, and ωr represent the speeds of the sun, carrier, and ring gear, respectively.
This equation provides flexibility in the operation of the ICE, as it allows the electric motor
speed to be adjusted so that the ICE remains within its more efficient operating regions.
This flexibility is illustrated in Figure 6. Note that additional transmission elements exist
between the planetary gearset components and the motor and ICE, but these have been
omitted in the illustration for clarity and simplicity.

Sprocket

Engine

Motor

Fr

Fc

Fs

Figure 6. Force and speed diagrams of planetary gearset illustrating the ICE speed flexibility enabled
by the motor speed range.
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The model is solved in a backward fashion, where the torques of the planetary gear
elements are calculated as follows:

Ts =
Tr

k

Tc = Tr ·
1 + k

k

(19)

where Ts, Tc, and Tr represent the torques of the sun gear, carrier gear, and ring gear,
respectively. The ICE torque and speed are then derived using the gearbox ratio igb
as follows:

Te =
Tc

igb

ωe = ωc · igb,
(20)

where Te and ωe denote ICE torque and speed. By knowing these parameters, and by
using the Willans line method, the ICE fuel consumption can be determined as a function
of torque and speed, which gives us g = f (ωe, Te). By utilizing these equations, the DP
algorithm then determines the optimal motor speed to ensure that the engine operates
in the most efficient region possible for a given drive cycle instance. The motor speed is
constrained by the physical limits of the electric motor [−ωem,max, ωem,max], and discretized
into a grid of 261 points, while gear number variable ranges from 1 to 5 and is discretized
into 5 grid points. Other physical constraints, including the engine operating range and
battery limits, were also incorporated into the algorithm. These control variables and state
variable, together with the number of steps N, function to represent the physical model
of the vehicle, and the velocity and acceleration, as predefined by the drive cycle, are the
main inputs to the DP algorithm. The algorithm then calculates the fuel consumption of the
engine based on the calculated ICE speed and ICE torque derived from the power demand.
In output, an optimal control map, specifying the optimal control signals at each time
step and at each state, is obtained, thus minimizing fuel consumption while maintaining
charge-sustaining operation. It is important to note that by optimizing the control input for
motor speed, the resultant optimal power split between the ICE and motor is obtained, thus
inherently optimizing the EMS as well. This approach enables an unbiased comparison of
configurations with different hybridization ratios.

2.3. Model Integration and Scaling

As previously mentioned, the model components must be scalable to facilitate the
simulation of various hybridization levels. The ICE was scaled based on the engine
displacement Vd while maintaining a constant bore-to-stroke ratio to ensure consistent
engine speed across different engine sizes and to ensure comparable results.

Given the substantial weight of the armor on the HETV, mass was assumed to remain
constant, thus rendering the weight difference resulting from the increase in battery and
motor weight and the decrease in ICE weight negligible.

For hybridization to yield comparable results, it is imperative to compare configu-
rations with equivalent performance. This is achieved by maintaining a constant power-
to-weight ratio, thus ensuring that the sum of the electric motors’ power and ICE power
remains consistent. Only HFs smaller than 0.6 were explored. Vehicles with higher HFs
typically demonstrate low gradeability, are charge-depleting, and demand unreasonably
large batteries, despite the potential for achieving better fuel economy under certain config-
urations [47].

The scalability of the electric motor is attained through the utilization of a linear
scaling factor for torque. This approach yields sufficiently accurate results while remaining
computationally efficient [48,49]. The power of the electric motors was determined by the
constant power-to-weight ratio.

In the battery model, the open circuit voltage remains constant, while the internal
resistance is scaled based on the battery capacity. The determination of the battery’s
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maximum power aligns with the combined maximum powers of the electric motors, thus
dictating the maximum battery current and, consequently, the battery capacity.

After establishing the optimal HF with engine displacement as the primary scaling
parameter, the focus shifted to examining two other design parameters: battery capacity
and bore-to-stroke ratio. These parameters were chosen because they do not affect the
HF or total power. While maintaining a constant HF, keeping the engine displacement
unchanged means that adjusting the stroke requires a corresponding alteration in the bore
to maintain consistency. Consequently, the bore-to-stroke ratio was selected for analysis.
This approach enables the evaluation of how additional design parameters of the two
energy sources impact total fuel economy by varying the values of these parameters.

3. Results

To analyze the impact of hybridization on fuel consumption optimization, dynamic
programming was employed for downsized configurations. The displacement Vd was
systematically reduced in absolute decrements of 5% down to 50% of its original size.
Additionally, the drive cycle, as illustrated in Figure 2, was segmented into two terrains:
hard and soft. Optimization was performed separately for each terrain, as well as for the
entire drive cycle, to discern the influence of different driving conditions on the optimal
hybridization of parallel HETV powertrains. The details of the simulation parameters are
shown in Table 1.

Figure 7 demonstrates the impact of hybridization on fuel consumption in parallel
HETVs. For the entire drive cycle, the optimal HF was determined to be 0.48. With this HF,
the parameters of the powertrain components were obtained and are presented in Table 2,
while the operating points of the ICE and the electric motor are illustrated in Figure 8. Note
that only one motor is shown, as they operate very similarly. The influence of drive cycle
on HF is significant, as detailed in Table 3.

Table 1. Overview of simulation parameters.

Parameter Value

Vehicle mass 13,850 kg
Track contact length 3.3 m
Vehicle frontal area 5.5 m2

Sprocket radius 0.26 m
Vehicle tread 2.5 m

Planetary gear ratio 2.546 kg/m3

Gearbox ratios i1 = 4.428; i2 = 2.087; i3 = 1.406; i4 = 0.944; i5 = 0.647
Rolling resistance coefficient 0.07

Air density 1.2258 kg/m3

Drag coefficient 1.1

Table 2. Powertrain component parameters obtained for the optimal HF.

Powertrain Component Parameter Value

ICE Pe,max = 148 kW, Te,max = 960 Nm, ωe,max = 220 rad/s, B/S = 1.21
Electric motors Pem,max = 71 kW, Tem,max = 370 Nm, ωem,max = 630 rad/s

Battery Qbat = 34 Ah, Ibat,max = 570 A

Table 3. Overview of optimal hybridization factor for each drive cycle.

Drive Cycle Hybridization Factor

Soft terrain 0.27
Hard terrain 0.59

Complete drive cycle 0.48
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Figure 7. Fuel consumption at different hybridization factors in parallel HETVs.
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Figure 8. Operating points of the ICE and the electric motor.

The DP algorithm determined the optimal control inputs between the ICE and motor,
with the corresponding operating modes illustrated in Figure 9, thus effectively maintaining
the SOC and ensuring consistent initial and final values for charge-sustaining operation, as
depicted in Figure 10.

As shown in Figure 9, the drive cycle was divided into three equal parts to enhance
visibility. Each operating mode is represented by a distinct color: red for engine only, green
for motor only, magenta for hybrid, yellow for charging, and blue for regenerative braking.
The white areas indicate periods when the vehicle was not moving. The SOC can be seen
plotted over these operating modes, thus demonstrating how the DP algorithm effectively
managed the charge-sustaining operation throughout the drive cycle.
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Figure 10. SOC profiles over normalized drive cycle duration.

Parameter Sensitivity Analysis

To comprehensively understand the impacts of specific key design parameters, a
parameter sensitivity analysis was conducted. Firstly, the engine bore-to-stroke ratio and
battery capacity were addressed, as they were not originally included in the sizing problem
and can be varied without influencing the HF. These parameters were varied within the
range of [−30%,+30%] of their initial values, as presented in Table 2. The simulation was
executed over the entire drive cycle. The relationship between changes in the fuel economy
and varying battery capacity values is depicted in Figure 11.

Similarly, the relationship between changes in the fuel economy and varying bore-to-
stroke ratios is illustrated in Figure 12.

The parameters initially addressed in the sizing problem, specifically the ICE displace-
ment Vd and motor torque scaling factor, underwent variation without maintaining the
constraint HF = const. The relationship between these parameters and the fuel economy is
depicted in Figure 13.

Note that reducing the value of Vd by more than 10% from its original value rendered
the problem infeasible. Downsizing the ICE and motor resulted in a decrease in fuel
consumption in both cases by a certain margin, but they also reduced the total available
power, thus jeopardizing vehicle performance. Specifically, reducing the Vd by 10% reduced
the ICE power by 15 kW.
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The influence of individual parameters on the total fuel economy is depicted in
Figure 14. This illustration presents the average fuel consumption change of 10% change
for each parameter for the adopted configuration and drive cycle.
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Figure 11. Change in fuel economy for varying battery capacity values.

Figure 12. Change in fuel economy for varying bore-to-stroke ratios.
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4. Discussion

The optimal HF for the entire drive cycle was determined to be 0.48. Notably, a higher
HF was observed during the higher-speed segment of the drive cycle, while a lower HF
was observed during the lower-speed segment. This phenomenon can be attributed to
the lower occurrence of start–stop events and generally less variation in speed events
during the higher-speed segment. This enables the efficient operation of the ICE through
optimal gearshifting and effective complementation by the electric motor through speed-
coupling, all while maintaining efficient operation. Consequently, the ICE can operate
more consistently within its efficient operating range, thereby contributing to improved
fuel economy at higher HF levels while reducing the need for electric power usage.

Intuitively, one might expect that significant variations in speed and a higher availabil-
ity of regenerative energy would correspond to a higher HF due to the capability of electric
motors to harness that energy. Thus, one would anticipate the soft terrain segment of the
drive cycle to have a higher HF. However, for HETVs, this expectation does not hold true.
This can be explained by the inability of electric motors in parallel HETVs to effectively
complement ICE operation in drive cycles with significant variations in speed. In cycles
with significant variations in speed, electric motors often operate at low-efficiency regions
in order to complement efficient engine operation while requiring the engine to charge
the battery due to the big electric energy usage, thus establishing an inefficient energy
conversion chain. It is important to note that this feature was observed for the adopted
HETV configuration and could differ for other configurations.

The soft terrain segment had more available energy for recuperation, as indicated
by the data presented in Table 4. However, although a higher HF would imply higher
regenerative braking, this was not the case in this research. This observation aligns with
previous research findings, such as those discussed in [22], where they suggested that
tracked vehicles experience low energy recuperation due to their low speeds and the high
running resistance coefficient of their tracks. The SOC profiles depicted in Figure 10 further
support previous conclusions. For the hard segment of the drive cycle, the DP algorithm
showed minimal variation, thus indicating efficient ICE operation with smaller electric
motor engagement. Conversely, in the case of the soft segment of the drive cycle, the DP
algorithm showed a greater variation in the SOC, thus indicating higher electric energy
usage, as expected. However, in both cases, the SOC variation was generally small, and the
charge-sustaining operation was preserved at all times. Nonetheless, for the entire drive
cycle, the DP algorithm distinguishes between the two segments, thus allowing for a deeper
drop in the SOC during the first hard segment while ensuring energy recuperation during
the subsequent soft segment, where greater opportunities for energy recuperation exist.

Table 4. Energy available for recuperation overview.

Drive Cycle Energy Available for Recuperation

Soft terrain 592.4 kW/km
Hard terrain 1508.2 kW/km

As previously mentioned, in this study, the EMS was determined within the DP
algorithm, thus effectively obtaining the optimal EMS for a specific drive cycle and HF.
The operating points of the ICE and the electric motor largely fell within their efficient
regions, which was particularly noteworthy for the ICE. However, a significant portion
of their operation occurred outside these optimal zones, thus emphasizing the impact of
the engine–load connection in the parallel hybrid configuration. Importantly, the electric
motor’s load-leveling characteristics often necessitate operation outside its efficient range
to enhance the overall efficiency of the ICE. Nonetheless, further enhancements, especially
for the electric motor, could be realized with a similar, albeit slightly modified configuration
involving different gear ratios. The DP algorithm determines the optimal motor speed
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based on the external power demand, thus resulting in the identification of five operating
modes, as illustrated in Figure 9:

1. Engine only;
2. Motor only;
3. Hybrid;
4. Charging;
5. Regenerative braking.

Interestingly, these operating modes were predefined in the design of a rule-based
EMS for a similar hybrid powertrain configuration for HETVs, as discussed in [19]. Notably,
engine-only and motor-only modes rarely occur compared to the hybrid mode, where both
the engine and motor are utilized for propulsion, particularly during the first half of the
drive cycle. The second half of the drive cycle highlights the significant use of regenerative
braking to recover the SOC and enable charge-sustaining operation.

It is worth noting that the charging mode, as defined in this study, occurs in certain
parts of the drive cycle, albeit less frequently than reported in [19] and with a distinction.
Here, the charging mode signified a negative power demand, i.e., energy regeneration, with
the engine also supplying some of the charging energy via the planetary gear system. In
contrast, the same operating mode in [19] involved vehicle propulsion via the engine while
charging batteries, but such an occurrence has been here proved negligible, as it happens in
small time frames when the power demand switches from positive to negative. However,
the charging potential of this mode at HF = 0.48 was low, thus essentially maintaining
charge sustainability with a negligible SOC increase that was primarily applied in the first
half of the drive cycle, where regenerative braking potential was limited, as is evident
in Figure 9.

Additionally, the results indicate that the battery capacity does not significantly in-
fluence fuel economy, thus confirming earlier findings from [50], where the ADVISOR 3.2
software was utilized to assess the impact of the battery capacity on the fuel economy of
hybrid electric wheeled vehicles with series-parallel powertrain configurations.

On the other hand, the influence of the engine bore-to-stroke ratio on fuel consumption
was substantial and is consistent with published research, which has suggested increased
engine efficiency at lower bore-to-stroke ratios attributed to lower heat transfer losses and
faster combustion [51,52].

An important revelation from the results is that the engine parameters were shown
to exert the most significant influence on the fuel economy. Therefore, it is imperative
to conduct thorough ICE sizing, thereby considering not only power requirements but
also parameters such as the ICE displacement and bore-to-stroke ratio. The distribution of
influence among individual parameters on the fuel economy closely resembles the pub-
lished findings in [22,53], where optimal sizing was achieved through the application of the
genetic algorithm. This agreement in findings serves to validate the results presented here.

5. Conclusions

This paper addressed the optimization of powertrain component sizes in speed-
coupled parallel HETVs and evaluated the influence of key powertrain design parameters
on overall efficiency. Despite the growing interest in hybrid propulsion systems for tracked
vehicles, research in this area remains limited, particularly for parallel configurations. To
address this gap, a custom drive cycle, scalable vehicle model, and dynamic programming
algorithm were developed in MATLAB. A hybridization factor was adopted as a key
quantifier of hybridization, while the DP determined the EMS and provided an equal basis
for comparing configurations with different HFs. The results indicate that the optimal
hybridization factor for parallel HETVs is 0.48 for the adopted drive cycle. This optimal HF
was found to vary significantly across different segments of the drive cycle, with higher HFs
observed during higher-speed segments due to more efficient ICE operation and effective
electric motor complementation.



Energies 2024, 17, 3531 17 of 19

A comprehensive parameter sensitivity analysis was also conducted, thus revealing
that engine parameters such as the displacement and bore-to-stroke ratio significantly
influenced the total fuel economy. This analysis underscores the importance of these
parameters in achieving optimal system performance. For instance, a 10% change in these
parameters can result in close to a 2% change in the total fuel economy.

While this study demonstrated that parallel HETVs are feasible and capable of charge-
sustaining operation, as well as provided a robust foundation for optimizing hybrid propul-
sion systems in parallel HETVs, it is important to note that this study did not account for
energy losses during clutch engagement, engine starting, or variations in gear ratios and
gearbox efficiency, i.e., it is configuration-specific. Therefore, future research will focus on
higher fidelity models that account for energy losses during clutch engagement, engine
starting, and variations in gear ratios and gearbox efficiency. Additionally, forward-looking
models will be developed to assess vehicle performance comprehensively.
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