
10th International Scientific Conference 

Technics,  
Informatics, and 
Education – TIE 2024 
20-22 September 2024

Session: Computer Sciences and Information Technology 

Professional paper 

DOI: 10.46793/TIE24.034L 

Horizontal Scaling with Session Preservation of 

PHP Applications with MVC Architecture 

Veljko Lončarević1* [0009-0007-4296-2709], Željko Jovanović2 [0000-0001-5401-8634], Vanja Luković2 [0000-

0002-1887-6102], Marina Milošević2 [0000-0001-7927-1169], Savo Šućurović1 [0009-0007-4950-5375] and 

Aleksa Iričanin3 [0009-0006-8145-403X]

1 University of Kragujevac, Faculty of Technical Sciences, Čačak, Serbia 
2 University of Kragujevac, Faculty of Technical Sciences, Department of Computer and 

Software Engineering, Čačak, Serbia 
3 University of Kragujevac, Faculty of Technical Sciences, Department of Information 

Technologies, Čačak, Serbia 
* veljkoloncarevicharry@gmail.com

Abstract: This paper explores horizontal scaling of PHP MVC applications with session preservation for 

enhanced availability and resource efficiency. It covers theoretical aspects of MVC architecture, PHP in web 

development, session handling, and horizontal scaling methods, including load balancers, Docker, and 

Kubernetes. The practical methodology details environment setup, application development, session 

management, Dockerization, Kubernetes integration, and horizontal scaling configuration. Performance 

testing reveals significant improvements, showing a response time decrease from an unresponsive state at 

1000 RPS (5111 ms) to 32 ms at 2500 RPS with horizontal scaling. The study contributes insights and 

practical guidance for highly available and scalable web applications. 

Keywords: horizontal scaling; session preservation; Kubernetes; high availability; load balancing 

1. INTRODUCTION

In the dynamic landscape of web development, the 

escalating demand for high availability and optimal 

resource management has highlighted the 

imperative need for horizontal scaling of web 

applications. This research addresses a pivotal 

challenge faced by developers when scaling 

applications—striking a balance between 

performance enhancement and the intricate 

preservation of user sessions. As web applications 

expand horizontally to meet growing demands, 

developers grapple with several formidable issues. 

Challenges include mitigating server overloads, 

ensuring seamless user experience during server 

transitions, and maintaining data integrity across 

distributed instances. 

This paper gives a brief overview of the 

multifaceted problems developers encounter during 

the scaling process. These challenges encompass 

the intricacies of session continuity, load balancing 

intricacies, and the efficient orchestration of 

containerized environments. To surmount these 

hurdles, the proposed solution leverages cutting-

edge technologies such as Docker and Kubernetes. 

By navigating through these challenges, this study 

aims to contribute practical insights, offering a 

comprehensive solution for developers seeking to 

develop scalable and highly available web 

applications. 

2. THEORETICAL FOUNDATIONS

2.1. MVC Architecture 

Model-View-Controller (MVC) architecture is a 

design pattern widely employed in software 

development to enhance the organization and 

maintainability of applications. At its core, MVC 

separates an application into three interconnected 

components: the Model, View, and Controller (Fig. 

1). 

Figure 1. MVC Architecture 

The Model represents the application's data and 

business logic, encapsulating the rules governing 

data manipulation and storage. It serves as the 

engine that manages and updates the application's 

state, ensuring a clean separation from the user 

interface. The View encompasses the user interface 

elements, presenting data to users and collecting 

input. It reflects the current state of the Model and 

displays information to users in a comprehensible 

34

mailto:veljkoloncarevicharry@gmail.com
https://doi.org/10.46793/TIE24.034L


Computer Sciences and Information Technology Lončarević et al. 

 

format. The View is responsible for visual 

representation and user interaction but remains 

detached from the underlying data logic. The 

Controller acts as the intermediary, facilitating 

communication between the Model and the View. It 

interprets user inputs from the View, processes 

them, and triggers corresponding actions in the 

Model. The Controller plays a pivotal role in 

managing the flow of information between the 

Model and the View, ensuring effective coordination 

and response to user interactions [1]. This 

architectural pattern promotes modularity and 

flexibility, making it easier to update and maintain 

different aspects of the application independently. 

MVC not only enhances code organization but also 

fosters a clear separation of concerns, enabling 

developers to focus on specific components without 

compromising the integrity of the entire system 

[2].  

2.2. PHP 

PHP stands out as a popular server-side 

programming language in web development, 

playing a crucial role in crafting dynamic and 

interactive web applications. Its multifaceted 

capabilities empower developers to generate 

dynamic content on web pages, tailoring them to 

user demands and database inputs. PHP facilitates 

interaction with various databases, such as MySQL, 

PostgreSQL, and Oracle, enabling real-time data 

storage, retrieval, and updates. Additionally, it 

excels in processing data from web forms, 

validating inputs, and executing actions based on 

user submissions. Furthermore, PHP supports the 

creation and management of sessions, tracking 

user states during web page visits for 

functionalities like authentication, shopping carts, 

and personalization. Its utility extends to 

constructing APIs (Application Programming 

Interfaces) for seamless communication between 

diverse software components, including web and 

mobile applications. PHP's capacity to dynamically 

generate HTML code based on data or logic 

enhances the creation of dynamic components like 

lists, tables, menus, and more on web pages. With 

control over application flow, security features to 

counteract threats like SQL injection and XSS 

attacks, seamless integration with other 

technologies, and compatibility with popular web 

servers, PHP stands as a versatile and powerful 

server-side language, making it a cornerstone in 

the world of web development [3]. 

Sessions in PHP serve as a mechanism for 

maintaining state and tracking user information 

during their visit to a website. This functionality 

enables applications to temporarily store data on 

the server and utilize it throughout the user's 

session, facilitating personalization and interaction 

[4]. Session data is commonly employed for 

preserving details about a logged-in user, shopping 

cart contents, language preferences, or other 

settings crucial to retain during a website visit. In 

PHP applications, a session acts as a tool for 

preserving state across various HTTP requests that 

a user sends to the server during their visit to the 

website. Stored on the server, PHP maintains 

session data in temporary files or memory space, 

depending on the configuration. Each session 

possesses a unique identifier (session ID), typically 

transmitted to the user as a cookie or added to the 

URL. The mentioned basic concepts of sessions 

enable PHP applications to uphold states and track 

user information dynamically, facilitating 

personalization and interaction throughout their 

visit to the website. In PHP, sessions are 

implemented using the associative array global 

object $_SESSION. To begin a session, the 

session_start() function is utilized, initiating or 

resuming a session and allowing access to the 

$_SESSION array. This array serves as a container 

to store various session variables. Sessions are 

typically ended by calling session_destroy(). 

Accessing stored session values is achieved by 

referencing the $_SESSION array with the 

corresponding key. For example, to access a 

session variable named "username," one would use 

$_SESSION['username']. To unset or remove a 

specific session variable, the 

unset($_SESSION['variable_name']) function is 

employed, effectively removing the designated 

value from the session array. This mechanism 

provides a flexible and straightforward approach to 

managing session data in PHP applications. 

2.3. Horizontal Scaling 

Horizontal scaling of applications involves adding 

multiple instances (copies) of the same application 

to increase its capacity for handling requests and 

loads (Fig. 2). This technique is commonly used to 

enhance the performance, availability, and 

resilience of applications [5]. 

 

Figure 2. Horizontal Scaling of an Application 

The key characteristic of horizontal scaling is that 

instead of overloading a single instance of the 

application, new instances are added to maintain a 

load balance among them. This is often achieved 

with the help of load balancing systems that direct 

incoming requests to available instances [6]. If one 

instance of the application becomes unavailable 

due to a malfunction or issue, other instances can 

take over the load, ensuring continuous availability. 

By adding more instances, the application can 

respond faster to requests and distribute the 

resources of each individual instance. In case the 

number of users or requests suddenly increases, 

horizontally scaled applications can quickly adapt to 

35



Computer Sciences and Information Technology Lončarević et al. 

 

the increased load. Horizontal scaling enables 

upgrading and maintaining the application without 

a complete service outage, as one instance can be 

updated while others continue to operate. It's 

important to note that horizontal scaling is not 

always the ideal solution for all applications and 

requires careful planning and resource 

management to achieve optimal performance and 

efficiency. Additionally, the application must be 

designed to support horizontal scaling, which may 

involve certain changes in the application's 

architecture. 

2.4. Load Balancers 

A load balancer, whether a physical device or 

software entity, plays a pivotal role in optimizing 

the performance, availability, and reliability of 

applications. Its main function is to evenly 

distribute incoming network requests among 

multiple servers, instances, or resources [7]. By 

preventing any single server from being overloaded 

and ensuring a balanced workload, load balancers 

contribute to faster response times and improved 

fault tolerance. In the context of horizontal scaling, 

load balancers are instrumental in accepting 

network requests, routing and distributing requests 

among available instances, ensuring proper load 

distribution, and monitoring the health and 

performance of each instance. This results in an 

efficient and resilient system, where workloads are 

evenly spread, and any potential disruptions are 

mitigated through automatic redirection of requests 

to healthy servers. Ultimately, load balancers are a 

crucial component in modern infrastructures, 

enhancing application availability and maintaining 

optimal performance. 

The IP hashing algorithm is employed by load 

balancers to achieve session preservation, ensuring 

that requests from the same client are consistently 

directed to the same server. In this approach, the 

load balancer calculates a hash value based on the 

source IP address of the incoming request. This 

hash value determines the server (or instance) to 

which the request will be forwarded. By utilizing the 

source IP address, the algorithm ensures that all 

requests originating from a specific client IP are 

directed to a single server or instance, maintaining 

session continuity. Fig. 3 shows the principle with 

which the IP hashing algorithm operates. 

 

Figure 3. IP Hashing Algorithm 

2.5. Docker 

Docker is a containerization platform that 

empowers developers to package, distribute, and 

execute applications and their dependencies in 

isolated, lightweight, and portable containers. 

These containers encapsulate applications along 

with libraries and necessary resources, ensuring 

complete isolation from the host system and other 

containers [8]. This technology enables consistent 

and reliable application execution regardless of the 

environment. Key components and concepts within 

the Docker ecosystem include containers, Docker 

images, Dockerfiles, Docker Compose, and Docker 

Hub. Containers serve as the fundamental units, 

containing applications and associated resources. 

Docker images define the container's content and 

can be shared and reused. Dockerfiles are textual 

files specifying the steps for creating Docker 

images, providing precise configuration control. 

Docker Compose facilitates the definition and 

management of multiple containers as part of a 

single application. Docker Hub, a public registry, 

enables the sharing and retrieval of Docker images. 

Orchestration tools like Docker Swarm and 

Kubernetes work seamlessly with Docker, 

automating container management and scalability 

in diverse environments. Application 

containerization, as a technology, allows 

developers to isolate applications and their 

dependencies within containers—distinct 

environments known as containers. These 

containers, a form of operating system-level 

virtualization, package and execute applications 

along with all necessary resources, such as libraries 

and configurations, within isolated environments. 

This technology ensures consistent and reliable 

execution of applications irrespective of the 

executing environment. Containers remain isolated 

from the host system and other containers, 

preventing interference between applications. 

Portable and capable of running on various 

operating systems and cloud platforms without 

extensive adaptations, containers start quickly by 

sharing the host's operating system kernel [5]. 

2.6. Kubernetes 

Kubernetes, often referred to as "K8s," is an 

open-source platform for container orchestration. 

Kubernetes automates the management, 

deployment, and scaling of containerized 

applications within a cluster. It enables automatic 

scaling and restarting of containers within a group 

of servers or a "cluster," ensuring applications 

adapt to variable resource needs [9]. Users define 

the desired system state through YAML or JSON 

files, and Kubernetes ensures the cluster maintains 

that state, taking automated actions to achieve it. 

Kubernetes possesses self-healing capabilities; in 

case of issues with an application instance, it can 

automatically replace it with a functional one. 

Dynamic scaling of applications is possible to meet 

changing resource demands, ensuring resilience to 

load changes. Kubernetes facilitates configuration 

management of applications and environments 

through configuration maps and secrets, 

simplifying the handling of sensitive data. The 

36



Computer Sciences and Information Technology Lončarević et al. 

 

platform also allows the definition of services and 

load balancing to provide access to applications and 

distribute the load among instances. Known for its 

flexibility, Kubernetes manages various application 

and resource types, including services, 

microservices, data storage, and more. Supporting 

multiple cloud providers, Kubernetes allows the 

management of multiple clusters from a single 

control center. Working with Kubernetes requires a 

set of tools to manage clusters, applications, and 

resources. These tools are crucial for development, 

testing, and management of Kubernetes 

environments. Some essential tools include kubectl 

for interacting with clusters, Helm for managing 

Kubernetes packages, kubeadm for fast cluster 

setup, k9s for interactive management through a 

Text User Interface (TUI), and minikube for running 

Kubernetes clusters locally during development. 

Additional tools like kubectx, kubens, kustomize, 

Velero, Kubeval, and Kube-hunter extend 

Kubernetes functionality, providing capabilities 

such as easy cluster switching, configuration 

management, backup, validation, and security 

testing. Kubernetes clusters are the fundamental 

infrastructure units for executing and managing 

containerized applications. Comprising nodes and 

control planes, clusters ensure high scalability, 

availability, and manageability of containerized 

applications. Nodes, either worker or master nodes, 

execute applications and manage the Kubernetes 

Agent (kubelet), maintaining the desired cluster 

state. Control planes, acting as the cluster's brain, 

include components like the API Server, etcd, 

Scheduler, and Controller Manager, responsible for 

managing and controlling the cluster. Worker nodes 

execute containers with applications, while master 

nodes manage and coordinate the cluster's 

operations. 

3. METHODOLOGY 

In the methodology section, comprehensive details 

regarding the development environment setup will 

be provided. This will encompass the initial 

configuration steps tailored for the Alpine Linux 

operating system, followed by the development of 

a PHP Model-View-Controller (MVC) application. 

The section will delve into the intricacies of session 

management within the application, elucidate the 

Dockerization process of the application, and 

subsequently outline the setup of a Kubernetes 

environment, complete with services and a load 

balancer. This holistic approach aims to offer a clear 

and detailed account of the entire process, ensuring 

a comprehensive understanding of the 

methodology employed in the development and 

deployment phases. 

3.1. Preparing the Environment 

Alpine Linux serves as the designated operating 

system for the research paper under consideration. 

The initial step involves installing the nginx web 

server by executing the command "apk add nginx" 

in the terminal. Subsequently, the nginx service is 

started, and its automatic initiation during the 

operating system startup is ensured by executing 

"service nginx start" and "rc-update add nginx 

default" commands in the terminal. Following that, 

the installation of Docker and related tools is 

performed, with the Docker service set to launch 

automatically during the operating system startup 

using the "apk add docker" and "rc-update add 

docker boot" commands. The process then 

continues with the installation of the "kind" tool and 

the subsequent creation of a Kubernetes cluster 

using specific commands in the terminal. Once the 

environment preparation is completed, it is 

essential to verify the success of each step and 

check the cluster's status, ensuring its activation 

using the "kubectl" tool. 

3.2. Developing the PHP MVC Application 

For this paper, the development of an application is 

required, encompassing a user login form and a 

user list with summarized data on HTTP requests 

sent to the server. This list should be accessible 

only to successfully logged-in users, with the 

recorded request types being GET upon accessing 

the list and POST after a successful login. 

Additionally, the application should store the user's 

name and the time of the last access in the session, 

displaying this information above the request list. 

It is necessary to define key components, including 

a model for managing user data, a model for 

managing user-request data, controllers for 

processing user requests, and multiple views 

responsible for the user interface and structured 

data presentation. The models for managing user 

and user-request data should include functions for 

logging in and reading summarized data from the 

database, respectively. Fig. 4 shows the entity-

relationship diagram for the database created for 

this research paper. 

 

Figure 4. Entity-Relationship Diagram 

The controller must handle incoming user requests, 

such as login and displaying summarized data, 

while the views include essential elements like 

header and footer for basic information, a login 

form view, and a data list view. 

 

 

37



Computer Sciences and Information Technology Lončarević et al. 

3.3. Leveraging Session Functionalities 

In accordance with the specified specifications, 

sessions are employed to store information about 

the user's name and the time of their last access. 

At the beginning of each PHP script interacting with 

the session, including login and viewing previous 

visits pages, a session must be initiated. Typically, 

this is done by calling the session start function at 

the top of each PHP script, allowing PHP to access 

and manipulate the session. Upon user login 

through the form, their username can be stored in 

the session using the associative array $_SESSION. 

Additionally, after recording information about the 

sent request into the database, the time of the last 

access can be saved in the session. This facilitates 

later display of this information on other pages. On 

pages where it is necessary to display session 

information, a check can be performed to verify the 

existence of this information in the session, and if 

available, it can be displayed. This allows for 

personalized greetings and the display of the last 

access time if this data is accessible in the session. 

When the user finishes the session or logs out of 

the site (if it is part of the requirements of some 

other potential application), the session can be 

terminated by calling the session destroy function. 

This clears all data in the session and closes it. This 

process enables the preservation of user 

information and the time of the last access during 

their session on the site. 

3.4. Dockerizing the Application 

The Dockerization process of the given application 

involves several key steps. Initially, the choice of 

the base image plays a crucial role in this process. 

To ensure a compact size, the php:7.4.0-fpm-

alpine image was selected, occupying a mere 25 

megabytes of space. Subsequently, a Dockerfile 

must be created in the root directory of the 

application. This textual file outlines the steps for 

building the image, specifying the chosen base 

image, and copying the application code into the 

appropriate directory within the base image 

(typically /var/www/html). Adjustments to the 

Nginx configuration are imperative for seamless 

integration. The nginx.conf file, tailored to the 

needs of the web application (such as specifying the 

server definition), must be copied into the image 

within the Dockerfile. Fig. 5 shows the Dockerfile 

written for this research paper. 

Figure 5. Dockerfile 

Following this, the Docker image is constructed 

using the docker build command, which executes 

the instructions laid out in the Dockerfile. Lastly, in 

preparation for deployment, Kubernetes 

Deployment resources need to be created using 

YAML configuration. This involves specifying the 

desired number of pods to ensure the application's 

availability and scalability within the Kubernetes 

cluster. Through these steps, the application is 

effectively containerized and ready for deployment 

in a Dockerized environment, providing a 

streamlined and consistent execution across 

various platforms. 

3.5. Setting Up Kubernetes Resources 

Upon the creation of the Deployment resource in 

Kubernetes, its responsibility encompasses 

managing and scaling the application's pods within 

the cluster. However, this doesn't automatically 

expose the application to external users. To 

facilitate external access, a Service resource is 

typically created. The created Service will also act 

as a load balancer based on the IP hash algorithm. 

Defining a Service involves creating a YAML file 

specifying the resource type as a service, setting 

the service type to "LoadBalancer," and crucially, 

configuring the "sessionAffinity" field to "ClientIP." 

The "selector" field in the service definition is 

pivotal, pointing to the corresponding Deployment 

that the service should balance. After defining the 

YAML file, the resource needs to be applied using 

the kubectl apply command. Once the Service is 

created, its status can be verified to determine the 

external IP address of the load balancer through 

which the application will be accessed. A YAML 

configuration written for this research paper is 

shown on Fig. 6. 

Figure 6. Deployment YAML Configuration 

In the context of automatic horizontal scaling based 

on pod workload, the HorizontalPodAutoScaler 

(HPA) resource in Kubernetes is utilized. This 

resource enables automatic scaling of the number 

of pod replicas based on defined metrics or 

resources. The HPA offers a set of configurable 

fields in its YAML definition to precisely manage the 

horizontal scaling of the application. Crucial fields 

include "spec," which defines the HPA specification, 

"scaleTargetRef," identifying the Deployment to be 

scaled, "minReplicas" and "maxReplicas" to set the 

minimum and maximum number of replicas, and 

"metrics," a list defining the metrics or resources 

38



Computer Sciences and Information Technology Lončarević et al. 

 

used for scaling decisions. Frequently used metrics 

include processor and RAM load. The "type," 

"resource," "targetAverageUtilization," and 

"targetAverageValue" fields further refine the 

scaling behavior based on the chosen metric type. 

Once configured, the HPA dynamically adjusts the 

number of pod replicas to handle varying workloads 

effectively. A separate Deployment has been 

created for the database, using MySQL as the 

database management system. Ten different user 

accounts were created in the table “Users”, and 

200,000 instances were inserted into the table 

“Requests”. 

3.6. Testing Performance 

Testing the performance of such an application is 

crucial to ensure that it can function efficiently and 

reliably under various load conditions. Application 

performance directly impacts user experience and 

the application's ability to handle user requests in 

real-time. Performance testing aids in identifying 

potential issues and bottlenecks in the application 

or infrastructure before deployment. This includes 

monitoring response times, request processing 

capacity, resource loads such as processor and 

memory usage, and identifying points where the 

application may become slower or unresponsive. 

Performance testing also helps optimize the 

application and infrastructure for efficient resource 

utilization and improved scalability. Informed 

decisions about scaling needs, code or 

infrastructure optimization can be made through 

this testing, ensuring that the application remains 

stable and responsive during user base growth or 

increased load. In the context of horizontal scaling 

testing for a web application, selected metrics 

include load and response time. The goal of testing 

is to determine how these metrics change with an 

increase in the number of application instances. It 

is expected that the requests per second (RPS) will 

increase with scaling, while response time remains 

stable or minimally increases. If response time 

significantly grows with scaling, it may indicate 

performance or resource issues that need 

resolution. The results of testing should 

demonstrate that the application scales efficiently, 

supporting a higher number of users without a 

significant degradation in response time. This is 

crucial to ensure that the application remains fast 

and responsive even under high loads, enhancing 

user experience and satisfaction. Locust, a Python 

library and load testing tool, can be employed to 

simulate a large number of users interacting with 

the web application. This enables load and response 

time testing to assess the application's behavior 

under various load conditions and horizontal 

scaling. Test scenarios can be defined using Python 

scripts, with each scenario representing simulated 

user behavior. Testing is then performed with the 

configuration of the number of users and other 

testing parameters. After running the test, 

performance can be monitored through Locust's 

web interface, displaying relevant metrics. This 

allows for the analysis of response times, requests 

per second, and other performance indicators to 

identify potential problems and optimize the 

application. For horizontal scaling testing, multiple 

Locust instances ("slaves") can be added to 

simulate increased load and evaluate the 

application's behavior under such conditions. 

4. RESULTS AND DISCUSSION 

4.1. Results 

The performance testing results, utilizing the 

Locust tool, encompassed multiple load and 

response time tests, concurrently monitoring the 

number of pods created by the 

HorizontalPodAutoScaler. The consolidated results 

are presented in Table 1, showcasing the 

application's behavior in both horizontal scaling and 

non-scaling scenarios. Two types of requests—GET, 

returning HTML code and a list with summary data, 

and POST for user login—were employed, each 

representing 50% of the test load. 

Table 1. Test Results 

Requests Per 
Second (RPS) 

Response Time 
(in ms) 

Number of 
active 

instances 

Application without Horizontal Scaling 

250 33 1 

500 36 1 

750 116 1 

1000 5111 1 

Application with Horizontal Scaling 

1000 27 3 

1500 28 5 

2000 28 5 

2500 32 8 

The tests revealed that the application could 

efficiently handle a small number of requests per 

second (RPS) without a significant increase in 

response time. However, under moderate load (750 

RPS), the response time tripled, and at 1000 RPS, 

the application became nearly unresponsive, with 

response times exceeding 5 seconds and a notable 

percentage of failed requests. In the case of 

horizontal scaling, the tests showed positive 

outcomes. With three active pods, the application 

efficiently processed 1000 RPS, demonstrating its 

ability to react effectively to moderate loads. As the 

number of active pods increased to 5 and 8 in 

subsequent tests, the application supported higher 

RPS (1500, 2000, and 2500), indicating effective 

horizontal scaling. Notably, response times, 

measured in milliseconds, remained relatively low 

throughout all tests, demonstrating the 

application's responsiveness even under increased 

load. The gradual increase in active pods in each 

39



Computer Sciences and Information Technology Lončarević et al. 

test indicates successful horizontal scaling, 

highlighting Kubernetes' efficient resource 

management and ability to scale the application to 

support growing loads. The results suggest that the 

application successfully scaled horizontally to 

handle increased RPS. Response times remained 

acceptably low, and the number of active pods 

increased proportionally to accommodate the 

growing load. This implies that horizontal scaling, 

combined with session persistence in a PHP MVC 

application using Docker and Kubernetes, can be an 

effective strategy to enhance application 

performance and scalability. The absence of a 

sharp increase in response time indicates the 

application's ability to respond well to higher loads, 

emphasizing the efficacy of the proposed scaling 

approach. 

4.2. Comparison with Similar Research 

In comparison with similar research efforts, the 

findings of this study align with those presented in 

[10], where an increase in performance, measured 

in terms of Requests Per Second (RPS), was 

observed. The current research similarly 

demonstrates enhanced application scalability, 

allowing for the handling of higher RPS loads 

efficiently. However, a distinct approach is taken in 

[11], where the authors introduce a custom 

Kubernetes Horizontal Pod Autoscaler Algorithm 

(KPHA-A) resource. Notably, [11] managed to 

achieve a notable optimization in response times 

when compared to using the default horizontal 

autoscaling resource provided by Kubernetes. The 

custom KPHA-A resource, designed specifically for 

their context, resulted in response times that were 

consistently 1.5 to 2 times lower than those 

achieved with the default Kubernetes horizontal 

autoscaler. This discrepancy in performance 

outcomes emphasizes the significance of tailoring 

autoscaling strategies to the unique characteristics 

and requirements of the application or system 

under consideration. While both studies, including 

[10], indicate positive scalability results, the novel 

approach presented in [11] with the custom KPHA-

A resource showcases the potential for even 

greater performance gains by fine-tuning 

autoscaling mechanisms to suit specific workloads 

and application architectures. 

5. CONCLUSION

In conclusion, this paper delves into the realm of 

horizontal scaling for PHP MVC applications, 

emphasizing the preservation of sessions to 

enhance both availability and resource efficiency. 

The exploration covers crucial theoretical aspects, 

spanning MVC architecture, PHP in web 

development, session handling intricacies, and the 

implementation of horizontal scaling techniques 

using load balancers, Docker, and Kubernetes. The 

practical methodology, encompassing environment 

setup, application development, Dockerization, 

Kubernetes integration, and horizontal scaling 

configuration, is detailed comprehensively. 

Performance testing highlights substantial 

improvements, showcasing a noteworthy reduction 

in response time—from an initially unresponsive 

state at 1000 RPS (5111 ms) to an impressive 32 

ms at 2500 RPS with horizontal scaling. This study 

contributes valuable insights and practical 

guidance, offering a roadmap for the development 

of highly available and scalable web applications. 

Future work may explore further optimizations in 

the PHP MVC application's horizontal scaling 

configuration, aiming to uncover additional 

performance enhancements and refine resource 

allocation strategies. Additionally, investigating the 

integration of emerging technologies or alternative 

frameworks could provide valuable insights into 

continuously improving the scalability and 

responsiveness of web applications. 

ACKNOWLEDGEMENTS 

This study was supported by the Ministry of 

Education, Science and Technological Development 

of the Republic of Serbia, and these results are 

parts of the Grant No. 451-03-66 / 2024-03 / 

200132 with University of Kragujevac - Faculty of 

Technical Sciences Čačak. 

REFERENCES 

[1] Majeed, A., Rauf, I. (2018). MVC Architecture:
A Detailed Insight to the Modern Web
Applications Development, Crimson Publishers

Wings to the Research Peer Review Journal of
Solar & Photoenergy Systems.

[2] Fowler, M. (2003). Patterns of Enterprise
Application Architecture, Pearson Education.

[3] PHP Programming – Cross Site Scripting
Attacks. Wikibooks. [Online]. Available:
https://en.wikibooks.org/wiki/PHP_Programmi

ng/Cross_Site_Scripting_Attacks. Accessed:
Sep. 6, 2023.

[4] Mihret, E. (2021). PHP Sessions and Cookies -

Sci-Tech with Estif, DOI:
10.13140/RG.2.2.31128.52482.

[5] Millnert, V., Eker, J. (2020). HoloScale:
horizontal and vertical scaling of cloud

resources, IEEE/ACM 13th International
Conference on Utility and Cloud Computing
(UCC), Leicester, UK, 196-205, doi:
10.1109/UCC48980.2020.00038.

[6] Bondi, B. (2000) Characteristics of scalability
and their impact on performance. WOSP ‘00,
195.

[7] Afzal S., Kavitha, G. (2019). Load balancing in
cloud computing – A hierarchical taxonomical
classification, J Cloud Comp, 8, 22,
https://doi.org/10.1186/s13677-019-0146-7.

[8] Docker Documentation, [Online]. Available:
https://docs.docker.com/. Accessed on:

January 16th, 2024.

40



Computer Sciences and Information Technology Lončarević et al. 

[9] Bilgin, I. (2019). Kubernetes Patterns:

Reusable Elements for Designing Cloud-Native

Applications. O’Reilly Media.
[10] Barzu, A. P., Barbulescu, M., Carabas, M.

(2017), Horizontal scalability towards server
performance improvement, 16th RoEduNet
Conference: Networking in Education and

Research (RoEduNet), Targu-Mures, Romania, 

1-6, doi: 10.1109/ROEDUNET.2017.8123729.

[11] Casalicchio, E. (2019). A study on performance
measures for auto-scaling CPU-intensive
containerized applications, Cluster Comput,
22, 995–1006. doi: 10.1007/s10586-018-
02890-1.

41




