
10th International Scientific Conference

Technics,
Informatics, and
Education – TIE 2024
20-22 September 2024

Session: Computer Sciences and Information Technology

Professional paper

DOI: 10.46793/TIE24.042S

Enhancing Software Development with

Microservice Architecture: Application to an

Online Sales System

Biljana Savić1* [0000-0002-2544-6186] and Uroš Milačić1 [0009-0003-9198-4104]
1 University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

* biljana.savic@ftn.kg.ac.rs

Abstract: This paper explores the critical role of microservice architecture in modern software

development, illustrating its benefits through the creation of an online store as an example. Microservice

architecture is highlighted for its capacity to improve scalability, maintainability, and deployment efficiency

by decomposing applications into modular, independently deployable services. The approach facilitates a

more robust and flexible system design, allowing for easier updates and better resource management. This

study underscores the theoretical advantages of microservices, such as enhanced fault isolation and

continuous delivery, while providing practical insights into its implementation. The online store example

serves as a practical demonstration of these concepts, showcasing how microservice architecture can lead

to more efficient and reliable software solutions.

Keywords: microservice architecture, scalability, software solution, continuous delivery

1. INTRODUCTION

Microservice architectural style is a software

development approach in which an application is

divided into small, compact services that can be

developed, deployed and scaled independently.

Each microservice performs a specific business

function and communicates with other

microservices through well-defined API [1]. As it is

well-known, enterprise applications are often built

in three main parts: a client-side user interface

(consisting of HTML, CSS and JS), a relational

database management system (program used to

create, update and manage relational databases)

and a server-side application. Mostly, the purpose

of this application is to handle HTTP requests

coming from client-side, retrieve and update data

from database and prepare response model in a

format that is acceptable by client-side, which will

later select and populate its HTML views. In this

example, the server-side application acts as a

single local executable, or in other words – a

monolith.

For better understanding of what microservice

architecture is, it is useful to compare it to the

monolithic style, where all logic for handling a

request runs in a single process and can be tested

on a locale and deployed into production. As

monolithic application puts all its functionality into

a single process, the conclusion of deployment

issue is very simple: any changes to the system

involve building and deploying a new version of the

server-side application, and over time, it is often

hard to keep a good modular structure. Scaling

requires scaling of the entire application rather than

parts of it that require greater resource [2].

These adversities led to the microservice

architectural style: building applications as suites of

services, and the objective of this paper is to

highlight the importance and benefits of using this

architectural style through practical example in a

case study of an online sales system application.

2. MICROSERVICES OVERVIEW

Throughout the years, the microservice

architectural style was defined based on common

patterns observed across a number of pioneering

organizations, where they did not consciously

implement microservice architecture [3]. While

they evolved to it in pursuit of specific goals, each

of them was tied back to the “balancing speed and

safety at scale.”

Microservice architectural style is even more and

more used due to its various benefits, and some of

them include:

• Scalability: microservice architecture allows

applications to scale up or down quickly based

on demand. Developers can add or remove

microservices as needed, without affecting the

rest of the application.

• Resilience: Microservices are designed to be

resilient to failures, meaning if one

microservice fails, it does not bring down the

entire application.

42

mailto:biljana.savic@ftn.kg.ac.rs
https://doi.org/10.46793/TIE24.042S

Computer Sciences and Information Technology Savić and Milačić

• Fault isolation: Corresponding to the previous

benefit, developers can isolate failures,

preventing them from spreading and causing

widespread issues.

• Technology independence: Microservices

architecture allows developers to be flexible

when choosing technologies, meaning it does

not need to be tied to a single technology

stack.

• Easy maintenance: Since microservices are

concise and domain focused, they are easier to

maintain than monolithic applications.

Figure 1. Monolithic and Microservice

architectural style

Theoretically, we could apply microservice

architecture to a washing machine program.

However, the question remains whether there is a

need to go that far, considering the challenges

associated with building software solutions using

microservice architecture:

• Development complexity: Each service is a

separate entity with its own codebase, making

the development process more complex.

• Communication overhead: Microservices

communicate over a network which can

increase latency and potentially

communication failures.

• Data management issues: Each service will

mostly have its own database, leading to

challenges in ensuring data consistency and

managing distributed data stores.

• Deployment complexity: Implementing

continuous deployment practices becomes

more complex with microservice architecture.

While microservice architecture offers variety of

benefits, in some use cases it could bring

unnecessary complexities. As it is important to

weigh these disadvantages against the benefits to

determine which architectural style is the right fit

for specific system, it is also worth mentioning that

the key in choosing between architectures when

designing a program is modularity – the quality of

an application being composed of distinct, self-

contained parts that, when combined, form a

complete whole. In simpler terms, an application is

considered modular if each of its components is

functional and self-sufficient on its own, eliminating

the need for further expansion to maintain or

enhance its effectiveness.

3. MICROSERVICE COMMUNICATION

Microservice architecture relies on the division of a

large application into smaller, loosely coupled

services, each focusing on a specific business

function. Effective communication between these

services is crucial for the system's overall

functionality and performance. In the microservice

architecture, all components of the applications run

on several machines as a process or service, and

they use inter-service communication to interact

with each other. Microservices frameworks usually

execute a consumer grouping mechanism whereby

different instances of a single application have been

placed in a competing consumer relationship in

which only one instance is expected to handle an

incoming message [4]. There are two primary

modes of communication in microservice

architecture:

• Synchronous communication style

• Asynchronous communication style

Synchronous communication is often regarded as

request/response interaction style and pattern.

One microservice makes a request to another

service and waits for the services to process the

result and send a response back. This method

involves a service making a request to another

service and waiting for an immediate response

before continuing its execution. This pattern

ensures direct and instant data exchange, which is

essential for operations requiring immediate

feedback or coordination between services.

Synchronous communication is typically

implemented using protocols like HTTP/HTTPS,

often through RESTful APIs, which are favored for

their simplicity and wide adoption. Another popular

protocol for synchronous communication is gRPC,

which uses HTTP/2 and Protocol Buffers to achieve

low-latency, high-performance communication.

The synchronous approach allows for

straightforward error handling and straightforward

service-to-service communication patterns, but it

also introduces potential challenges, such as

increased latency and tighter coupling between

services. The decision to use synchronous

communication in a microservice architecture

should consider these trade-offs, focusing on

scenarios where immediate response times are

critical and the system can manage the

dependencies and potential bottlenecks introduced

by this communication style.

The asynchronous form of communication can be

implemented in microservices when services

exchange messages with each other through a

message broker.

This method allows a service to send a request and

continue its execution without blocking for a reply,

making it well-suited for tasks that do not require

immediate feedback. Asynchronous communication

is commonly implemented using message brokers

43

Computer Sciences and Information Technology Savić and Milačić

like RabbitMQ, Kafka or AWS SQS, which handle

message queuing and delivery between services.

This approach can significantly improve system

scalability and fault tolerance, as services can

operate independently and handle peak loads by

processing messages at their own pace. Moreover,

it enables more flexible interaction patterns, such

as event-driven architectures, where services react

to events asynchronously.

However, this method also introduces complexities

in terms of ensuring message delivery, handling

message ordering, and managing eventual

consistency. Despite these challenges,

asynchronous communication is a powerful

strategy for building robust, scalable, and

decoupled microservice architectures that can

efficiently manage varying workloads and improve

overall system performance.

Figure 2. Synchronous and asynchronous

communication between microservices

Choosing between synchronous and asynchronous

communication in a microservice architecture

depends on various factors, including system

requirements, performance considerations, and

complexity trade-offs [5]:

• Latency: If the application or a system

requires immediate responses and low latency,

synchronous communication via REST API or

gRPC may be more suitable.

• Scalability: Asynchronous communication is

often preferred for its scalability benefits. It

allows services to handle varying workloads by

decoupling the sender from the receiver,

enabling better scalability compared to

synchronous communication, where services

may become blocked due to high request

volumes.

• Resilience: Asynchronous communication

promotes resilience by allowing services to

continue processing requests even if a

downstream service is temporarily

unavailable.

• Consistency: If strong consistency is

necessary, synchronous communication may

be more suitable, since asynchronous

communication can introduce eventual

consistency challenges, where data may be

temporarily inconsistent across services.

4. CASE STUDY

This case study focuses on the practical aspects of

adopting microservices to improve scalability,

resilience, and flexibility in the online sales domain.

It involves breaking down functionalities into

separate, independently deployable services, each

serving specific business functions.

Through this case study, the practical advantages

and challenges of employing microservice

architecture in online sales systems will become

apparent, providing valuable insights for

businesses in the digital commerce sphere.

We will discuss an example case study of an online

sales system, which highlights the usage and

importance of microservice architecture with

particular attention to repository and service design

patterns which utilize and showcase the benefits of

microservice architectural style.

Figure 3. Microservice overview on the practical

example of the case study

4.1. Repository pattern

The Repository pattern is a structural design

pattern that isolates data and the data access layer

from the rest of the application and its logic. This

design pattern has two main objectives: to provide

a separate space for communicating with the

database, which is separated from the rest of the

application, thus establishing a level of access for

other layers of the application when it comes to

data communication, and to handle the

implementation logic of persistent storage of the

application, which is necessary to retrieve data

from the database [6]. This pattern can also be

combined with other design patterns to significantly

increase its functionality and to efficiently expose

consistent APIs. In other words, the purpose of this

pattern is to unify all methods for accessing

database tables in one place, and such methods

would be implemented through specific classes

using the repository interface as the type of object

access for the desired domain. The advantage of

this pattern lies in having all the essential

database-related logic in one place, and if changes

need to be made to the code, they can be done in

44

Computer Sciences and Information Technology Savić and Milačić

one place. Repository pattern's benefits extend well

into microservice architecture, aiding in its

scalability, maintainability, and overall robustness:

• Isolation of Data Access: The Repository

pattern allows each microservice to

encapsulate its data access logic within its own

repository implementation. This isolation

ensures that changes to the underlying data

store or database schema only affect the

repository implementation within that

microservice, reducing the risk of unintended

side effects on other services.

• Consistency: By providing a standardized

interface for accessing data, the Repository

pattern promotes consistency across

microservices. This consistency makes it

easier for developers to understand and

interact with different services, as they can

rely on familiar patterns and APIs for data

access.

• Improved testing and debugging: With data

access logic encapsulated within repositories,

testing and debugging become more

manageable. Developers can easily mock

repository implementations for unit testing,

and issues related to data access can be

isolated within the boundaries of individual

microservices.

• Modularity: The Repository pattern enhances

the modularity of microservices by decoupling

data access logic from the rest of the

application. This decoupling allows individual

services to scale independently, as changes to

one service's data access logic do not affect

others.

4.2. Unit of work pattern

It is important to mention that the Repository

pattern is often used in conjunction with the Unit of

Work pattern to facilitate efficient data access and

persistence. It's primarily concerned with

managing transactions and ensuring data

consistency within an application. It encapsulates

the transaction management logic, coordinating

transactions across multiple repository operations.

This ensures that a group of related database

operations either succeed or fail together,

maintaining data consistency. When changes are

made to objects retrieved from repositories, the

Unit of Work pattern tracks these changes and

ensures that they are persisted to the database

when the transaction is committed. This involves

coordinating with the respective repositories to

save or update the modified objects.

The Unit of Work typically has a scoped lifetime

within a unit of work session, where multiple

repository operations are performed within the

same transactional context. Once the unit of work

session is completed, the changes are either

committed or rolled back, ensuring transactional

consistency.

4.3. Service layer pattern

The Service Layer pattern is a structural, service-

oriented design pattern aimed at organizing

services and their functionalities by separating

them into a service layer [7]. Services categorized

in this manner have the ability to share

functionalities, thereby reducing code redundancy.

This approach also enhances efficiency and

maintainability, as any changes to services are

confined to the service layer. The purpose of this

encapsulation is to minimize the impact on other

parts of the code outside this layer. In other words,

if there is an error in a service, the programmer will

most likely find the error within the mentioned

layer.

Services within this layer need to be defined

generically enough to be reusable, with their

functions tied to solving domain-specific problems

of that service. The Service Layer pattern is an

essential step in designing software and systems

based on microservice architecture. Service layer

sits between the presentation layer and the data

access layer, usually in line with Repository

pattern, or it can be above Repository pattern but

below the presentation layer, providing a clear

separation of concerns [8].

Figure 4. Simple view of how service layer

pattern applies its function to sort

domain logic

The Service Layer provides several essential

characteristics that are crucial for the microservice

architectural style:

• Scalability: Microservices can be scaled

independently based on their specific needs.

The service layer ensures that each

microservice handles its business logic

efficiently, aiding in overall system scalability.

• Reusability: Business logic encapsulated in

services can be reused across different parts

of the application or even across different

applications.

• Autonomy: Microservices are designed to be

autonomous. With the Service Layer pattern,

each microservice independently manages its

business logic, reducing dependencies and

improving fault isolation.

45

Computer Sciences and Information Technology Savić and Milačić

• Interoperability: The service layer can expose

a well-defined API, facilitating communication

between microservices. This standardization

simplifies integration and interaction between

various services within the microservice

architecture.

4.4. Base service implementation

Considering that there are four microservices in the

practical example mentioned above, alongside

these microservices, there exists a central project

responsible for rendering pages, or to put it briefly,

it is a client-side of the application. However, this

project also has implementation of base service,

acting as a gateway and facilitating communication

between the client-side and the backend

microservices, popularly called API Gateway, with

a small footnote that the authorization and

authentication strategy is solved by a separate

microservice. By employing this architecture, the

system achieves a separation of concerns, enabling

flexibility, resilience, and the ability to

independently scale and evolve its components.

This base service acts as a single-entry point for

clients to access these microservices within the

server-side application. It essentially functions as a

reverse proxy that routes incoming requests from

client-side to the appropriate microservices while

abstracting the complexities of the underlying

architecture. One of the primary purposes of this

service is to address the challenges associated with

microservices, such as service discovery, load

balancing, authentication, authorization, and

request routing. By consolidating these concerns

into a centralized component, the API gateway

simplifies the interaction between client-side

application and the microservices.

Figure 5. Implementation of API Gateway

(in our case, base service)

Furthermore, this base service performs additional

tasks such as request/response transformation,

protocol translation, caching, and logging. These

capabilities enhance the performance, security, and

resilience of the microservices by offloading

common functionalities from individual services to

the gateway. From a client perspective, the base

service represents a unified interface, shielding

them from the complexities of the underlying

microservices architecture. Client-side application

interacts with the base service using standard

protocols and conventions, while the service

handles communication with the three specific

domain microservices, and the identity server

microservice which is responsible for authentication

and authorization (this microservice also facilitates

the implementation of cross-cutting concerns such

as security policies and monitoring, offering a

centralized point for enforcing policies and

collecting metrics across the entire microservices

ecosystem).

However, there is a potential risk to designing this

base service, since it could become a single point

of failure or a performance bottleneck [9]. To avoid

such situations, it's essential to design this concept

carefully, applying several strategies such as

horizontal scaling, fault tolerance mechanisms, and

intelligent routing, who can help mitigate these

risks while ensuring the reliability and scalability of

the microservices architecture.

Overall, this base service plays a pivotal role in

orchestrating communication between client-side

application and microservices on server-side

application, simplifying development, enhancing

security, and improving the overall performance

and manageability of distributed systems.

5. CONCLUSION

Microservice architecture leverages server

development expertise to enhance the flexibility,

scalability, and maintainability of applications. By

decomposing complex business system into

smaller, independently deployable services and

applying this architecture to a smaller system, such

as an online sales platform, allows for independent

development and deployment of features like user

management, product catalog, and payments. This

approach, while more complex, provides significant

benefits in terms of modularity and scalability.

Considering that, the intention of this work was to

present an evolutionary perspective to help the

reader understand the main motivations that lead

to the distinguishing characteristics of

microservices [10].

The modular nature of microservices fosters faster

development cycles, enabling teams to iterate and

innovate more rapidly. This agility is particularly

advantageous in today's fast-paced, competitive

market, where the ability to deliver value quickly is

paramount. Moreover, microservices facilitate

scalability, both in terms of technology and team

structure. Teams can focus on developing and

maintaining smaller, specialized services, reducing

the cognitive load and enabling them to make

independent decisions regarding technology

choices, deployment strategies, and scaling

requirements. Additionally, microservices enhance

resilience by isolating failures and minimizing the

46

Computer Sciences and Information Technology Savić and Milačić

blast radius of issues. If one service experiences a

failure, it doesn't necessarily impact the entire

system, allowing other services to continue

functioning independently. This fault isolation is

crucial for maintaining system stability and

ensuring high availability in distributed

environments.

However, adopting microservices is not without its

challenges. The increased complexity of managing

distributed systems requires careful consideration

of issues such as service discovery, inter-service

communication, data consistency, and deployment

orchestration. Furthermore, organizations must

invest in robust monitoring, logging, and debugging

tools to effectively manage and troubleshoot

microservices-based architectures.

Despite these challenges, the benefits of

microservices architecture are compelling, driving

widespread adoption across industries. As

organizations strive to innovate and stay

competitive in today's digital landscape,

microservices offer a flexible, scalable, and resilient

foundation for building modern software systems.

With careful planning, thoughtful design, and

continuous refinement, microservices architecture

can unlock new opportunities for organizations to

deliver value to their customers and adapt to

evolving business requirements.

REFERENCES

[1] Bozic, V. (2023). Microservices architecture,
Research Proposal,
DOI:10.13140/RG.2.2.21902.84802.

[2] Fowler, M. (2014). Microservices: a definition

of this new architectural term,

https://martinfowler.com/articles/microservic

es.html.

[3] Nadareishvili, I., Ronnie, M., McLarty, M.,

Amundsen, M. (2016). Microservice

architecture: aligning principles, practices and

culture, Published by O’Reilly Media,

Sebastopol, 978-1-491-95979-4 [LSI].

[4] Pachikkal, C. (2021). Interservice

Communication in Microservices, IJARSCT,

ISSN 2581-9429. DOI: 10.48175/568

[5] Weerasinghe, S., Perera, I. (2023). Optimized

Strategy for Inter-Service Communication in

Microservices, International Journal of

Advanced Computer Science and Applications,

Vol. 14, No. 2.

[6] Nzekwe, E. (2022). Demystifying the

Repository Pattern in ASP.Net Core Web API

[7] Erl T. (2009), SOA Design Patterns, Prentice

Hall, ISBN 978-0-13-613516-6.

[8] Mudassar Ali Khan, S. (2022). Onion

Architecture in Asp.net Core 6 Web API.

[9] Gadge, S., Kotwani, V. (2017). Microservice

Architecture: API Gateway Considerations.

[10] Dragoni, N., Giallorenzo, S., Lafuente, A.,

Mazzara, M., Montesi, F., Mustafin, R., Safina,

L. (2017). Microservices: Yesterday, Today,

and Tomorrow. DOI 10.1007/978-3-319-

67425-4_12

47

http://dx.doi.org/10.13140/RG.2.2.21902.84802
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

