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Abstract: It is presented how the slope of symmetric activation functions with saturation affects class 

detection using symbolic analysis. Different activation functions can be used to increase the most likely 

detected classes. The main result is the determination of the highest slope of the activation function and 

the lowest slope of the activation function in terms of the number of neurons in the layer.  
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1. INTRODUCTION

The activation function is usually the same during 

the training phase with known images and the 

detection of an unknown class. The training phase 

can take longer because it usually starts with 

randomly generated weighted coefficients until 

they reach a steady state for the second phase.  

It is not necessary to use the same activation 

function in the training phase and the class 

detection phase because it approaches the steady 

state very slowly for known images. This paper 

presents a slope analysis of symmetric saturated 

activation functions on deep learning for a faster 

training phase.  

An overview of the symbolic analysis of neural 

networks is presented in [1]. Also, the code can 

be downloaded from the same site [1]. The same 

numerical example is used to demonstrate the 

proof of concept as in [2].  

In this paper, we start with an application package 

[3] in an environment based on the Wolfram

language [4]. We initialize the primary palette

which loads the built-in drawing knowledge as

presented in [3]. We use the palette for non-linear

schemes. Element options are changed using the

palette extension. The graphical user interface

(GUI) enables fine-tuning of the presentation of

elements.

The original software may be embedded with 

additional functions, such as copy-move-paste, 

left-to-right, or up-down, or rotating elements 

several times for 900. Any element of the 

schematic description can be easily replaced by 

another element. The system solution is obtained 

in the time domain by simply calling the solve 

button.  

Any element from the system specification in the 

netlist can be replaced by one or more related 

components as in [5]. Schematic description is 

adapted to specific analysis [5]. 

A symbolic analysis of neural networks is also 

presented in [6]. The advantages of symbolic 

analysis of neural networks are shown in [7]. 

Tips and tricks for fixed point implementation are 

presented in [8] and [9].  

The second section presents the properties of 

activation functions. The third part discusses the 

symbolic design method. It continues with the 

main results and achievements of the proposed 

original method.  

2. ACTIVATION FUNCTIONS

There are a number of activation functions, such 

as the most popular sigmoid, hyperbolic tangent, 

ReLU and Leaky ReLU. In this paper, we analyze 

only symmetric saturated activation functions; 

which are hyperbolic tangents and a modified 

sigmoid with symmetric properties. ReLU and 

Leaky ReLU functions are not symmetric. We 

expect that positive and negative values of the 

input signal contribute equally to the detected 

classes. This is the main reason why we do not 

consider ReLU or classical sigmoid functions.   

As explained in [8] and [9], to speed up the 

computation, we use a small number of binary 

shifts and adders. To find the best function, we 

analyze a linear function from some input signal 

range and with saturation to ensure non-linearity.  
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We do not consider the training phase, but 

consider the existing trained network to find what 

happens to the discovered classes if we change 

the activation function. Initial training classes 

consist of 19 type 1 classes, 3 type 2 classes, 18 

type 3 classes, and 60 type 4 classes. The main 

achievement we expect is to find a symmetric 

activation function with saturation and linear 

properties for values around 0 of the input signal.  

Note that in this paper we use the term linear 

activation function for a symmetric activation 

function with linear behavior from -1 values to 1 

over 0, and with saturated values of -1 and 1 

outside that region.  

The first step is to determine the properties of the 

activation functions.   

2.1. Properties 

Let us denote the activation function by the 

symbol f. The symmetric activation function 

satisfies the following conditions:  

 𝑓(−𝑥) = −𝑓(𝑥) (1) 

The symmetric activation function satisfies the 

zero condition:  

 𝑓(0) = 0 (2) 

The saturated activation function is bounded by an 

upper value of 1:  

 𝑓(𝑥)  ≤  1 (3) 

The first derivative of the activation function is 

always positive or 0:  

 𝑓′(𝑥)  ≥  0 (4) 

The maximum slope of the activation function is 1, 

which is equal to the slope of tanh’(0):  

 max (𝑓′(𝑥)) =  1 (5) 

The maximum slope is 1, because for an input to 

the activation function that can be 1, the 

saturated value must be 1. A large slope is not 

expected because the saturation will become 1 

before the maximum input value of 1.  

The minimum slope of the activation function 

depends on the number of neurons in the layer:  

 min (𝑓′(𝑥)) =
1

1+#𝑁eurons In Layer
  (6) 

For a neural network with 4 neurons per layer, the 

minimum slope is 1/(4+1)=1/5. The maximum 

input value of the activation function is 4 for each 

neuron in the layer multiplied by the maximum 

weight parameter, which is also 1, plus one for 

the bias parameter. For a maximum input value to 

the activation function of 5, the activation function 

must reach a maximum value of 1. The slope can 

be lower, but the activation function cannot reach 

the maximum value of 1.   

2.2. Examples 

For a neural network with four neurons per layer, 

we present the possible activation functions from 

lowest to highest slope. The most popular feature 

is the tanh shape. A linear activation function that 

has the same slope for x=0 has the largest slope. 

Of course, the non-linearity is ensured by 

saturation for input values greater than 1 and less 

than -1. The main characteristics of the activation 

function with the highest slope are shown in 

Table 1.  

Table 1. The function with the highest slope 

Function tanhq 

f(x) {
𝑓 = −1, 𝑥 < −1

𝑓 = 𝑥, −1 ≤ 𝑥 ≤ 1
 𝑓 = 1, 1 < x

 

f’(x) {
𝑓′ = 0, 𝑥 < −1

𝑓′ = 1, −1 ≤ 𝑥 ≤ 1
𝑓′ = 0, 1 < 𝑥

 

The characteristics of the most popular activation 

function are shown in Table 2. The maximum 

value is 0.9999 because the input value cannot be 

greater than 5. Also, the slope of the function is 

slightly greater than 0 for extreme input values.  

Table 2. The most popular function 

Function tanh(x) 

f(x) {

−1 < 𝑓 < −0.9999, 𝑥 < −5
−0.9999 < 𝑓 < 0.9999, −5 ≤ 𝑥 ≤ 5

0.9999 < 𝑓 < 1, 5 < 𝑥
 

f’(x) {

0 < 𝑓′ < 0.0002, 𝑥 < −5
0.0002 < 𝑓’ < 1, −5 ≤ 𝑥 ≤ 5

0 < 𝑓′ < 0.0002, 5 < 𝑥
 

Table 3 presents the linear activation function for 

input values between -2 and 2, as well as the 

slope of the modified logistic sigmoid activation 

function. Nonlinearity is provided by saturation for 

input values greater than 2 and less than -2.  

Table 3. A function with a slope of 0.5 

Function (2σ(x)-1)q 

f(x) {
𝑓 = −1, 𝑥 < −2

𝑓 = 0.5𝑥, −2 ≤ 𝑥 ≤ 2
𝑓 = 1, 2 < 𝑥

 

f’(x) {
𝑓′ = 0, 𝑥 < −2

𝑓′ = 0.5, −2 ≤ 𝑥 ≤ 2
𝑓′ = 0, 2 < 𝑥

 

The main features of the very popular Logistic 

Sigmoid activation function are presented in 

Table 4. The maximum value is 0.9866 because 
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the input value cannot be greater than 5; the 

slope of the function is slightly greater than 0 for 

extreme input values.  

Table 4. The modified Logistic Sigmoid function 

Function (2σ(x)-1) 

f(x) {

−1 < 𝑓 < −0.9866, 𝑥 < −5
−0.9866 ≤ 𝑓 ≤ 0.9866 , −5 ≤ 𝑥 ≤ 5

0.9866 < 𝑓 < 1, 5 < 𝑥
 

f’(x) {

0 < 𝑓′ < 0.0133, 𝑥 < −5
0.0133 < 𝑓’ < 0.5, −5 ≤ 𝑥 ≤ 5

0 < 𝑓′ < 0.0133, 5 < 𝑥
 

The main characteristics of the linear activation 

function, which has a smaller slope, are shown in 

Table 5. Nonlinearity is provided by saturation for 

input values greater than 5 and less than -5. 

Saturation will never happen because input values 

are never greater than 5. So this is actually an 

activation function with linear behavior for all 

input values.   

This means that the activation function with the 

smallest slope is determined by the number of 

neurons plus 1 (for the bias parameter).  

Actually, the case with the activation function with 

the lowest slope is no longer the activation 

function of the neuron because it never has 

nonlinear behavior, but this is the limiting case 

that occurs with the network in the limiting case. 

Table 5. The function with the least slope 

Function x/5 

f(x) {

𝑓 = −1, 𝑥 < −5
𝑓 = 𝑥/5, −5 ≤ 𝑥 ≤ 5

𝑓 = 1, 5 < 𝑥
 

f’(x) {
𝑓′ = 0, 𝑥 < −5

𝑓′ = 0.2, −5 ≤ 𝑥 ≤ 5
𝑓′ = 0, 5 < 𝑥

 

All introduced activation functions are illustrated 

in Fig. 1.  

 

Figure 1. Activation functions f. 

The slope of all activation functions is shown in 

Fig. 2. A better overview is for inputs between -3 

and 3, because the other values are rare in 

practical examples.  

 

Figure 2. Slope of activation functions f. 

The slope of the symmetric saturated activation 

function with linear behavior around 0 is between 

1/(1+number of neurons in one layer) and 1. Note 

that the slope of popular activation functions (tanh 

and logistic sigmoid) is less than 1/(1+number of 

neurons in one layer) for input values greater than 

1 and less than -1.  

3. RESULTS 

The training strategy can be based on a random 

number generator instead of zero initial weights 

and bias parameters. Assume that these initial 

parameter solutions correspond to the exact 

values of the expected classes. Initial training 

classes according to [2] consist of 19 type 1 

classes, 3 type 2 classes, 18 type 3 classes, and 

60 type 4 classes. We assume two nonzero input 

parameters and four the expected classes.  

For simplicity, we generate a neural network with 

4 inputs, 4 neurons per layer, two hidden layers 

(for deep learning) and one output layer with four 

detected classes. For the two unnecessary inputs, 

we specify zero weight and bias parameters, so 

that these zero parameters do not change during 

training. The results of processing with five 

activation functions are shown in Table 6. 

Table 6. Activation functions, integral of slope, 
and probability {p1, p2, p3, p4} 

Function ∫0
1 ∫0

1.5 Probability 

tanhq 1.00 1.00 {0.16, 0.02, 0.16, 0.65} 

tanh 0.76 0.91 {0.18, 0.03, 0.18, 0.60} 

(2σ-1)q 0.50 0.75 {0.22, 0.05, 0.24, 0.49} 

2σ-1 0.46 0.64 {0.26, 0.06, 0.28, 0.40} 

x/5 0.20 0.30 {0.33, 0.10, 0.34, 0.24} 

The integral of the first derivative is used to 

illustrate the slope.  

It is evident from Table 6 that a higher slope gives 

a higher probability of the fourth class.  

Table 7 gives the expected classes versus the 

exact known classes during training. We assume 

that tanh corresponds to the correct detection of 

all classes as in [2].   
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Table 7. Number of discovered classes 

Function Class 1 Class 2 Class 3 Class 4 

Exact  19 3 18 60 

tanhq 17(-2) 2(-1) 16(-2) 65(+5) 

tanh 19(+0) 3(+0) 18(+0) 60(+0) 

(2σ-1)q 22(+3) 5(+2) 24(+6) 49(-11) 

2σ-1  26(+7) 6(+3) 28(+10) 40(-20) 

x/5 32(+13) 10(+7) 34(+16) 24(-36) 

If we use a large slope of the activation function, 

the detected most likely class is larger than the 

exactly known classes. Smaller slopes of the 

activation functions produce a smaller number of 

most likely classes. The smallest slope gives half 

the expected class, while the first and third 

classes are almost double the known classes.  

This is the explanation why the nonlinear 

activation function is important for neural 

networks.   

4. DISCUSSION 

The proposed original method establishes a 

relation between the most likely detected classes 

with respect to the slope of activation functions for 

neural networks that have equally expected 

positive and negative input values. Another 

achievement is the determination of the slope of 

the activation function with saturation for two 

limiting cases, one for the highest slope and the 

other for the lowest slope that depends on the 

number of neurons in the layer.  

During the training phase of the neural network, 

for known classes, the activation function can be 

chosen to best fit certain classes. If the number of 

detected classes is less than the number of test 

cases, the slope of the activation function should 

be increased. If the number of discovered classes 

is greater than the number of test cases, the slope 

of the activation function should be reduced. 

During the training phase, we can know the exact 

number of each possible class. So, after the 

training phase, we can know the accuracy of the 

detected classes, and therefore choose the most 

appropriate activation function.  

The main advantage of the proposed approach is 

faster training and faster detection of unknown 

classes because the calculation of the activation 

function consists only in using the input value for 

slope 1, i.e. the binary shift (multiplying by 1/2) 

for the lowest slope of the symmetric saturated 

activation function with linear behavior around 0. 

The class detection accuracy is very similar to the 

corresponding hyperbolic tangent or modified 

logistic sigmoid function with the same slope at 0.  

5. CONCLUSION 

The paper shows the influence of the slope of the 

symmetric activation function with saturation for 

more precise detection of the tested known 

classes. Future work will be to find the impact of 

asymmetric activation functions for asymmetric 

inputs, such as inputs that are all positive. 

Appropriate choice of symmetric saturated 

activation function with linear behavior around 0 

ensures faster computation and consequent power 

reduction in hardware implementations.  
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