Zagreb, Croatia, August 26–30, 2024

European Conference on Fracture 2024

Book of Abstracts

Edited by Željko Božić, Željko Domazet, Robert Basan, Milan Vrdoljak and Marijan Andrić

European Structural Integrity Society

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture

Zagreb, 2024

Prof. Dr. Željko Božić

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture Department of Aeronautical Engineering Ivana Lučića 5, HR-10002 Zagreb, Croatia e-mail: zeljko.bozic@fsb.unizg.hr

ISBN 978-953-7738-91-4

© Faculty of Mechanical Engineering and Naval Architecture, Zagreb, Croatia, 2024

Editors: Željko Božić, Željko Domazet, Robert Basan, Milan Vrdoljak and Marijan Andrić

Organization

The 24th European Conference on Fracture (ECF24) is organised by the European Structural Integrity Society (ESIS) and by the Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.

ECF24 is organized under the auspices of Ministry of Science, Education and Youth

Conference Chair

Prof. Željko Božić, University of Zagreb

Conference Co-Chair

Prof. Željko Domazet, University of Split Prof. Robert Basan, University of Rijeka

Organizing Committee

Dr. Marijan Andrić, University of Zagreb Dr. Emanuele Vincenzo Arcieri, University of Bergamo Jelena Filipović, University of Zagreb Dr. Tea Marohnić, University of Rijeka Prof. Katarina Monkova, Technical University in Kosice Iva Rački, University of Zagreb Prof. Milan Vrdoljak, University of Zagreb Prof. Goran Vukelić, University of Rijeka

National Scientific Committee

- Prof. Ivo Alfirević, University of Zagreb
 Prof. Robert Basan, University of Rijeka
 Prof. Željko Božić, University of Zagreb
 Prof. Josip Brnić, University of Rijeka
 Prof. Željko Domazet, University of Split
 Prof. Marina Franulovic, University of Split (retired)
 Prof. Vatroslav Grubišić, University of Split (retired)
 Prof. Zvonimir Guzović, University of Sagreb
 Prof. Lovre Krstulović Opara, University of Split
 Prof. Dražan Kozak, University of Slavonski Brod
 Prof. Joško Parunov, University of Zagreb
 Prof. Damir Semenski, University of Zagreb
 Prof. Ivo Senjanović, University of Zagreb
 Prof. Zdenko Tonković, University of Zagreb
- Prof. Goran Vukelić, University of Rijeka

Scientific Committee

Adi Adumitroaie, Lithuania Aleksandar Sedmak, Serbia Andrea Carpinteri, Italy Andrej Atrens, Australia Andrzej Neimitz, Poland Claudio Geraldo Schon, Brasil Donka Angelova, Bulgaria Dražan Kozak, Croatia Francesco Iacoviello, Italy Gilbert Henaff, France Hellmuth Klingelhöffer, Germany Hryhoriy Nykyforchyn, Ukraine Jaques Besson, France Jan Papuga, Czech Republic Jianying He, Norway José Alexandre Araújo, Brasil Kim Lau Nielsen, Denmark Leslie Banks Sills, Israel Luciana Restuccia, Italy Mario Vieira, Portugal Meinhard Kuna, Germany Milos Djukic, Serbia Motomichi Koyama, Japan Neil James, UK Otmar Kolednik, Austria Pedro Moreira, Portugal Peter Trampus, Hungary Reinhard Pippan, Austria Sabrina Vantadori, Italy Stanislav Seitl Czech, Republic Sigfried Schmauder, Germany Stefano Beretta, Italy Tom Depover, Belgium Vadim V. Silberschmidt, UK Vigdis Olden, Norway Vladimír Chmelko, Slovak Yuri Petrov, Russia Zhiliang Zhang, Norway

Afrooz Barnoush, Norway Alexopoulos Nikolaos, Greece Andreas J. Brunner, Switzerland Andrey Jivkov, UK Bamber Blackman, UK Dorota Kocańda, Poland Dov Sherman, Israel Filippo Berto, Norway Frank Cheng, Canada Guiseppe Ferro, Italy Hiroyuki Toda, Japan Ihor Dmytrakh, Ukraine Jan Duzsa, Slovakia Jesús Toribio, Spain Johan Hoefnagels, BeNeLux José Correia, Portugal Luís Reis, Portugal Liviu Marsavina, Romania Maria Fatima Vaz, IST Marcos Pereira, Brazil Michael Vormwald, Germany Miloslav Kepka, Czech Republic Muhamed Hadj Meliani, Algeria Nenad Gubeliak, Slovenia Paulo Lobo, Portugal Per Stahle, Sweden Raj Das, Australia Robert Ritchie, USA Stavros Kourkoulis, Greece Shan-Tung Tu, China Somnath Chattopadhyaya, India Tierry Palin-Luc, France Uwe Zerbst, Germany Valery Shlyannikov, Russia Vitor Anes, Portugal Youshi Hong, China Zeljko Bozic, Croatia Zohar Yosibash, Israel

AE BASED LOCAL APPROACH TO SIMULATE TENS POLYMER	
Senapati, Subrat; Banerjee, Anuradha; Rajesh, Ravindra	
MACRO TO MICRO IN FRACTURE: 1. MACROSCA Sherman, Dov	
MACRO TO MICRO IN FRACTURE: 2. BOND BREA Sherman, Dov	
Polymers fatigue and fracture	305
MECHANICAL AND FRACTURE MECHANICS INVER FIBRE-REINFORCED THERMOPLASTIC POLYMER	R TAPES
Lach, Ralf; Celevics, Stefanie; Jahn, Ivonne; John, Mar Benjamin; Langer, Beate; Grellmann, Wolfgang	
BAYESIAN ANALYSIS OF FRACTURE OF POLYAM MENS	
Gomez, Javier; Gómez-Del-Rio, Teresa; Rodríguez, Jesús CHARACTERIZATION OF STRUCTURE-PROPERTY	
PRESSION MOLDED LINEAR LOW-DENSITY POLY USING CROSS-FRACTIONATION CHROMATOGRAJ Chae, Junkeun; Kim, Donguk; Han, Seong Bin; Hong, Se	ETHYLENE (LLDPE) FILMS PHY (CFC)
INFLUENCE OF FDM PRINTING PARAMETERS O CHANICAL PROPERTIES AND FRACTURE BEHAV	ON THE COMPRESSIVE ME- IOR OF ABS MATERIAL
Delić, Marko; Mandić, Vesna; Aleksandrović, Srbislav; Adamović, Dragan; Ratković, Nada	
A CONCURRENT MULTI-SCALE MODELING APPI POLYMERS Norouzi, Saeed; Müller-Plathe, Florian	
NUMERICAL SIMULATION OF CORROSION ATTAC IN DIFFERENT AGEING TEMPERS	
Louka, Eleftheria-Sotiria; Papanikos, Paraskevas; Marga Christina-Margarita; Alexopoulos, Nikolaos	
LASER BEAM WELDING OF AERONAUTICAL AL-C TENSILE MECHANICAL PERFORMANCE AND QUA JOINTS	•
Charalampidou, Margarita Christina; Examilioti, Theano Benjamin; Alexopoulos, Nikolaos D.	
Poster Session	313
A STUDY ON THE DURABILITY OF AUTOMOTIVE Woo, Changsu; Choi, Sanghee; Kim, Jinhyuk	
ANALYZING PLASTIC ZONE MAGNITUDE AROUN APPROXIMATE ANALYTICAL SOLUTIONS	
Pustaić, Dragan; Lovrenić-Jugović, Martina	
ELASTIC MATERIAL Liao, Yi-Lun; Ma, Chien-Ching; Chao, Ching-Kong	
THE EFFECT OF HELICAL DIAMETER AND OVA SURE OF HELICAL-SHAPED TUBE SUBJECTED TO Youn, Gyogeun; Lee, Myeongwoo; Ahn, Kwanghyun; Pa	O EXTERNAL PRESSURE
INFLUENCE OF VANADIUM CONTENT ON THE MICICAL AND ELECTROCHEMICAL PROPERTIES OF (CROSTRUCTURE, MECHAN- CARBIDES IN CR-MO STEEL
Todić, Aleksandar; T. Djordjević, Milan; Arsić, Dušan; N Cvetković, Dragan	

Influence of vanadium content on the microstructure, mechanical and electrochemical properties of carbides in Cr-Mo steel

A. Todić¹, M. T. Djordjević¹, D. Arsić^{2*}, R. R. Nikolić³, Dj. Ivković²

¹Faculty of Technical Sciences, University of Priština, Knjaza Miloša 7, 38220, Kosovska Mitrovica, Serbia ²Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000, Kragujevac, Serbia ³Research Centre, University of Žilina, Univerzitna 8215/1, 010 01 Žilina, Slovakia *correspondence to: dusan.arsic@fink.rs

Abstract

Besides the modern non-metallic materials, which can successfully replace metallic materials in certain fields, steel materials are still largely present in technical practice. That trend will remain for many years to come. That is why there is a need to develop new types of steel, that possess better properties, in addition to the existing ones. The Cr-Mo steels, with a high vanadium content, belong to a group of the newer steels, with relatively high values of hardness and toughness. The X180CrMo12-1 steel, with varying percentages of vanadium, within the limits of 0.5-3 %, was used for the tests in this work. Vanadium, as a carbide-forming alloying element, creates a carbide network of the M7C3 type around the metal substrate, and finely dispersed carbides of the V6C5 type within the metal substrate. For the conducted research, modern equipment was used for analysis of the chemical composition, monitoring of the shape of metal grains and carbide network, tests of resistance to friction and wear, as well as for electrochemical characterization. In the conducted research, the objective was to determine the carbide composition, microstructure, and morphology and to evaluate their impact on the material's characteristics. The steel samples were experimentally examined using scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and Xray diffractometric analysis (XRD). The carbide composition analysis has confirmed that this actually was the M7C3 carbide, as it was earlier assumed.

Key words: chemical composition, vanadium, carbides, microstructure, mechanical properties, electrochemical properties.