
10th International Scientific Conference

Technics,
Informatics, and
Education – TIE 2024
20-22 September 2024

Session: Computer Sciences and Information Technology

Professional paper

DOI: 10.46793/TIE24.053S

Analysis of Approaches to Developing Kotlin

Multiplatform Applications and Their Impact on

Software Engineering

Nikola Stanić1* [0000-0002-8306-0273] and Stefan Ćirković1 [0009-0004-6775-1543]
1 University of Kragujevac/ Faculty of Technical Sciences, Čačak, Serbia

* nikola.stanic@ftn.kg.ac.rs

Abstract: This paper explores the concept of Kotlin Multiplatform and analyzes the approach to developing

multiplatform applications using this tool. The research aims to analyze the key features of Kotlin

Multiplatform, including its ability to share code across different platforms such as Android, iOS, and web.

Through a detailed analysis of existing literature and case studies, the paper will explore the advantages

and challenges of developing multiplatform applications using Kotlin Multiplatform, as well as their impact

on software engineering. Special attention will be paid to performance, scalability, and code management

within Kotlin Multiplatform projects. Based on the gathered data, the paper will also explore future

perspectives of multiplatform application development, including potential trends, technological

advancements and other cross platform solutions.

Keywords: Kotlin Multiplatform; multiplatform; software engineering; performance; code management

1. INTRODUCTION

In today's digitally-driven world, the online

presence of businesses has become more than just

a trend, it's a necessity. With the rapid

advancements in technology and the widespread

accessibility of the internet, consumers are

increasingly turning to online platforms to discover,

interact with, and ultimately make purchasing

decisions regarding products and services.

This would mean that every company has to

develop a separate mobile application, web

application, and desktop application. This leads to

significant costs and inconsistencies across

platforms. It requires having several teams of

developers to build the application on each platform

and later maintain it.

One way to solve this problem is by creating a

single application that would work on all platforms.

In 2017, the first version of Kotlin Multiplatform

was released, aiming to enable the development of

a mobile application that would work on both the

Android and iOS systems.

Kotlin Multiplatform is intended to streamline the

creation of cross-platform projects, reducing the

time spent writing and maintaining separate

codebases for different platforms while still allowing

for the advantages of native programming. In

Figure 1, all platforms supported by Kotlin

Multiplatform are shown.

Figure 1. All platforms supported in Kotlin
Multiplatform [1]

In the paper [2], a comprehensive methodology for

developing multi-platform applications using the

Kotlin programming language is presented. It

highlights the use of Kotlin Multiplatform and

Compose Multiplatform frameworks, which allow

for the creation of universal logic code and user

interfaces for Windows, Android, macOS, and

Linux, thereby reducing development time and

minimizing errors. The study emphasizes the

principles of declarative programming and the MVI

architectural pattern, alongside essential tools such

as Kotlin Coroutines for asynchrony, Gradle Kotlin

DSL, the Decompose library, and the MVIKotlin

framework. A modular project architecture is

proposed, divided into a common module with core

application logic and platform-specific modules for

application initialization and launch. Dependency

Injection is effectively managed using Koin module

files. This methodology offers a streamlined

approach to developing user interfaces and

application components across multiple platforms

using Kotlin.

53

mailto:nikola.stanic@ftn.kg.ac.rs
https://doi.org/10.46793/TIE24.053S

Computer Sciences and Information Technology Stanić and Ćirković

In the paper [3], the authors address the

challenges faced by software developers in

supporting multiple platforms, particularly mobile

platforms, due to significant platform differences.

They propose a native approach for developing

multiplatform applications that run on both Java

and Android. This approach tackles practical

software engineering concerns, including tool

configuration and the software design and

development process. It enables sharing 37% to

40% of application code between the two

platforms, which enhances the quality of the

applications. The authors also suggest that this

approach can be adapted for transforming existing

Java applications into Android applications.

2. METHODOLOGY

To gather the necessary literature, electronic

databases such as ResearchGate, Google Scholar,

and ScienceDirect were utilized, as these are

considered the most efficient tools for

comprehensive literature searches. The focus is on

papers published in the period from 2018 to 2024

in journals and collections of papers, papers written

in English and based on qualitative and quantitative

methods. Keywords such as "Kotlin Multiplatform,"

"cross-platform development", "Kotlin

Multiplatform performance," and "Kotlin

Multiplatform vs native development" were used.

Selected papers have been chosen to investigate

the advantages and disadvantages of Kotlin

Multiplatform applications, as well as those

examining the performance of this tool compared

to similar ones. The selected papers were reviewed

in full to extract detailed information about Kotlin

Multiplatform. This included its technical

capabilities, performance metrics, and case studies

of its application. The extracted data were

synthesized to provide a coherent narrative about

the current state and future potential of Kotlin

Multiplatform.

 A SWOT (Strengths, Weaknesses, Opportunities,

Threats) analysis was conducted to evaluate the

overall potential and challenges associated with

Kotlin Multiplatform. Visual aids, such as charts and

tables, were created to illustrate key findings and

comparisons.

By employing this detailed methodology, the

review aims to provide a thorough and objective

analysis of Kotlin Multiplatform, offering valuable

insights for developers, researchers, and industry

professionals.

3. RESULTS AND DISCUSSION

The traditional approach to programming, known

as the native development, involves using a

language specific to the platform. For example,

Kotlin for Android, Swift for iOS, Java for desktop

applications, HTML for web applications, etc.

To avoid this, the industry has shifted towards

cross-platform development, where by creating

one application and using a single programming

language, we obtain an application that works on

all platforms.

3.1. Advantages and disadvantages

The main advantages of the native development

are [4]:

• Best user experience,

• Great app performance,

• Leverage full platform capabilities

The main advantages of the cross-platform

development are [4]:

• Reduce development time by reusing the same

code for different platforms,

• Consistent behavior across platforms,

• Fewer bugs

Table 1. Kotlin SWOT analysis [1]

Kotlin - SWOT

Strengths:
Kotlin Multiplatform enables high code reuse, provides
native performance, and offers access to platform-

specific APIs. Strong support from JetBrains and
Google, along with an active developer community,
further enhances its robustness and reliability.

Weaknesses:
Weaknesses include a limited number of libraries
available for all platforms, initial setup complexity, and
a steeper learning curve for new developers unfamiliar
with the framework.

Opportunities:
Kotlin Multiplatform offers promising opportunities,
with growing library support and increasing adoption in
the industry. There is potential for expansion into more
platforms, which could further enhance its appeal and
utility.

Threats:
Despite its many advantages, Kotlin Multiplatform
faces threats from other cross-platform solutions such
as Flutter, Xamarin, and React Native, as well as the
rapid pace of technological changes that could impact
its relevance and efficiency.

With the Kotlin Multiplatform, developers can

maintain a unified codebase for the application logic

across various platforms. You also get advantages

of native programming, including great

performance and full access to platform SDKs.

Kotlin provides the following code sharing

mechanisms [1]:

• Share common code among all platforms used

in your project.

• Share code among some platforms included in

your project to reuse much of the code in

similar platforms.

In Figure 2, the architecture of Kotlin Multiplatform

is shown.

54

Computer Sciences and Information Technology Stanić and Ćirković

Figure 2. The Kotlin Multiplatform Mobile (KMM)
architecture [1]

The main challenge that developers encounter in

developing such applications is the limited number

of libraries that can work across all platforms. The

main task is to utilize a shared codebase across all

platforms and libraries that function on each

platform. If a library isn't supported on one of the

platforms, we'd have to locate a platform-specific

library and implement its functionality separately

Due to the accelerated development, this is

becoming less of an issue, and this year we can

even see that many libraries have released their

beta versions of plugins that work on multi-

platform applications like ktor, library that helps

you build servers and clients that can handle tasks

asynchronously.

Google's Android team is actively supporting Kotlin

Multiplatform by releasing experimental

multiplatform versions of Jetpack libraries. So far,

they have made several libraries, including

Collections, DataStore, Annotations, and Paging,

compatible with Kotlin Multiplatform [5].

Kotlin Multiplatform uses the Compose

Multiplatform framework for creating user

interfaces. With the Compose Multiplatform UI

framework, you can push the code-sharing

capabilities of Kotlin Multiplatform beyond

application logic. You can implement the user

interface once and then use it for all the platforms

you target – iOS, Android, desktop, and web. By

combining Compose and Kotlin Multiplatform you

can achieve your codebase to consist of Kotlin for

80–95% depending on the project’s complexity. In

Figure 3, the growth of the number of libraries

supported by Kotlin Multiplatform over the years is

shown.

Figure 3. Kotlin Multiplatform Libraries by Year
[3]

3.2. Performance test

In this chapter, several studies comparing the

performance of applications developed using KMM

versus native are presented.

In the 2019, Evert [6] published a study on the

impacts on development productivity, application

size, and startup time for Android and iOS

applications developed in Kotlin Multiplatform.

Study [6] shows:

As for if the startup time is affected by using Kotlin

Multiplatform instead of native development, the

results speak partly for and partly against. The

startup times seems to be significantly longer for

the multiplatform Android, than the native Android,

application. No significance can be seen in the

difference in the startup times for the iOS

applications.

As for the application sizes, they are shown to be

larger in the multiplatform applications, than in the

native applications. However, the larger size might

very well be due to an initial application size

overhead, and the difference in size might decrease

with a more extensive application.

The results indicated that the Kotlin Multiplatform

framework could make it possible for a developer

to write less code but larger application size

compared to developing natively.

In the study [7], the performance of Kotlin

Multiplatform Mobile was compared to Swift for iOS

development in terms of execution time, memory

consumption, and CPU usage.

The results demonstrate generally faster execution

times for KMM, yet with an overhead in higher

memory consumption and CPU usage. This

suggests that Kotlin Multiplatform can be opted for

in performance-critical applications, whereas

Native is suggested for apps that prioritize efficient

resource usage [7].

4. DETAILED CASE STUDIES: PRACTICAL

IMPLEMENTATION OF KOTLIN

MULTIPLATFORM

In the case study [8], companies are showcased

that have implemented various code-sharing

strategies, including integrating into existing apps

and sharing a portion of app logic, as well as

building new applications based on Kotlin

Multiplatform and Compose Multiplatform.

McDonald's leverages Kotlin Multiplatform for their

Global Mobile App, enabling them to build a

codebase that can be shared across platforms,

removing the need for codebase redundancies [8].

After experimenting with both Flutter and React

Native, 9GAG decided to implement Kotlin

Multiplatform. They gradually adopted the

technology and now ship features faster, while

providing a consistent experience to their users [8].

Kotlin Multiplatform helps tech giant Netflix

optimize product reliability and delivery speed,

which is crucial for serving their customers'

constantly evolving needs [8].

55

Computer Sciences and Information Technology Stanić and Ćirković

To understand the practical implementation of

Kotlin Multiplatform across different types of

applications, we will consider several detailed case

studies. We analyze the use of sensors, games, and

background service applications, and evaluate their

suitability for Kotlin Multiplatform based on

literature and practical examples.

4.1. Use of sensors in applications

The use of sensors in applications is an important

aspect for many modern mobile applications,

especially in the domains of health, fitness, and

geolocation services. Kotlin Multiplatform allows

sharing business logic between iOS and Android

applications, but it has certain limitations when it

comes to direct interaction with sensor hardware.

Integration of platform-specific functionalities, such

as sensors, requires additional efforts and the use

of platform modules to ensure full functionality on

both platforms [1]. Therefore, applications that

heavily utilize sensors may be less suitable for

Kotlin Multiplatform due to the complexity of

implementation.

4.2. Games

The paper [16] provides insight into the suitability

of Kotlin Multiplatform for game development.

Kotlin Multiplatform allows sharing business logic

across different platforms, which can be useful in

developing simpler games that do not require

intensive graphical performance. However, for

more complex games that require high

performance and optimized graphics, Kotlin

Multiplatform may have certain limitations.

KMP has proven to be an effective tool for rapid

development and code sharing, but games that

demand a high refresh rate, low latency, and

complex graphical effects may benefit from native

development to achieve optimal performance. For

instance, games that use advanced graphics

libraries and heavily rely on the GPU may face

challenges when developed using Kotlin

Multiplatform, as this approach might lead to

performance compromises [16].

4.3. Background service applications

Background service applications often require

stability, efficient resource management, and the

ability to execute tasks concurrently. Kotlin

Multiplatform supports asynchronous and parallel

programming through coroutines, enabling efficient

management of background tasks. These features

make Kotlin Multiplatform suitable for developing

background service applications that require

reliable operation without compromising

performance [17].

Kotlin Multiplatform offers a powerful tool for

developing applications that share business logic

between iOS and Android platforms. While its

suitability for certain types of applications, such as

games and sensor-intensive apps, is limited due to

performance and integration complexity, Kotlin

Multiplatform excels in developing background

service applications. Each application should be

carefully analyzed to determine if Kotlin

Multiplatform is the most effective approach for its

implementation.

5. OTHER CROSS PLATFORM SOLUTIONS

Cross-platform solutions enable the development

of mobile applications for various operating

systems. In this section, we will analyze the

following technologies through the lens of SWOT to

better understand their strengths, weaknesses,

opportunities, and threats.

5.1. Fluter

Flutter began as a project by the Chrome browser

team at Google to explore the feasibility of building

a fast rendering engine with a non-traditional

layout model. They wanted to see whether it is

possible to build a fast rendering engine while

ignoring the traditional model of layout. In a few

weeks, significant performance gains were

achieved and that is what was discovered:

• Most layout is relatively simple, such as: text

on a scrolling page, fixed rectangles whose size

and position depend only on the size of the

display, and maybe some tables, floating

elements, etc.

• Most layout is local to a subtree of widgets, and

that subtree typically uses one layout model, so

only a small number of rules need to be

supported by those widgets.

In the paper [9], the author demonstrated the

development of a currency exchange application

using both Flutter and Kotlin Multiplatform tools.

Since the paper was published in 2018, the main

issues the author faced were the unavailability of

libraries, which is less of a problem today. Studies

indicate that while Kotlin Multiplatform executes

faster, it requires more resources. However, with

decreasing technology costs and rapid evolution,

execution time remains crucial for user experience.

The problem with library support is diminishing due

to constant adaptation efforts. Introducing

Compose Multiplatform has enhanced UI

development across platforms, bringing additional

benefits to Kotlin Multiplatform. It's worth noting

that an author of another paper suggested that

these tools offer performance almost identical to

native development and referred to them as a sort

of "golden bullet" in the debate between native and

cross-platform development. This perspective

highlights the optimism in the industry regarding

the future of cross-platform tools like Kotlin

Multiplatform.

As technology evolves, it may become less cost-

effective for companies to stick with native

development. The decision to transition to Kotlin

Multiplatform should be based on the project's

56

Computer Sciences and Information Technology Stanić and Ćirković

specific requirements and the evidence from

successful case studies.

Table 2. Flutter SWOT analysis [10]

Flutter - SWOT

Strengths:

Rapid application development, hot reload
functionality, high performance, material design.
Supported platforms: iOS, Android, Web, macOS,
Windows, Linux.

Weaknesses:
Partial support for native APIs, fewer libraries and
packages compared to other technologies.

Opportunities:
Growing support and popularity, support for web
applications.

Threats:
Competition from other cross-platform solutions like
Xamarin, Kotlin Multiplatform, and React Native.

5.2. XAMARIN

Xamarin is a cross-platform solution that allows

development of mobile applications for iOS,

Android, and UWP (Universal Windows Platform)

using the C# programming language and .NET

ecosystem [11].

Table 3. Xamarin SWOT analysis [9]

Xamarin - SWOT

Strengths:

Stable support for native APIs, high performance,

developed community.

Supported platforms: iOS, Android, UWP (Universal

Windows Platform).

Weaknesses:

Complex configuration, need to familiarize with the

.NET ecosystem.

Opportunities:

Integration with Visual Studio, support for Xamarin.

Forms for code sharing.

Threats:

Competition from Flutter, Kotlin Multiplatform, and

other solutions, limitations in supporting new platform

features.

5.3. .NET MAUI

NET MAUI (Multi-platform App UI) is a framework

that enables development of multiplatform mobile

applications using C# and XAML. It is announced

by Microsoft as the successor to Xamarin.Forms,

providing a modern, simple, and productive

platform for creating applications that work on

different devices and operating systems [12].

Table 3. .NET MAUI SWOT analysis [12]

.NET MAUI - SWOT

Strengths:
Integration with the .NET ecosystem enables easier
app development for various platforms.
High productivity and code sharing capabilities
between iOS, Android, Windows, and macOS.
Stable support for native APIs and tools provided by
Microsoft .

Weaknesses:
Being in development, it may take time for the

framework to stabilize and provide all functionalities.
Adoption of new technology by development teams
may require time.

Opportunities:
.NET MAUI promises improvements in performance,
tools, and user experience compared to previous
versions of Xamarin.Forms.

Integration with Visual Studio IDE offers additional
support and tools for development.

Threats:
Competition from other popular cross-platform
solutions like Flutter, which already have a large
community and support .
Need to adapt to new trends and market demands to
remain competitive.

5.4. React Native

React Native is an open-source platform for

developing native mobile applications, utilizing

standard web technologies such as JavaScript

(JSX), CSS, and HTML, but the result is a fully

native application. This means that the application

runs fast, smoothly, and is equivalent to any native

application built using traditional iOS technologies

like Objective-C and Swift [13].

Table 4. React Native SWOT analysis [13]

React Native - SWOT

Strengths:
Active community, hot reload support, access to native
APIs.
Supported platforms: iOS, Android.

Weaknesses:
Performance can be variable, issues with library
versioning.

Opportunities:
Use of existing knowledge in JavaScript and React,
support for a large number of platforms.

Threats:
Competition from other cross-platform solutions,
potential performance issues for complex applications.

5.5. NativeScript

NativeScript is an open-source framework for

mobile app development that allows developers to

use JavaScript, TypeScript, or Angular to build

high-performance applications for iOS and Android

platforms [14].

Table 5. NativeScript SWOT analysis [14]

NativeScript - SWOT

Strengths:
Full support for native APIs, direct integration with
Angular, TypeScript support.
Supported platforms: iOS, Android.

Weaknesses:
Larger resources needed for application development,
smaller community compared to other solutions.

Opportunities:
Code sharing between web and mobile applications,
access to native components.

Threats:
Competition from other cross-platform solutions,
limitations in supporting certain platforms.

5.6. Electron

Electron is an open-source framework for

developing desktop applications using JavaScript,

HTML, and CSS. It enables the creation of cross-

platform applications that run on Windows, macOS,

and Linux using the same JavaScript codebase.

Electron integrates Chromium and Node.js,

57

Computer Sciences and Information Technology Stanić and Ćirković

providing access to a rich set of tools and

functionalities for developing complex applications.

This framework is a popular choice for creating

tools, editors, and other desktop applications [15].

Table 6. Electron SWOT analysis [15]

Electron - SWOT

Strengths:
Easy integration with web technologies, support for
various platforms.
Supported platforms: Windows, macOS, Linux.

Weaknesses:
Larger resources required for installation and

execution, higher memory consumption.

Opportunities:
Development of desktop applications using web
technologies, access to system resources.

Threats:
Competition from other technologies, potential
performance issues for complex applications.

6. CONCLUSION

In this paper, we analyzed the concept of Kotlin

Multiplatform, its performance, and it’s potential to

replace native approaches. According to studies [6]

and [7], Kotlin Multiplatform executes faster but

requires more resources. Today, this isn't a major

issue because the cost of technology is decreasing,

and it's rapidly evolving, while execution time is

crucial for user experience.

The problem with libraries supported for all

platforms is diminishing as constant efforts are

made to adapt them. Nonetheless, it's possible to

separately implement functionality using another

plugin if one isn't supported on a particular platform

until a compatible one emerges for all.

By introducing Compose Multiplatform, it's now

possible to develop user interfaces in Kotlin for all

types of platforms, which brings additional

advantages to Kotlin Multiplatform.

With the increasing development and improvement

of Kotlin Multiplatform, it won't be cost-effective for

programming companies to continue with the

native approach. Whether it's better to transition to

this technology is evidenced by case studies [6] of

those who have adopted this approach.

Based on the SWOT analysis presented in Chapter

5, each of these technologies has its strengths and

weaknesses. When choosing a cross-platform

technology, it's important to carefully consider the

specific requirements of the project and the goals

of the application development.

Future research should focus on several key areas

to enhance Kotlin Multiplatform. This includes

advancing library support by developing new

multiplatform libraries and improving existing ones.

Performance optimization is crucial, with emphasis

on compiler optimization, memory management,

and execution speed. Enhancements in tooling,

particularly in integrated development

environments (IDEs) and automated testing tools,

are also necessary. Additionally, expanding Jetpack

Compose for multiplatform applications will

improve user interface consistency. Finally,

gathering real-world case studies and fostering

community engagement will provide valuable

insights and accelerate Kotlin Multiplatform

adoption.

ACKNOWLEDGEMENTS

This study was supported by the Ministry of

Science, Technological Development and

Innovation of the Republic of Serbia, and these

results are parts of the Grant No. 451-03-66 /

2024-03 / 200132 with University of Kragujevac -

Faculty of Technical Sciences Čačak.

REFERENCES

[1] Kotlin Language Documentation 1.9.20. URL:
https://kotlinlang.org/docs/kotlin-
reference.pdf(visited on 19.04.2024).

[2] Kozub, Y., & Kozub, H. (2023). FEATURES OF

MULTIPLATFORM APPLICATION DEVELOPMENT
ON KOTLIN. Herald of Khmelnytskyi National
University. Technical sciences.
https://doi.org/10.31891/2307-5732-2023-
317-1-224-229.

[3] Cheon, Y. (2019). Multiplatform Application

Development for Android and Java. 2019 IEEE
17th International Conference on Software
Engineering Research, Management and

Applications (SERA), 1-5.
https://doi.org/10.1109/SERA.2019.8886800.

[4] JetBrains Documentation 1.9.20. URL:
https://www.jetbrains.com/kotlin-

multiplatform/ (visited on 19.04.2024).
[5] JetBrains Blog URL:

https://blog.jetbrains.com/kotlin/2023/11/kot
lin-multiplatform-stable/ (visited on
19.04.2024).

[6] Anna-Karin Evert. “Cross-Platform
Smartphone Application Development with

Kotlin Multiplatform: Possible Impacts on
Development Productivity, Application Size and
Startup Time.” MA thesis. KTH Royal Institute
of Technology, 2019. URL: https://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A13
68323&dswid=6605

[7] Skantz, Anna. Performance Evaluation of Kotlin
Multiplatform Mobile and Native iOS
Development in Swift. https://www.diva-
portal.org/smash/record.jsf?pid=diva2%3A17
93389&dswid=2208

[8] JetBrains Case studies:
https://www.jetbrains.com/help/kotlin-

multiplatform-dev/case-studies.html (visited
on 19.04.2024).

[9] Wasilewski K, Zabierowski W. A Comparison of
Java, Flutter and Kotlin/Native Technologies
for Sensor Data-Driven Applications. Sensors.
2021;21(10):3324.

https://doi.org/10.3390/s21103324

[10] R. Payne, "Beginning App Development with
Flutter," 2023.

58

https://kotlinlang.org/docs/kotlin-reference.pdf
https://kotlinlang.org/docs/kotlin-reference.pdf
https://doi.org/10.31891/2307-5732-2023-317-1-224-229
https://doi.org/10.31891/2307-5732-2023-317-1-224-229
https://www.jetbrains.com/kotlin-multiplatform/
https://www.jetbrains.com/kotlin-multiplatform/
https://blog.jetbrains.com/kotlin/2023/11/kotlin-multiplatform-stable/
https://blog.jetbrains.com/kotlin/2023/11/kotlin-multiplatform-stable/
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1368323&dswid=6605
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1368323&dswid=6605
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1368323&dswid=6605
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1793389&dswid=2208
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1793389&dswid=2208
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1793389&dswid=2208
https://www.jetbrains.com/help/kotlin-multiplatform-dev/case-studies.html
https://www.jetbrains.com/help/kotlin-multiplatform-dev/case-studies.html

Computer Sciences and Information Technology Stanić and Ćirković

[11] N. Mazloumi, "Building Xamarin.Forms Mobile

Apps Using XAML: Mobile Cross-Platform XAML

and Xamarin.Forms Fundamentals," 2019.
[12] Microsoft, "Introducing .NET Multi-platform

App UI (MAUI)," dotnet.microsoft.com,
Available: https://dotnet.microsoft.com/en-
us/apps/maui. (visited on 19.04.2024).

[13] A. Paul and A. Nalwaya, "React Native for
Mobile Development," 2019.

[14] NativeScript, Available:
https://nativescript.org/. (visited on
19.04.2024).

[15] Electron, "Electron | Build cross-platform

desktop apps with JavaScript, HTML, and CSS,"

electronjs.org. Available:
https://www.electronjs.org/. Accessed: Apr.
21, 2024.

[16] S. M. Lucas, "Cross-Platform Games in Kotlin,"
Game AI Research Group, School of Electronic
Engineering and Computer Science, Queen
Mary University of London.

[17] Ю. Козуб, Г. Козуб, "Features of Multiplatform
Application Development on Kotlin," doi:
10.31891/2307-5732-2023-317-1-224-229.

59

