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Abstract: This research paper presents an approach for predicting student academic success using Hidden 

Markov Models (HMMs). Leveraging a comprehensive dataset encompassing students' demographics, 

academic performance, attendance records, and course engagement, the study employs an HMM 

framework to model levels of student academic success. Observable emissions derived from the data, such 

as grades and interaction patterns, are utilized to train the HMM and infer the most likely sequence of 

hidden states for new students. Evaluation of the proposed model demonstrates promising predictive 

accuracy. Through rigorous assessment using standard metrics including state prediction accuracy and 

state transition accuracy, the effectiveness of the HMM in capturing diverse student trajectories is 

demonstrated, underscoring the potential of HMMs as a powerful tool for understanding and predicting 

student outcomes, offering valuable insights for educational interventions and support systems. 
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1. INTRODUCTION

Predicting student academic success is a critical 

challenge in educational research, with significant 

implications for targeted interventions and 

resource allocation. This research focuses on using 

Hidden Markov Models (HMMs) to analyze and 

predict student academic trajectories by 

incorporating various dimensions of student data. 

Hidden Markov Models, well-regarded for their 

ability to model time series data and capture latent 

state transitions, offer a robust framework for 

understanding the dynamic nature of student 

performance over time. 

The study integrates a diverse dataset, including 

demographic information, academic performance 

metrics, attendance records, and patterns of course 

engagement. These features are utilized to develop 

a model that can identify and infer latent states of 

overall academic achievement. Observable 

emissions, such as grades and interaction 

frequencies, are employed to train the HMM, 

enabling it to predict the sequence of hidden states 

that most likely represent student behaviors and 

outcomes. 

By applying HMMs to educational data, this 

research aims to uncover insights into the factors 

driving academic success and challenges. This 

approach facilitates the identification of at-risk 

students and the development of tailored support 

strategies, enhancing educational interventions 

and contributing to improved student retention and 

success rates. 

2. HIDDEN MARKOV MODELS

Hidden Markov Models (HMMs) are statistical 

models used to describe systems that are assumed 

to be Markov processes with hidden states. They 

are particularly useful for modeling time series data 

where the system being modeled is not directly 

observable (hidden) but can be inferred through 

observable sequences. An HMM is characterized by 

the following components [1, 2]: 

- States (S): A finite set of hidden states S =

{S1, S2, ..., SN}. The actual state at time t is

denoted as St, which is not directly observable.

- Observations (O): A finite set of possible

observations O={O1, O2, ...,OM}. At any time t,

an observation Ot is made, which is dependent

on the current hidden state St.

- Transition Probabilities (A): A matrix

A=[aij] representing the probabilities of

transitioning from one state to another.

Specifically, aij is the probability of transitioning

from state Si to state Sj:

𝑎𝑖𝑗 = 𝑃(𝑆𝑡+1 = 𝑆𝑗|𝑆𝑡 = 𝑆𝑖) (1) 

The rows of A must sum to 1: 

∑ 𝑎𝑖𝑗
𝑁
𝑗=1 = 1   ∀𝑖 (2) 

- Emission Probabilities (B): A matrix 

B=[bj(o)] representing the probability of 

observing o given state Sj. bj(o) is the 

probability of observation o being emitted from 
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state Sj:  

 𝑏𝑗(𝑜) = 𝑃(𝑂𝑡 = 𝑜|𝑆𝑡 = 𝑆𝑗) (3) 

For discrete observations, each row of B must 

sum to 1:   

 ∑ 𝑏𝑗
⬚
𝑜∈𝑂 (𝑜) = 1  ∀𝑗 (4) 

- Initial State Probabilities (π): A vector 

π=[πi] representing the probability distribution 

over the initial states. πi is the probability that 

the system starts in state Si:  

 𝜋𝑖 = 𝑃(𝑆1 = 𝑆𝑖) (5) 

The probabilities must sum to 1:  

 ∑ 𝜋𝑖
𝑁
𝑖=1 = 1 (6) 

An HMM is often denoted by the triple λ=(π,A,B). 

The Markov property of an HMM implies that the 

probability of transitioning to the next state 

depends only on the current state and not on the 

sequence of states that preceded it: 

 𝑃(𝑆𝑡+1|𝑆1, 𝑆2, … , 𝑆𝑡) = 𝑃(𝑆𝑡+1|𝑆𝑡) (7) 

Given the current state, the probability of an 

observation depends only on that state and is 

independent of previous observations: 

 𝑃(𝑂𝑡|𝑆1, 𝑆2, … , 𝑆𝑡, 𝑂1, 𝑂2, … , 𝑂𝑡) = 𝑃(𝑂𝑡|𝑆𝑡) (8) 

3. METHODOLOGY 

3.1. Data Preparation 

The dataset utilized in this study was meticulously 

compiled from multiple sources, ensuring a 

comprehensive and diverse representation of 

student data [3-6]. These sources included 

institutional academic records, online learning 

platforms, student information systems, and 

educational surveys. The integrated dataset 

encapsulated a wide range of student 

characteristics and behaviors, crucial for modeling 

academic success. Key features extracted from 

these sources, as detailed in Table 1, encompass 

various aspects of academic performance, socio-

demographic attributes, and behavioral indicators. 

The resulting dataset comprises time-series data of 

student characteristics tracked and recorded for 

each semester, providing a dynamic view of their 

academic progression and behavior over time. 

Once the dataset was compiled, the preprocessing 

phase began with encoding categorical features. 

Categorical features such as Gender, Parental 

Education Level and Degree Type were transformed 

using One-Hot Encoding. This method converts 

categorical variables into a binary matrix, where 

each unique category is represented by a separate 

column, and the presence of a category is indicated 

by a '1' while its absence is indicated by a '0'. For 

example, the Degree Type feature, which could 

take values such as "B.Sc.", "B.A.", or "M.Sc.", was 

expanded into multiple binary columns, each 

representing one of these categories. For numerical 

features, such as Current GPA, Current Semester, 

and Days Since Enrollment, scaling was performed 

using the MinMax scaler. This approach scales each 

numerical feature to a range between 0 and 1, 

based on the minimum and maximum values of 

that feature. This normalization ensures that all 

numerical features contribute equally to the model 

and prevents features with larger ranges from 

disproportionately influencing the model’s 

predictions. 

Handling missing data was also a critical aspect of 

data preparation. Features with a small percentage 

of missing values were imputed using statistical 

technique of mean imputation, ensuring that these 

gaps did not affect the model’s performance. 

However, features with a high percentage of 

missing values were removed from the dataset to 

maintain data integrity and model accuracy. This 

systematic approach to data cleaning and 

preparation ensured that the dataset was robust, 

reliable, and ready for subsequent modeling 

processes. 

Table 1. Features in the gathered dataset 

Feature Description 

Age The student’s age. 

Gender The student’s gender. 

Semester 
The academic term or semester 
the student is currently enrolled 
in. 

Degree Type 

The specific academic degree 
program or major the student is 
enrolled in, such as Bachelor of 
Science (B.Sc.), Master of 
Science (M.Sc.), etc. 

Days Since 
Enrollment 

The number of days that have 
elapsed since the student’s initial 
enrollment date. 

Current GPA 

Provides a continuous measure 
of the student’s academic 
performance averaged across all 
courses for the current term. 

Class Attendance 
Rate 

Percentage of classes attended 

out of the total scheduled 
classes. 

Weekly E-Learning 
Platform Logins 

Number of logins to the online 
course platform per week. 

Parental Education 
Level 

Highest educational attainment 
of the student’s parents or 
guardians (e.g., high school, 
college). 

Assignment 
Submission Rate 

Percentage of assignments 
submitted on time in each 
course. 

Number of Courses 
Enrolled 

Total number of courses the 
student is enrolled in during the 
current term or semester. 

Library Visits per 
Month 

Number of visits to the library 
per month for academic 
purposes. 

For this research paper's data preprocessing, the 

Python programming language was utilized 

alongside its robust libraries: pandas, numpy, and 

scikit-learn. Pandas facilitated the efficient handling 

and manipulation of the dataset, allowing for 

seamless integration and transformation of data 

from multiple sources. Numpy provided essential 

support for numerical operations and array 

management, critical for statistical calculations. 
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Scikit-learn offered powerful tools for encoding 

categorical features using One-Hot Encoding, 

scaling numerical data with the MinMax scaler, and 

managing missing values through the mean 

imputation technique. 

3.2. Defining Hidden States 

In the process of creating a Hidden Markov Model 

(HMM) for predicting student academic success, the 

definition of hidden states was undertaken to 

capture the latent conditions that influence 

observable academic outcomes. These hidden 

states represent unobservable factors that 

significantly affect students’ academic trajectories 

but are not directly measurable through the 

dataset. The definition of hidden states was 

informed by a combination of domain knowledge, 

research objectives, and the nature of the available 

data. 

The identification of latent variables was a crucial 

step in defining the hidden states. It was essential 

to represent underlying factors that influence 

observable features such as grades, attendance, 

and engagement. Hidden states defined in this 

study are presented in Table 2. 

Table 2. Hidden States 

Hidden State Description 

At Risk of Drop-Out 

This state characterizes students 
who exhibit poor academic 
performance, low attendance, 
and high stress levels. Such 
students are identified as being 
at a high risk of discontinuing 
their studies. This state captures 
patterns of disengagement and 
underperformance. 

On Track 

Students in this state are those 
performing satisfactorily, 
maintaining average grades, and 
consistent attendance. This state 
indicates a normal progression 
through their academic program 
without significant issues. 

Excellent 

This state represents students 
who excel academically, 
demonstrating high grades, 
strong attendance, and active 
participation in academic 
activities. These students are 
identified as high achievers likely 
to succeed. 

The hidden states were defined with the dual 

objectives of predictive accuracy and providing 

actionable insights for educational interventions. 

States were chosen to meaningfully capture 

variations in student trajectories relevant to 

predictive goals. It was imperative that the defined 

states facilitate the identification of students at risk 

and those excelling, thereby allowing for targeted 

interventions to support struggling students or 

enhance the performance of high achievers. The 

state transition diagram is shown on Fig. 1. 

 

Figure 1. State Transition Diagram 

3.3. Clustering and Labeling the Dataset 

The initial dataset compiled for this study did not 

include pre-assigned labels indicating the academic 

success or risk levels of students. Consequently, an 

unsupervised learning approach was employed to 

categorize the data into distinct clusters. The K-

Means clustering algorithm was selected for this 

task due to its effectiveness in partitioning data 

based on inherent similarities. K-Means was applied 

to the dataset, aiming to group student data points 

into three clusters, each representing different 

levels of academic engagement and performance. 

The clustering process involved analyzing a 

multidimensional feature space comprising the 

student. The K-Means algorithm iteratively 

adjusted the cluster centroids to minimize within-

cluster variance, effectively grouping students with 

similar academic profiles. After convergence, three 

distinct clusters were identified, each capturing 

unique patterns in the student data. These clusters 

were then subjected to further analysis to interpret 

their academic implications. 

Through detailed examination of the clusters' 

characteristics, descriptive labels were assigned to 

each cluster based on the observed data patterns. 

One cluster, characterized by low grades, poor 

attendance, and high stress levels, was labeled as 

"At Risk of Drop-Out", reflecting students who are 

likely to struggle academically and potentially 

discontinue their studies. A second cluster, 

exhibiting average academic performance and 

consistent attendance, was labeled as "On Track", 

indicating students who are progressing normally 

without significant issues. The third cluster, marked 

by high grades, strong attendance, and active 

engagement, was labeled as "Excellent", 

representing students who are thriving 

academically. This labeling process transformed the 

unsupervised clusters into meaningful categories, 

enabling the subsequent training of the Hidden 

Markov Model with these inferred state labels. 

Table 3 presents the summary of key statistics 

(Average Current GPA, Average Class Attendance 

Rate (%), Average Weekly E-Learning Platform 
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Logins, Average Assignment Submission Rate) for 

each cluster. This information highlights distinct 

patterns and potential intervention points for each 

group. Additionally, this table aids in identifying 

characteristic profiles for each cluster, offering 

clear benchmarks to assess student progress and 

tailor support strategies effectively. 

Table 3. Key Cluster Statistics 

Cluster GPA CAR EPL ASR 

At Risk of Drop-Out 2.1 58.4 2.1 54.2 

On Track 3.0 76.0 7.3 86.2 

Excellent 3.6 92.7 11.2 97.7 

In Table 3 GPA represents Average Current GPA, 

CAR represents Average Class Attendance Rate 

(%), EPL represents Average Weekly E-Learning 

Platform Logins, and ASR represents Average 

Assignment Submission Rate. 

3.4. Calculating HMM Input Values 

Training a Hidden Markov Model (HMM) involves 

estimating the model parameters, namely the 

initial state probabilities, transition probabilities, 

and emission probabilities, from a given dataset. 

To calculate initial probabilities for an HMM, it is 

needed to determine the probabilities of starting in 

each of the hidden states. These initial probabilities 

represent the likelihood of being in a particular 

state at the beginning of the sequence. It is 

necessary to count the occurrences of each hidden 

state at the start of the sequences. The dataset is 

examined and it has been counted how many 

sequences start in each hidden state. 

Emission probabilities represent the likelihood of 

observing a particular feature or set of features 

given a specific hidden state at time t. The dataset 

was grouped based on the hidden state labels for 

each time step. The estimation process for emission 

probabilities differs based on whether data is 

discrete or continuous.  

- Discrete Observations: If the observations 

are discrete, the frequency of each observation 

in each state is calculated. 

- Continuous Observations: If the 

observations are continuous (e.g., attendance 

rates), they are modeled using probability 

distributions. In this research paper, we utilized 

a Gaussian probability distribution. For each 

feature, such as attendance rate, a multivariate 

Gaussian distribution is employed to model the 

joint probability distribution of all observations 

given the hidden state. The parameters of the 

Gaussian distribution, including mean vector 

and covariance matrix, are estimated based on 

the observations associated with each hidden 

state.  

Transition probabilities represent the likelihood 

of moving from one hidden state to another 

between consecutive time steps. The data needs to 

be organized as sequences over time (e.g., each 

student’s progression through terms) — which was 

completed during the data preparation phase. The 

number of transitions from each state to every 

other state in the dataset needs to be counted. 

These counts are in turn normalized to get 

transition probabilities (by dividing by the total 

number of transitions out of each state). 

3.5. Training and Evaluating the Hidden 

Markov Model 

In this study, Python programming language was 

utilized along with the hmmlearn library for HMM 

implementation. The hmmlearn library provides an 

efficient and easy-to-use interface for training HMM 

models and estimating their parameters. The 

hmmlearn library handles parameter estimation by 

internally, when calling the fit() function. Example 

code for training an HMM model is shown on Fig. 2. 

 

Figure 2. Training the HMM model 

A Multivariate Hidden Markov Model (HMM) was 

used here to model the joint probability distribution 

of multiple observed features, allowing for a more 

accurate representation of the complex 

relationships and dependencies among the 

observed variables. 

For this research paper, the dataset was split into 

train and test parts in an 80-20 ratio, allowing for 

model training on the larger portion of the data 

while reserving a smaller portion for evaluation 

purposes. State prediction accuracy and state 

transition accuracy were subsequently calculated 

using standard evaluation metrics, enabling the 

assessment of the model's performance on the test 

set. 

State Prediction Accuracy evaluates the 

accuracy of predicting the correct state sequence 

for new sequences of observations. It measures 

how well the HMM model predicts the latent student 

trajectories. State Transition Accuracy assesses 

how accurately the model predicts transitions 

between different states over time. It evaluates 

whether the model captures the expected 

transitions in student trajectories. 

4. RESULTS AND DISCUSSION 

4.1. Results and Discussion 

After training and evaluating the Multivariate 

Hidden Markov Model, the state prediction accuracy 

was determined to be 91.12%, indicating that the 

model accurately predicted the latent student 
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trajectories, including "At Risk of Drop-Out", "On 

Track", and "Excellent", for a significant portion of 

the dataset. Additionally, the state transition 

accuracy was found to be 86.70%, demonstrating 

the model's ability to effectively capture the 

transitions between different student states over 

time. These results highlight the promising 

performance of the HMM in predicting student 

academic success trajectories. The detailed 

evaluation metrics, including state prediction 

accuracy and state transition accuracy, are 

presented in Table 4, providing a comprehensive 

overview of the model's performance in capturing 

the underlying dynamics of student outcomes. 

These metrics are crucial for understanding and 

predicting student outcomes as they provide 

insights into the model's ability to discern and 

anticipate changes in students' academic 

trajectories. 

Table 4. HMM Performance Evaluation Results 

Metric Test Result 

State Prediction Accuracy 91.12% 

State Transition Accuracy 86.70% 

The high state prediction accuracy and state 

transition accuracy obtained in this study 

demonstrate the potential of HMMs as a powerful 

tool for understanding and predicting student 

outcomes. By accurately capturing the dynamics of 

student progress and identifying patterns in their 

academic trajectories, HMMs offer valuable insights 

for educational interventions and support systems. 

For instance, based on the predicted trajectories, 

educators and policymakers can tailor interventions 

to provide timely support to students who are 

deemed at risk of drop-out, thereby improving 

retention rates and fostering academic success. 

Additionally, insights derived from HMMs can 

inform the development of personalized learning 

pathways and intervention strategies, ultimately 

enhancing student engagement, performance, and 

overall educational outcomes. Thus, the 

demonstrated effectiveness of HMMs in predicting 

student outcomes underscores their potential as a 

valuable tool for educational research, policy-

making, and practice. 

4.2. Comparison With Related Research 

In a similar manner to [7] this research paper also 

utilized clustering techniques to label its dataset. 

By employing the k-means algorithm, the dataset 

in [7] was clustered based on 12 engagement 

metrics, categorized into interaction-related and 

effort-related aspects. This approach enabled the 

identification of distinct groups of students with 

varying levels of engagement, thereby facilitating 

the assessment of student involvement and 

potential areas for intervention. The clustering 

process allowed for the categorization of students 

into different engagement levels, which is crucial 

for personalized e-learning experiences and 

effective educational interventions. By leveraging 

machine learning techniques like clustering, both 

research papers aimed to address challenges in e-

learning platforms, such as personalization and 

student engagement, ultimately contributing to the 

improvement of learning outcomes and 

experiences in online education settings. 

Both [8] and this research paper utilize Hidden 

Markov Models (HMMs) to analyze student behavior 

in online educational environments, albeit for 

slightly different purposes. Ref. [8] focuses on 

predicting student retention in Massive Open Online 

Courses (MOOCs) by leveraging HMMs to 

understand student behavior over time. It 

addresses the challenge of student dropout rates in 

MOOCs by modeling latent characteristics of 

students that influence their perseverance using 

observable interactions with the course. The HMM 

framework allows for the prediction of a student's 

behavior in the next time step based on previous 

states and observable actions. 

Ref. [9] focuses on a classification problem, 

attempting to predict student success or failure 

based on similar data points — demographic 

information, studying routines, attendance 

behaviors, and epistemological beliefs. It compares 

the prediction accuracy of various supervised 

classification algorithms, with the Neural Network 

algorithm achieving the highest accuracy. 

5. CONCLUSION 

This research paper demonstrates an approach for 

predicting student academic success using Hidden 

Markov Models. By integrating a comprehensive 

dataset comprising students' demographics, 

academic performance, attendance records, and 

course engagement, the study effectively employs 

an HMM framework to model varying levels of 

student academic success. The model utilizes 

observable emissions, such as grades and 

interaction patterns, to infer the most likely 

sequence of hidden states for new students. The 

evaluation results reveal a state prediction 

accuracy of 91.12% and a state transition accuracy 

of 86.70%, highlighting the HMM's robust capability 

to predict latent student trajectories. These results 

showcase the model's efficacy in capturing the 

underlying dynamics of student outcomes. 

The high accuracy rates underscore the potential of 

HMMs as a powerful tool for understanding and 

predicting student outcomes, offering valuable 

insights into educational interventions and support 

systems. By accurately modeling the dynamics of 

student progress and identifying critical patterns in 

their academic trajectories, HMMs can enable 

educators and policymakers to tailor interventions 

to students' needs, thereby enhancing retention 

rates and promoting academic success. This 

approach can inform the development of 

72



Computer Sciences and Information Technology Lončarević et al. 

personalized learning pathways and timely 

intervention strategies, ultimately leading to 

improved student engagement and performance. 

Future research could explore several extensions of 

this study to further enhance the application and 

effectiveness of HMMs in educational settings. First, 

incorporating additional features such as social 

interactions, extracurricular activities, and 

psychological factors could provide a more holistic 

understanding of student behavior and success. 

Additionally, integrating temporal factors more 

dynamically into the HMM framework could improve 

the model's responsiveness to changes in student 

behavior over time. Another avenue for future work 

involves exploring the application of HMMs to 

different educational contexts, such as vocational 

training or adult education, to assess their 

generalizability and adaptability. Furthermore, 

comparative studies with other machine learning 

models, such as neural networks or ensemble 

methods, could provide insights into the relative 

advantages and limitations of HMMs. Finally, the 

development of interactive tools and dashboards 

based on HMM predictions could facilitate real-time 

monitoring and intervention by educators, 

enhancing the practical utility of the model in 

educational practice. 
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