Zagreb, Croatia, August 26–30, 2024

European Conference on Fracture 2024

Book of Abstracts

Edited by Željko Božić, Željko Domazet, Robert Basan, Milan Vrdoljak and Marijan Andrić

European Structural Integrity Society

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture

Prof. Dr. Željko Božić
University of Zagreb
Faculty of Mechanical Engineering and Naval Architecture
Department of Aeronautical Engineering
Ivana Lučića 5, HR-10002 Zagreb, Croatia
e-mail: zeljko.bozic@fsb.unizg.hr

ISBN 978-953-7738-91-4

© Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia, 2024

Editors: Željko Božić, Željko Domazet, Robert Basan, Milan Vrdoljak and Marijan Andrić

Organization

The 24th European Conference on Fracture (ECF24) is organised by the European Structural Integrity Society (ESIS) and by the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.

ECF24 is organized under the auspices of Ministry of Science, Education and Youth

Conference Chair

Prof. Željko Božić, University of Zagreb

Conference Co-Chair

Prof. Željko Domazet, University of Split Prof. Robert Basan, University of Rijeka

Organizing Committee

Dr. Marijan Andrić, University of Zagreb

Dr. Emanuele Vincenzo Arcieri, University of Bergamo

Jelena Filipović, University of Zagreb

Dr. Tea Marohnić, University of Rijeka

Prof. Katarina Monkova, Technical University in Kosice

Iva Rački, University of Zagreb

Prof. Milan Vrdoljak, University of Zagreb

Prof. Goran Vukelić, University of Rijeka

...

National Scientific Committee

Prof. Ivo Alfirević, University of Zagreb Prof. Robert Basan, University of Rijeka

Prof. Željko Božić, University of Zagreb

Prof. Josip Brnić, University of Rijeka

Prof. Zeljko Domazet, University of Split Prof. Marina Franulovic, University of Rijeka

Prof. Vatroslav Grubišić, University of Split (retired)

Prof. Zvonimir Guzović, University of Zagreb

Prof. Lovre Krstulović Opara, University of Split

Prof. Dražan Kozak, University of Slavonski Brod

Prof. Ivica Kožar, University of Rijeka

Prof. Joško Parunov, University of Zagreb

Prof. Damir Semenski, University of Zagreb

Prof. Ivo Senjanović, University of Zagreb

Prof. Zdenko Tonković, University of Zagreb

Prof. Goran Vukelić, University of Rijeka

Scientific Committee

Adi Adumitroaie, Lithuania

Aleksandar Sedmak, Serbia Andrea Carpinteri, Italy

Andrei Atrens Australia

Andrej Atrens, Australia Andrzej Neimitz, Poland

Claudio Geraldo Schon, Brasil

Donka Angelova, Bulgaria

Dražan Kozak, Croatia Francesco Iacoviello. Italy

Gilbert Henaff, France

Hellmuth Klingelhöffer, Germany

Hryhoriy Nykyforchyn, Ukraine

Jaques Besson, France

Jan Papuga, Czech Republic

Jianying He, Norway

José Alexandre Araújo, Brasil

Kim Lau Nielsen, Denmark Leslie Banks Sills, Israel

Luciana Restuccia, Italy Mario Vieira, Portugal

Meinhard Kuna, Germany

Milos Djukic, Serbia

Motomichi Koyama, Japan

Neil James, UK

Otmar Kolednik, Austria Pedro Moreira, Portugal

Peter Trampus, Hungary Reinhard Pippan, Austria

Sabrina Vantadori, Italy

Stanislav Seitl Czech, Republic

Siegfried Schmauder, Germany Stefano Beretta, Italy

Tom Depover, Belgium

Vadim V. Silberschmidt, UK

Vigdis Olden, Norway Vladimír Chmelko, Slovak

Yuri Petrov, Russia

Zhiliang Zhang, Norway

Afrooz Barnoush, Norway

Alexopoulos Nikolaos, Greece Andreas J. Brunner, Switzerland

Andreas J. Brunner, Switzerland

Andrey Jivkov, UK

Bamber Blackman, UK

Dorota Kocańda, Poland Dov Sherman, Israel

Filippo Berto, Norway

Frank Cheng, Canada

Guiseppe Ferro, Italy

Hiroyuki Toda, Japan

Ihor Dmytrakh, Ukraine

Jan Duzsa, Slovakia

Jesús Toribio, Spain

Johan Hoefnagels, BeNeLux

José Correia, Portugal

Luís Reis, Portugal

Liviu Marsavina, Romania

Maria Fatima Vaz, IST

Marcos Pereira, Brazil

Michael Vormwald, Germany

Miloslav Kepka, Czech Republic

Muhamed Hadj Meliani, Algeria

Nenad Gubeliak, Slovenia

Paulo Lobo, Portugal

Per Stahle, Sweden

Raj Das, Australia

Robert Ritchie, USA

Stavros Kourkoulis, Greece

Shan-Tung Tu, China

Somnath Chattopadhyaya, India

Tierry Palin-Luc, France

Uwe Zerbst, Germany

Valery Shlyannikov, Russia

Vitor Anes, Portugal

Youshi Hong, China

Zeljko Bozic, Croatia

Zohar Yosibash, Israel

FATIGUE STRENGTH OF LAMINATED BAMBOO LUMBER UNDER TENSILE	
LOADING	T 0
Franck, Pascal; Bletz-Mühldorfer, Oliver; Bathon, Leander; Scholz, Ronja; Walther, Frank INTERLAMINAR FRACTURE PROPERTIES OF FLAX FIBRE BIOBASED COM-	50
POSITES INTERLEAVED WITH PPS VEILS Lowe, Robert; Prasad, Vishnu; Cosic, Petar; Murphy, Neal; Ivankovic, Alojz	51
THE SELF-HEATING EFFECT ON HYBRID COMPOSITES Reis, Paulo Nobre Balbis; Katunin, Andrzej; Wachla, Dominik	52
THE EFFECT OF FIBER WAVINESS ON THE STIFFNESS OF A POLYMER COM- POSITE MATERIAL	-
Fedulov, Boris; Bondarchuk, Daria; Lomakin, Evgenii	53
omputational mechanics	55
FINITE ELEMENT MODELING FOR PREDICTING SIF FOR MODE I IN BRIT- FLE MATERIAL (WC+CO) UNDER UNIAXIAL COMPRESSION OR UNIAXIAL DISPLACEMENT	
Yifrach, Yitzchak	56
Vodička, Roman	57
LINEAR ELASTIC AND ELSTIC-PLASTIC FRACTURE MECHANICS ANALYSIS BY ISOGEOMETRIC ANALYSIS	F 0
Okada, Hiroshi; Tsuchiyama, Yuhi; Sunaoka, Yusuke; Otoguro, Yuto	58
ING SURFACES Sathuvalli, Udaya Bhaskar R; Rahman, Shaikh; Tuck, Bryce; Suryanarayana, P V Suri.	59
INDENTATION SIZE EFFECTS IN NANOSCRATCH TESTS THROUGH A SIZE- DEPENDENT CRYSTAL PLASTICITY FRAMEWORK	
Günay, Enes; Yalçinkaya, Tuncay	60
PROPAGATION BEHAVIOUR IN 3D STRUCTURES He, Tianyu; Furuhashi, Fumihito; Morita, Naoki; Mitsume, Naoto; Shibanuma, Kazuki.	61
A NEW ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING FATIGUE LIMIT AND FRACTURE TOUGHNESS VALUES OF SOME STAINLESS STEELS Ivković, Djordje; Arsić, Dušan; Adamović, Dragan; Sedmak, Aleksandar; Mandić, Vesna;	
Delić, Marko; Mitrović, Andjela	62
MINIMIZATION OF THE TOTAL ENERGY UNDER STRESS CONDITION APPLIED FOR A VERSATILE ANALYSIS OF CRACK ONSET AND PROPAGATION IN COMPLEX SCENARIOS	
Ambikakumari Sanalkumar, Karthik; Mantic, Vladislav; Muñoz-Reja, Mar; Távara, Luis	63
INVESTIGATION OF FIBER-REINFORCED COMPOSITE STRUCTURES SUBJECTE FO PRESSURE LOAD USING FINITE ELEMENT ANALYSIS Suryanto, Suryanto; Adiputra, Ristiyanto; Prabowo, Aditya Rio; Ehlers, Sören; Braun,	D
Moritz; Muhayat, Nurul; Tjahjana, Dominicus Danardono Dwi Prija	64
MODELLING OF INTER- AND TRANS-GRANULAR CRACK PROPAGATION BY HIGH ORDER PHASE-FIELD METHOD Kumar, Manish; Salvati, Enrico	65
GENERATION OF ARTIFICIAL TRAJECTORIES FOR CAD PIPELINE THROUGH POPULATION BASED GENETIC GENERATIVE ARTIFICIAL INTELLIGENCE	00
Laurenti, Marcello; Murchio, Simone; Benedetti, Matteo; Berto, Filippo	66
PREDICTING THE PROBABILITY OF GLASS BREAKAGE IN LARGE-FORMAT PHOTOVOLTAIC MODULES	
Springer, Martin; Silverman, Timothy; Bosco, Nick	67

...

A NEW ARTIFICIAL NEURAL NETWORK MODEL FOR PREDICTING FATIGUE LIMIT AND FRACTURE TOUGHNESS VALUES OF SOME STAINLESS STEELS

Dj. Ivković¹, D. Arsić^{1*}, D. Adamović¹, A. Sedmak², V. Mandić¹, M. Delić¹, A. Mitrović¹

¹Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000, Kragujevac, Serbia

²Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11000, Belgrade, Serbia

*correspondence to: dusan.arsic@fink.rs

The aim of this paper is to present the possibility of the application of Artificial Intelligence for determining fracture toughness and fatigue limit values of some grades of stainless steel. Experimental procedures for both, fracture toughness and fatigue limit determination are time-consuming, thus the application of artificial intelligence instead of long, time-exhausting experiments could result in less time spent waiting on experimental results as well as less resources that need to be provided.

For this purpose, two Artificial Neural Networks (ANN) with same architecture (Fig. 1) were created and applied. The above mentioned properties are determined for the austenitic stainless steel X5CrNiMo17-12-2 and X6Cr17 ferritic stainless steels. Complete work regarding ANN was conducted in Mathworks MATLAB 2017 software using nntool module. After completing training of ANN when adequate regression levels were reached, simulations were conducted using chemical composition of X5CrNiMo17-12-2 and X6Cr17 steels. Obtained results are displayed in Fig. 2 and were compared with existing data. Conclusion that was drawn is that ANN that predicts KIC values has greater precision than ANN for fatigue limit. Potential reason for that could be that input layer needs more input data to increase precision.

Key words: artificial intelligence, artificial neural networks, stainless steels, fracture toughness, fatigue limit

Fig. 1. Architecture of ANN's used for predicting data

Fig. 2. Comparison between available and predicted data