
10th International Scientific Conference

Technics,
Informatics, and
Education – TIE 2024
20-22 September 2024

Session: Educational Technology

Professional paper

DOI: 10.46793/TIE24.239A

Using Artificial Intelligence Concepts to Design

Non-Playable Characters in Road Traffic Safety

Games

Veljko Aleksić1* [0000-0003-2337-1288]
1 University of Kragujevac, Faculty of Technical Sciences Čačak, Serbia

* veljko.aleksic@ftn.kg.ac.rs

Abstract: The integration of artificial intelligence concepts into digital games design has revolutionized the

gaming industry. Among other elements, artificial intelligence significantly influenced modern gameplay

mechanics, elevated player experiences, and streamlined game development processes. Road traffic safety

driving simulation games are an emerging educational tool aimed at improving road safety awareness and

skills among drivers. A critical component of these games is the AI-driven Non-Playable Characters (e.g.,

NPCs) that expand dynamic and immersive gameplay experience by exhibiting various realistic road users’

behavior patterns, traffic conditions and player actions adaptation. The adaptive AI algorithms ensure

balanced difficulty, catering to gamers' diverse driving skill levels, while procedural content generation

opened endless possibilities in designing game levels, environments, and tasks, enhancing game

replayability and longevity. AI-powered virtual assistants can provide players with seamless in-game

guidance, enhancing their engagement without disrupting the gameplay flow. Additionally, adaptable

intelligent road traffic conditions can challenge players to strategize and adapt, contributing to more

compelling and immersive gaming experiences. Contemporary software tools and engines streamlined

game development processes and accelerated asset creation, bug detection, and playtesting. Automated

game design processes, such as AI-driven level and procedural generation, expedited prototyping and

iteration phases, while AI-driven analytics tools offered valuable insights into player behavior and

preferences, enabling developers to optimize game mechanics and its content for maximum impact. The

impact of artificial influence concepts on digital game design is poised to grow even further, promising

exciting innovations and possibilities for future game designers and enthusiasts alike.

Keywords: digital games; traffic safety; artificial intelligence; NPCs

1. INTRODUCTION

The digital gaming industry has experienced

exponential growth and evolution, driven by

technological advancements and creative

innovations. Among the pivotal technologies

influencing this sector, artificial intelligence (AI)

currently stands out as a transformative force [1].

AI has not only revolutionized the way digital

games are designed and developed but also how

they are experienced by players. The global

increase in road traffic accidents has underscored

the need for effective formal, informal and non-

formal educational tools to promote road safety as

traditional methods of driver education often lack

the practical and engaging elements necessary to

prepare drivers for real-world scenarios. Road

traffic safety games offer a dynamic and interactive

platform for learning safe driving practices and

understanding traffic regulations. This paper

explores the impact of AI concepts on designing

NPCs in road traffic safety games, as they play a

pivotal role in creating realistic traffic environments

that challenge players to apply their knowledge and

skills. The behavior of NPCs must mimic real-world

entities such as other drivers, pedestrians, and

cyclists to provide authentic experiences. The

integration of AI in the NPCs design enhances their

realism by enabling the exhibition of complex

behaviors and dynamical interaction with the player

and the game environment. Historically, digital

games have progressed from simple, rule-based

systems to complex, interactive environments [2].

The early days of game design were marked by

limited computational power and rudimentary AI,

which restricted the behavior of NPCs and the

dynamism of game worlds. However, the

integration of sophisticated AI algorithms and

machine learning techniques has enabled the

creation of more intelligent, adaptive, and realistic

game objects and elements. These advancements

have led to significant improvements in NPCs

behavior, procedural content generation, adaptive

gameplay, and immersive game environments [3].

One of the most noticeable impacts of AI in game

design is the evolution of NPCs. Modern AI-driven

NPCs exhibit lifelike behaviors, making them more

239

mailto:veljko.aleksic@ftn.kg.ac.rs
https://doi.org/10.46793/TIE24.239A

Educational Technology Veljko Aleksić

than just scripted entities. They can learn from

player actions, adapt their strategies, and interact

with the game environment in a believable manner.

This level of sophistication contributes to a more

immersive and engaging gaming experience, as

players can interact with NPCs in ways that mirror

real-world interactions [4]. Moreover, AI has

enabled the development of adaptive gameplay,

where the game adjusts its difficulty, paths and

challenges based on the player's level of skills and

preferences [5]. This personalization ensures that

games remain challenging and enjoyable for a wide

range of gamers, from novices to experts. AI-

driven adaptive systems analyze player behavior in

real time, providing a tailored gaming experience

that maintains a balance between challenge and

reward. Procedural content generation (e.g., PCG)

is another area where AI has made a substantial

impact. By leveraging algorithms and machine

learning, developers can create vast and varied

game worlds without manually designing each

element. PCG not only saves development time but

also enhances replayability, as players can explore

new content in each playthrough [6]. Games like

Forza Horizon® exemplify the potential of PCG in

creating expansive, dynamic, photo-realistic

environments, as presented in Fig. 1.

Figure 1. Forza Horizon 5 AI PCG environment

AI has also contributed to the creation of intelligent

game environments that respond to player actions

and decisions [7]. These environments use AI

algorithms to simulate realistic physics, dynamic

weather conditions, and interactive elements,

providing a more immersive and engaging

experience [8]. As a result, players can experience

a game world that feels alive and responsive,

enhancing the overall sense of immersion.

2. AI MODELS IN DESIGNING NPCs

NPCs are fundamental components of digital

games, contributing significantly to the game's

narrative, environment, and player experience [9].

Historically, NPCs were driven by a simple rule-

based system that limited their behavior and

interaction capabilities. However, AI integration

has revolutionized NPC control, enabling more

dynamic, intelligent, and responsive characters.

Road traffic safety games aim to simulate real-

world driving conditions and traffic scenarios to

educate players about safe driving practices and

traffic regulations. NPCs in these games represent

various road users and entities, creating a realistic

traffic environment that challenges players to

navigate safely and make informed decisions. In

the early stages of digital game development, NPC

behavior was largely predefined and scripted.

Simple finite state machines (FSMs) were

commonly used, which allowed NPCs to transition

between a limited number of states based on

specific conditions [10]. Implementing an FSMs

involves defining the states, transitions, and

actions in a way that can be processed by the

game's AI system. For example, an NPC driver

might have states for “driving,” “stopping at a red

light,” and “yielding to pedestrians”. FSMs are

straightforward to implement and can effectively

simulate simple traffic behaviors. This typically

requires coding the FSM logic into the game engine

using scripting languages or integrated

development environments (IDEs) [11]. While

these systems were sufficient for basic interactions,

they often resulted in predictable and repetitive

behaviors, reducing the overall immersion and

realism [12]. The introduction of AI into NPC control

marked a significant shift from these rudimentary

systems. AI techniques such as pathfinding

algorithms, decision trees, and machine learning

models provided NPCs with the ability to make

more complex decisions, adapt to player actions,

and exhibit lifelike behaviors [13]. This evolution

has been instrumental in creating more engaging

and immersive gaming experiences.

2.1. Pathfinding Algorithms

Pathfinding algorithms are a crucial component in

the design of NPCs in digital games, enabling

characters to navigate complex environments

efficiently and realistically [14]. Effective

pathfinding algorithms enable NPCs to navigate

complex traffic scenarios, avoid collisions, and

adhere to traffic rules. Key metrics in pathfinding

algorithms are optimality (finding the shortest or

most efficient path), completeness (ensuring a path

is found if one exists), and complexity

(computational resources required to find the

path). NPC control can be operationalized by

several pathfinding algorithms:

• Dijkstra’s algorithm computes the shortest

paths from a starting node to all other nodes in

a graph with non-negative weights [15]. While

it guarantees finding the shortest path, it can be

computationally intensive for large game

environments. Dijkstra’s algorithm is

particularly useful in scenarios where NPCs need

to follow specific routes or navigate through

dense traffic networks, ensuring they take the

most efficient routes to their destinations [16].

• A* algorithm combines the benefits of Dijkstra's

algorithm and a heuristic approach. It is a widely

240

Educational Technology Veljko Aleksić

used technique, enabling NPCs to find the

shortest path between points while avoiding

obstacles [17]. The heuristic component enables

efficient and realistic pathfinding, allowing units

to move dynamically and strategically,

particularly in complex and dynamic

environments. NPCs can maneuver around

obstacles and other units, reaching their

destinations without unnecessary delays or

collisions, thereby enhancing the strategic depth

of the game. In road traffic games, the A*

algorithm helps NPCs navigate the game

environment by considering factors such as road

layout, traffic signals, and the positions of other

vehicles. The use-case scenario of hybrid A*

algorithm implementation for self-driving NPC

pathfinding in Unity environment is presented in

Fig. 2.

Figure 2. Self-driving vehicle simulation using A*
algorithm in Unity environment

• D* algorithm is an extension of the A* algorithm

designed for environments that change over

time. In games with dynamic environments

where obstacles can appear or disappear, D*

ensures that NPCs can recalculate and adapt

their paths, maintaining efficient navigation

suitable for real-time applications [18].

• Jump Point Search (JPS) is an optimization of

the A* algorithm for uniform-cost grids. It

reduces the number of nodes evaluated by

"jumping" over nodes that do not affect the final

path, significantly improving efficiency [19].

Like A*, JPS uses a heuristic function to

estimate the cost of reaching the goal from a

given node. The heuristic function typically used

in JPS is the Manhattan distance for grid-based

environments, which calculates the distance

between two points as the sum of the absolute

differences in their x and y coordinates. JPS

reduces the computational load of pathfinding

by minimizing the number of nodes that need to

be evaluated. This allows the game to support

larger and more complex traffic environments

without compromising performance. The

reduced computational load also enables the

game to handle more NPCs simultaneously,

creating richer and more diverse traffic

scenarios.

• Navigation meshes are a more advanced

pathfinding technique where the areas of the

environment are represented as interconnected

polygons. Waypoints are predefined points in

the game environment that guide NPC

movement along specific paths. They are

commonly used in games to define patrol routes

or navigation paths for NPCs. Traffic flow

models, such as the Cellular Automata Model,

simulate the movement of vehicles and

pedestrians by dividing the environment into a

grid of cells, each representing a portion of the

road [20]. NPCs move from one cell to another

based on traffic rules and interactions with other

NPCs, creating a realistic simulation of traffic

flow. Navigation meshes can be easily scaled to

handle large and complex environments,

making them suitable for open-world games and

large-scale simulations. For instance, the Unreal

Engine development environment has a built-in

navigation mesh system that provides tools for

automatic mesh generation and real-time

updates, simplifying the implementation of

advanced navigation in games [21]. A traffic

training simulator developed using Unreal

Engine and NavMesh provides a realistic and

interactive environment for driver training (Fig.

3). The simulation includes a complex road

network with various traffic scenarios, such as

congestion, road closures, and accidents.

NavMesh enables the vehicles to navigate the

environment smoothly and realistically,

providing drivers with valuable training on safe

driving practices.

Figure 3. Unreal Engine NavMesh NPC vehicle
navigation

A hierarchical pathfinding model is used for

breaking down the environment into multiple levels

of abstraction where the high-level paths are

calculated first, followed by detailed paths at lower

levels. Large-scale massively multiplayer online

(MMO) games use hierarchical pathfinding for NPC

optimization by simplifying complex environments

into manageable sections, ensuring efficient and

scalable pathfinding [22]. The flow fields technique

provides a vector field across the environment that

guides NPCs toward their goals. In cases where

NPCs operate in close proximity to each other, a

cooperative pathfinding technique is used to avoid

collisions and optimize group movement.

241

Educational Technology Veljko Aleksić

2.2. Decision Trees and Behavior Trees

Decision tree algorithms are a versatile and

powerful tool in the NPCs design. A decision tree is

a flowchart-like structure where each internal node

represents a decision point based on certain

conditions, each branch represents the outcome of

a decision, and each leaf node represents an action

or end state [23]. This hierarchical structure allows

for clear and logical decision-making processes.

Implementing a decision tree involves defining the

conditions and actions at each node and creating

the logic to traverse the tree based on the current

game state. This transparency allows developers to

fine-tune AI behavior for a more challenging and

realistic experience. Decision trees can be easily

expanded by adding more nodes and branches,

making them flexible to accommodate complex

behaviors and scalable to handle a wide range of

scenarios. This model also allows modular design,

where individual branches or sub-trees can be

developed and tested independently. The

modularity simplifies development and facilitates

the reuse of decision logic across different NPCs.

Behavior trees have become a popular framework

for controlling NPCs due to their flexibility,

modularity, and ease of understanding. Originating

from robotics and AI research, behavior trees

provide a structured way to model complex

decision-making processes, enabling NPCs to

exhibit realistic and adaptive behaviors. A behavior

tree is a hierarchical model that represents the

execution flow of an NPC’s behavior. It consists of

nodes, which can be of different types: control

nodes (such as sequences and selectors) and

execution nodes (tasks or actions) [24]. Control

nodes manage the flow of execution. Sequence

nodes execute the child nodes in order until one

fails, while selector nodes execute the child nodes

in order until one succeeds. Execution nodes

perform specific actions or checks. They return to

success, failure, or running states. For instance, the

casual traffic sequence in an NPC car can be reused

across different NPCs, each with its specific

waypoints, by simply plugging in different action

nodes. Rule-based systems use predefined rules to

guide NPC behavior. These systems are particularly

effective for simulating complex traffic interactions

and ensuring that NPCs adhere to traffic laws. For

example, rules can be defined for stopping at red

lights, yielding to pedestrians, and maintaining safe

following distances. Rule-based systems provide a

straightforward way to implement traffic

regulations in the game. Behavior trees are highly

flexible and can be expanded or modified with

minimal impact on the overall structure. They scale

well with increasing complexity, making them

suitable for games with complex NPC behaviors. An

NPC’s behavior tree can be expanded to include

additional sequences or selectors for new actions.

Tools like Unreal Engine’s Behavior Tree editor

provide a visual representation of the tree, allowing

designers to intuitively adjust the flow of behaviors

without deep programming knowledge (Fig. 4).

Figure 4. The example of Unreal 4 behavior tree
NPC control

For instance, the Far Cry game series relies heavily

on behavior trees to control both enemy and

wildlife NPCs. These trees enable NPCs to exhibit a

wide range of behaviors, from patrolling and

engaging in combat to hunting and fleeing,

contributing to the series' immersive open-world

gameplay.

2.3. Fuzzy Logic

Traditional approaches often struggle with the

inherent uncertainties and variabilities in driving

environments and behaviors. Fuzzy logic, with its

ability to handle imprecise information and model

human-like reasoning, offers a robust solution for

enhancing driving simulations. Fuzzy logic is an

approach to computing that handles the concept of

partial truth, with truth values ranging between

completely true and completely false. In the NPC

context, fuzzy logic algorithms allow for more

nuanced decision-making processes, enabling NPCs

to exhibit realistic and adaptive behaviors. Fuzzy

logic extends classical binary logic to handle the

concept of partial truth by introducing variables

that can have a degree of truth represented by

values between 0 and 1. Fuzzy rules are if-then

statements that define the relationship between

fuzzy sets and the decisions made based on those

sets. The fuzzy inference system evaluates these

rules to make decisions [25]. Fuzzy logic handles

uncertainty and imprecision effectively, allowing

NPCs to make more nuanced decisions. Integrating

fuzzy logic into Unreal Engine or Unity created NPCs

significantly improves the fidelity and adaptability

of driving simulations in total. Fuzzy controllers are

designed to manage various aspects of the driving

simulation, such as vehicle dynamics and driver

behavior. Variables such as speed, distance, and

steering angle are defined as inputs to the fuzzy

controller, while acceleration, braking force, and

steering adjustments are defined as outputs. A set

of fuzzy rules must also be created to define the

relationship between input and output variables.

The following example demonstrates a creation of

simple fuzzy logic controller visual script for

controlling NPC vehicle speed based on distance to

an obstacle using Unreal Engine's Blueprint

system:

242

Educational Technology Veljko Aleksić

- Event Tick
- Get Distance to Obstacle
- Call EvaluateFuzzyLogic

- Input: Distance to Obstacle
- Output: Throttle

- Set Throttle on Vehicle

For basic control, we can use C++ to implement the

fuzzy logic system. First, we create the

membership functions to handle distance

evaluation:

float MembershipFunction(float x, float a, float b, float c)
{ if (x <= a || x >= c) return 0.0f;

 if (x < b) return (x - a) / (b - a);
 return (c - x) / (c - b);}

float Close(float distance)
{return MembershipFunction(distance,0.0f,0.0f,10.0f);}
float Medium(float distance)
{return MembershipFunction(distance,5.0f,10.0f,15.0f);}
float Far(float distance)
{return MembershipFunction(distance,10.0f,20.0f,30.0f);}

Next, we implement the fuzzy rules based on the

input membership values:

float EvaluateThrottle(float distance) {
 float closeMembership = Close(distance);
 float mediumMembership = Medium(distance);
 float farMembership = Far(distance);

 // Fuzzy rules
 float throttleLow = closeMembership;
 float throttleMedium = mediumMembership;
 float throttleHigh = farMembership;

 // Weighted average for defuzzification
 float totalWeight = closeMembership +

mediumMembership + farMembership;
 float throttle = (throttleLow * 0.3f + throttleMedium *

0.6f + throttleHigh * 1.0f) / totalWeight;

 return throttle;}

Finally, we use the computed throttle value to

control the vehicle in Unreal Engine:

void UpdateVehicleControl(float DeltaTime) {
 float distance = GetDistanceToObstacle();
 float throttle = EvaluateThrottle(distance);

 // Apply throttle to vehicle
 SetThrottle(throttle);}

// Called every frame
void Tick(float DeltaTime)

 {UpdateVehicleControl(DeltaTime);}

We can easily extend this by adding more complex

rules, integrating with other vehicle dynamics

parameters, and enhancing the membership

functions to suit specific simulation requirements.

2.4. Interaction with Environment and Players

For NPCs in road traffic safety games, interaction

with the game environment and the player is crucial

for creating a realistic and educational experience.

NPCs must be able to sense their surroundings,

respond to dynamic changes, and interact with the

player in meaningful ways. Perception systems

allow NPCs to detect and interpret information from

the game environment. Techniques such as

Raycasting [26] and Sensor Fusion [27] enable

NPCs to sense traffic signals, other vehicles, and

obstacles. These systems provide the necessary

data for NPCs to make informed decisions and

navigate the environment safely. Flocking

algorithms, such as the Boids algorithm [28],

simulate the collective movement of groups of

NPCs, such as pedestrian crowds or vehicle

convoys. These algorithms help NPCs maintain

cohesion, avoid collisions, and navigate crowded

environments realistically. Flocking behavior is

essential for simulating realistic traffic scenarios

where multiple NPCs must interact and move

together. Predictive collision avoidance techniques

enable NPCs to anticipate and avoid potential

collisions. By calculating the future positions of

other vehicles and pedestrians, NPCs can adjust

their paths to prevent accidents. These techniques

are critical for creating realistic and safe traffic

scenarios in road traffic safety games. Safety

Driving Simulator® is a road traffic safety game

that uses AI to create realistic traffic scenarios. The

game employs the A* algorithm for pathfinding,

FSMs for decision-making, and rule-based systems

to enforce traffic regulations. NPCs in the game

adapt their behavior based on player actions,

providing a dynamic and educational learning

experience that emphasizes safe driving practices

(Fig. 5).

Figure 5. Safety Driving Simulator GUI

2.5. Machine learning

Machine learning techniques introduced a higher

level of adaptability and intelligence to NPC control.

By training NPCs on large datasets of player

interactions, machine learning models can predict

player behavior, optimize NPC strategies, and

continuously improve their performance over time.

This results in NPCs that can learn and adapt,

providing a more personalized and engaging

experience [29]. In supervised learning, the model

is trained on labeled data, meaning the input data

is paired with the correct output. The goal is to

learn a mapping from inputs to outputs that can be

applied to new, unseen data. For NPCs in traffic

safety games, supervised learning can be used to

model specific driving behaviors based on historical

traffic data. Common algorithms include decision

trees, support vector machines, and neural

networks. Unsupervised learning deals with finding

patterns in data without labeled outputs.

Techniques include clustering (e.g., k-means) and

dimensionality reduction (e.g., principal component

analysis). Clustering algorithms can group NPC

243

Educational Technology Veljko Aleksić

behaviors based on similarities, allowing the

creation of different behavior profiles without

predefined labels. This approach is used to cluster

driving behaviors and identify typical traffic

scenarios that NPCs should be able to handle.

The first step in applying machine learning to NPC

design is collecting and preparing relevant data.

This can include player interactions, game states,

and desired NPC behaviors. Once data is prepared,

the next step is to train and validate machine

learning models. This involves selecting

appropriate algorithms and tuning their parameters

to optimize performance. For example, a neural

network can be trained using backpropagation to

learn complex behaviors from the dataset. The

network adjusts its weights based on the error

between predicted and actual outcomes. After

training, the machine learning models are

integrated into the game's NPC control systems,

enabling real-time decision-making and

adaptation.

Reinforcement learning involves training agents to

make sequences of decisions by rewarding desired

behaviors. Agents learn to maximize cumulative

rewards through trial and error [30]. Q-learning is

a reinforcement learning algorithm where an NPC

learns a policy to take actions that maximize its

expected future rewards, adjusting its strategy

based on received rewards and penalties. In the

context of traffic simulations, reinforcement

learning has been used to optimize traffic signal

control, model driver behavior, and develop

intelligent transportation systems.

The first step in applying RL to NPC design is

defining the environment. This includes specifying

the road layout, traffic rules, and the types of

vehicles and obstacles that the NPCs will encounter.

Several environment components must be defined:

state space (current situation in the traffic

simulation, including the positions and velocities of

vehicles, traffic light statuses, and road conditions),

action space (set of actions available to NPCs, such

as acceleration, braking, lane changing, and

turning), and reward function (feedback to the

NPCs based on their actions, encouraging safe and

efficient driving behaviors). The following Python

code can be used for defining the traffic

environment:

import numpy as np

class TrafficEnvironment:

 def __init__(self):

 self.state = None

 self.reset()

 def reset(self):

 self.state = np.array([0, 0]) # Init state:[pos, vel]

 return self.state

 def step(self, action):

 position, velocity = self.state

Apply action: 0 = accel, 1 = brake, 2 = maintain speed

 if action == 0:

 velocity += 1

 elif action == 1:

 velocity -= 1

Update position

 position += velocity

Define a simple reward function to encourage

maintaining a velocity of 10

 reward = -abs(velocity - 10)

Update state

 self.state = np.array([position, velocity])

Check if simulation is done

 done = position < 0 or position > 100

 return self.state, reward, done

 def render(self):

 print(f"Position: {self.state[0]}, Velocity:

{self.state[1]}")

Example of using the environment

env = TrafficEnvironment()

state = env.reset()

print(f"Initial state: {state}")

Example action: accelerate

action = 0

next_state, reward, done = env.step(action)

print(f"Next state: {next_state}, Reward: {reward},

Done: {done}")

The NPCs are treated as reinforcement learning

agents that learn to navigate the environment. The

agent's goal is to maximize the cumulative reward

by making optimal driving decisions. A simple Q-

learning algorithm without any external libraries

will be used to keep it straightforward and

understandable.:

class QLearningAgent:

 def __init__(self, num_states, num_actions,

alpha=0.1, gamma=0.9, epsilon=0.1):

 self.num_states = num_states

 self.num_actions = num_actions

 self.alpha = alpha # Learning rate

 self.gamma = gamma # Discount factor

 self.epsilon = epsilon # Exploration rate

 self.q_table = np.zeros((num_states,

num_actions)) # Q-value table

 # Explore or exploit

 def choose_action(self, state):

 if np.random.rand() < self.epsilon:

 return np.random.choice(self.num_actions)

 else:

 return np.argmax(self.q_table[state])

 def update_q_table(self, state, action, reward,

next_state):

 best_next_action =

np.argmax(self.q_table[next_state])

 td_target = reward + self.gamma *

self.q_table[next_state, best_next_action]

 self.q_table[state, action] += self.alpha *

(td_target - self.q_table[state, action])

Define states and actions

num_states = 10 # Example number of discrete states

num_actions = 3 # Accelerate, brake, maintain speed

Create Q-learning agent

agent = QLearningAgent(num_states, num_actions)

Training example

for episode in range(100):

 state = env.reset()

 state = int(state[1]) # Use velocity as simple state

 for step in range(50):

 action = agent.choose_action(state)

 next_state, reward, done = env.step(action)

244

Educational Technology Veljko Aleksić

 next_state = int(next_state[1]) # Use velocity as

next state

 agent.update_q_table(state, action, reward,

next_state)

 state = next_state

 if done:

 break

print(f"Q-table after training:\n{agent.q_table}")

The training process involves the agent interacting

with the environment, collecting experiences, and

updating its policy based on the received rewards.

The following code implements reinforcement

learning based NPCs:

class NPC:
 def __init__(self, agent, environment):
 self.agent = agent
 self.environment = environment
 self.state = self.environment.reset()
 def act(self):
 state = int(self.state[1]) # Use velocity as state
 action = self.agent.choose_action(state)
 self.state, reward, done =

self.environment.step(action)
 return self.state, reward, done
Instantiate NPC with trained agent
npc = NPC(agent, env)
Simulate NPC behavior in the game
for step in range(100):
 state, reward, done = npc.act()
 env.render()
 if done:
 break

Reinforcement learning provides a powerful

framework for designing adaptive and realistic

NPCs in road traffic safety games. By leveraging

various techniques, developers can create NPCs

that exhibit complex and human-like driving

behaviors.

2.6. Deep learning

Deep learning involves the use of artificial neural

networks (ANNs) with multiple hidden layers

(hence "deep") to model and learn complex

relationships within data. Deep learning has

revolutionized various fields, including computer

vision, natural language processing, and

autonomous driving, by enabling systems to learn

complex patterns from large datasets. In the

context of NPC design for traffic simulations, deep

learning can be used to model and predict driving

behaviors, making NPCs more adaptive and

realistic. By leveraging neural networks with

multiple layers, deep learning models can learn

complex patterns and behaviors from large

datasets, enabling NPCs to exhibit more

sophisticated and realistic interactions [31]. Deep

neural networks (DNNs) consist of multiple layers

of neurons that process input data to produce an

output. DNNs can model complex relationships in

data, making them suitable for tasks such as

behavior prediction and decision-making in NPCs.

Convolutional Neural Networks (CNNs) can be

employed to enable NPCs to recognize and interpret

visual data from the game environment, such as

identifying objects, obstacles, scene

understanding, and navigation [32]. CNNs are

specialized for processing grid-like data structures,

such as images. In traffic simulations, CNNs can be

used to analyze visual inputs, such as traffic

camera feeds, to detect and respond to various

traffic scenarios. CNNs can process visual data in

real time, allowing NPCs to respond immediately to

changes in the game environment. An NPC using a

CNN can perform detailed scene analysis,

identifying multiple objects and their relationships

within the environment, leading to more informed

decision-making.

Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks are designed to

handle sequential data, making them suitable for

tasks requiring memory of past events [33]. In NPC

control, these networks enable characters to

remember and learn from previous interactions,

leading to more coherent and contextually

appropriate behaviors. An NPC can use an RNN to

analyze sequences of player actions and predict

future actions, adjusting its strategy accordingly to

create more challenging gameplay.

Reinforcement Learning (RL) involves training an AI

agent to make decisions by rewarding desired

actions and penalizing undesired ones. It is a type

of machine learning where agents learn to make

decisions by taking actions in an environment to

maximize cumulative rewards. RL involves an

agent, environment, actions, states, and rewards.

Training NPCs involves defining the states, actions,

and rewards within the game environment and

iteratively improving the NPC's policy through

exploration and exploitation. Designing an

appropriate reward function is crucial for guiding

the NPC toward desired behaviors. Creating a

simulation environment that mimics the actual

game is essential for training NPCs without the

constraints of real-time gameplay. This allows for

accelerated learning and extensive

experimentation.

Combining deep learning with reinforcement

learning (deep reinforcement learning) allows NPCs

to learn complex strategies by interacting with the

environment and maximizing cumulative rewards.

Deep reinforcement learning can be used to train

NPCs to develop advanced strategies, such as

planning and adapting tactics based on player

actions and game state changes. When combined

with deep learning, RL can be used to train NPCs to

navigate complex traffic environments by learning

from interactions with the environment. Deep

reinforcement learning models require substantial

amounts of data for training. This involves

collecting relevant gameplay data and

preprocessing it to ensure it is suitable for neural

network training. Data might include player

actions, NPC responses, environmental conditions,

and game outcomes. Preprocessing steps can

245

Educational Technology Veljko Aleksić

involve normalization, augmentation, and

segmentation of this data. Training learning models

involves feeding the preprocessed data into the

neural network, adjusting the weights through

backpropagation, and validating the model to

prevent overfitting. Once trained, deep

reinforcement learning models are integrated into

the game's NPC control systems for real-time

decision-making and behavior generation. This

model excels at processing complex and high-

dimensional data, enabling NPCs to understand and

react to intricate game environments and

scenarios. This adaptability results in more

challenging and unpredictable gameplay, as NPCs

can dynamically modify their strategies and tactics.

3. ETHICAL CHALLENGES IN NPC DESIGN

FOR ROAD TRAFFIC SAFETY GAMES

Road traffic safety games serve as critical tools for

driver training, education, and research. The

specificity of NPCs used in these games are that

they simulate realistic traffic behaviors, providing

learners with scenarios to practice driving skills and

understand traffic dynamics, which are crucial and

critical elements in real-world traffic environment

movement and orientation. AI techniques,

particularly machine learning and deep learning,

enable NPCs to exhibit complex behaviors and

adapt to diverse traffic conditions, enhancing the

effectiveness of these informal and non-formal

educational tools. While AI-driven NPC design

offers numerous benefits, it also introduces ethical

challenges that must be addressed:

• Safety and reliability by ensuring that AI-

driven NPCs make safe and reliable decisions

in all traffic scenarios, especially in dynamic

and unpredictable environments. The NPC

algorithms must be extensively tested and

validated in order to verify their appropriate

behavior across a wide range of scenarios and

realistic situations [34];

• Fairness by avoiding bias in NPC behaviors

that may disproportionately affect certain

groups or communities. Biased behaviors can

be efficiently suppressed and prevented by

including diverse demographic groups and

traffic scenarios into training datasets. In

addition, various techniques can be

implemented to detect and mitigate biases in

AI models during its development and

deployment.

• Transparency of how NPCs make decisions to

build trust among users and stakeholders.

Explainable AI (XAI) [35] should be utilized to

provide users with insights into the decision-

making process of NPCs in combination with

user interface design that effectively

communicate NPC behaviors;

• Accountability for establishing mechanisms to

attribute responsibility for NPC actions and

decisions, particularly in the event of accidents

or incidents. Legal and regulatory frameworks

that outline responsibilities and liabilities for

AI-driven NPCs in gaming environments

should be integrated in combination with clear

ethical guidelines [36];

• Societal impact and societal implications of AI-

controlled NPCs in shaping player attitudes

and behaviors towards road safety.

Comprehensive assessments and evaluation of

potential ethical and/or societal consequences

of AI-driven NPCs should be conducted in

combination with raising awareness about the

role and impact of AI in road traffic safety

games [37];

• Data privacy concerns arise from the

collection, storage, and utilization of personal

information in AI-driven NPC design. User

consent regarding the collection and use of

their data for NPC design purposes should be

obtained. Data anonymization or

pseudonymization techniques should also be

implemented to protect individual identities.

4. CONCLUSION

AI-driven NPCs contribute to a more immersive

gaming experience by exhibiting lifelike behaviors

and interactions. This realism is crucial for

maintaining player engagement and creating

believable game worlds. NPCs that can react

dynamically to the player and the environment

make the game world feel alive and responsive. AI

models add layers of strategic depth to games. In

strategy and tactical games, intelligent NPCs can

challenge players with sophisticated tactics,

requiring players to think critically and adapt their

strategies. This complexity enhances replayability

and keeps players engaged over longer periods.

Adaptive AI allows NPCs to tailor their behavior to

individual player styles and preferences. This

personalization ensures that games remain

challenging and enjoyable, catering to both novice

and experienced players. By analyzing player

behavior and adjusting NPC strategies, AI creates

a more dynamic and satisfying gaming experience.

Advances in deep learning, natural language

processing, and AI ethics will further enhance NPC

capabilities, enabling more sophisticated

interactions. Future research should focus on

improving AI efficiency, reducing development

costs, and exploring new ways to integrate AI

seamlessly into game design.

Implementing advanced AI techniques in NPC

control is computationally intensive, and can

potentially affect game performance. Balancing the

complexity of AI algorithms with the available

computational resources is a critical challenge for

developers. Deep learning models require

significant computational resources, which can be a

limiting factor for real-time applications in games.

246

Educational Technology Veljko Aleksić

Additionally, training deep learning models

necessitates large datasets that can be difficult to

obtain and curate. Ensuring the quality and

diversity of training data is essential for developing

robust and generalizable NPC behaviors. The use of

AI models raises ethical questions regarding the

behavior and representation of NPCs. Ensuring that

NPC behavior aligns with ethical standards and

does not perpetuate harmful stereotypes or

behaviors is essential.

The future of using AI in NPC control is promising,

with potential advancements in unsupervised

learning, transfer learning, and explainable AI.

These techniques will further enhance NPC

intelligence, making characters more autonomous

and capable of even richer interactions. While

challenges remain, the continued evolution of AI

integration promises even greater innovations in

NPC control, pushing the boundaries of what is

possible in digital game design. As AI continues to

evolve, it is essential to ensure that it complements

and enhances the creative aspects of game design

rather than overshadowing them.

ACKNOWLEDGEMENTS

This study was supported by the Ministry of

Science, Technological Development and

Innovation of the Republic of Serbia, and these

results are parts of the Grant No. 451-03-66/2024-

03/200132 with University of Kragujevac, Faculty

of Technical Sciences Čačak.

REFERENCES

[1] Schijven, M. P., & Kikkawa, T. (2022). Is there
any (artificial) intelligence in gaming?
Simulation & Gaming, 53(4), 315–316.
doi:10.1177/10468781221101685

[2] Aleksić, V., Ivanović, M. (2017). Early
Adolescent Gender and Multiple Intelligences
Profiles as Predictors of Digital Gameplay

Preferences. Croatian Journal of Education,
19(3), pp. 697-727. doi:10.15516/cje.v19i3.

2262
[3] Vermesan, O. (2021). Artificial Intelligence for

Digitising Industry. Artificial Intelligence for
Digitising Industry, 1–541. doi:10.13052/rp-
9788770226639

[4] Aleksić, V. (2023). Razvoj digitalnih igara.
Čačak: Fakultet tehničkih nauka. ISBN 978-86-
7776-269-8

[5] Roberts, P. (2022). Artificial Intelligence in
Games. CRC Press. doi:10.1201/
9781003305835

[6] Millington, I. (2019). Procedural Content
Generation. AI for Games, 669–738.
doi:10.1201/9781351053303-8

[7] Sun, L., Kangas, M., & Ruokamo, H. (2023).

Game-based features in intelligent game-
based learning environments: a systematic
literature review. Interactive Learning

Environments, 1–17. doi:10.1080/10494820.
2023.2179638

[8] Mendoza Guevarra, E. T. (2020). Creating

Game Environments in Blender 3D. Apress.

doi:10.1007/978-1-4842-6174-3
[9] Johnson, G. (2019). Non-Player Characters,

Foes, and Monsters. Developing Creative
Content for Games, 151–168. doi:10.1201/
9781315152554-16

[10] Wagner, F., Schmuki, R., Wagner, T., &
Wolstenholme, P. (2006). Modeling software

with finite state machines: a practical
approach. Auerbach Publications. ISBN 978-
08-4938-086-0

[11] Lilis, Y., & Savidis, A. (2014). An Integrated
Development Framework for Tabletop
Computer Games. Computers in
Entertainment, 12(3), 1–34. doi:10.1145/

2702109.2633423
[12] Filho, M. E. M., Souza, A. J. S., Tedesco, P. C.

A. R., Silva, D. R. D., & Ramalho, G. L. (2009).
An Integrated Development Model for
Character-Based Games. 2009 VIII Brazilian
Symposium on Games and Digital

Entertainment. doi:10.1109/sbgames.2009.30
[13] Jung, W.-J. (2022). RPG User Play Observation

Learning-based Guide NPC AI Reinforcement
Learning. Journal of Korea Game Society,
22(5), 73–83. doi:10.7583/jkgs.2022.22.5.73

[14] Kay, M., & Powley, E. J. (2018). The effect of
visualising NPC pathfinding on player

exploration. Proceedings of the 13th
International Conference on the Foundations of

Digital Games. doi:10.1145/3235765.3235824
[15] Handy Permana, S. D., Yogha Bintoro, K. B.,

Arifitama, B., & Syahputra, A. (2018).
Comparative Analysis of Pathfinding
Algorithms A *, Dijkstra, and BFS on Maze

Runner Game. IJISTECH (International Journal
Of Information System & Technology), 1(2), 1.
doi:10.30645/ijistech.v1i2.7

[16] Krisdiawan, R. A., Permana, A., Darmawan, E.,
Nugraha, F., & Kriswandiyanto, A. (2021).
Implementation Dijkstra’s Algorithm for Non-

Players Characters in the Game Dark Lumber.
Journal of Physics: Conference Series,
1933(1), 012006. doi:10.1088/1742-6596/
1933/1/012006

[17] Sazaki, Y., Satria, H., & Syahroyni, M. (2017).
Comparison of A* and dynamic pathfinding
algorithm with dynamic pathfinding algorithm

for NPC on car racing game. 2017 11th
International Conference on
Telecommunication Systems Services and
Applications (TSSA). doi:10.1109/tssa.2017.
8272918

[18] Saranya, C., Unnikrishnan, M., Ali, S. A.,
Sheela, D. S., & Lalithambika, Dr. V. R. (2016).

Terrain Based D∗ Algorithm for Path Planning.

IFAC-PapersOnLine, 49(1), 178–182. doi:10.
1016/j.ifacol.2016.03.049

[19] Daud, A. A. G., Muhaqiqin, M., & Sintaro, S.
(2021). Comparison of Jump Point Search

Algorithms and Basic Theta* Algorithms in
Determining the Shortest Route in NPC in Maze

Games. In The 1st International Conference on
Advanced Information Technology and

247

Educational Technology Veljko Aleksić

Communication (IC-AITC). 3-4 September,

Universitas Teknokrat Indonesia.

[20] Pandey, G., Rao, K. R., & Mohan, D. (2014). A
Review of Cellular Automata Model for
Heterogeneous Traffic Conditions. Traffic and
Granular Flow ’13, 471-478. doi:10.1007/978-
3-319-10629-8_52

[21] Zhang, X., & Zhang, X. (2022). Based on
Navmesh to implement AI intelligent

pathfinding in three-dimensional maps in UE4.
Proceedings of the 2022 5th International
Conference on Algorithms, Computing and
Artificial Intelligence, 23-25th Dec, Sanya,
China, pp.1-5. doi:10.1145/3579654.3579752

[22] Kapi, A. Y. (2020). A Review on Informed
Search Algorithms for Video Games

Pathfinding. International Journal of Advanced
Trends in Computer Science and Engineering,
9(3), 2756–2764. doi:10.30534/ijatcse/2020/
42932020

[23] Cho, D.-H., Lee, Y.-H., Kim, J.-H., Park, S.-Y.,
& Rhee, D.-W. (2011). NPC Control Model for

Defense in Soccer Game Applying the Decision
Tree Learning Algorithm. Journal of Korea
Game Society, 11(6), 61–70. doi:10.7583/
jkgs.2011.11.6.61

[24] Belle, S., Gittens, C., & Graham, T. C. N.
(2019). Programming with Affect: How
Behaviour Trees and a Lightweight Cognitive

Architecture Enable the Development of Non-
Player Characters with Emotions. 2019 IEEE

Games, Entertainment, Media Conference
(GEM). 18-21th June, New Haven, USA.
doi:10.1109/gem.2019.8811542

[25] Hubble, A., Moorin, J., & Khuman, A. S.
(2021). Artificial Intelligence in FPS Games:

NPC Difficulty Effects on Gameplay. Fuzzy
Logic, 165–190. doi:10.1007/978-3-030-
66474-9_11

[26] Ying, Z., Edwards, N., & Kutuzov, M. (2024).
Efficient Visibility Approximation for Game AI
using Neural Omnidirectional Distance Fields.

Proceedings of the ACM on Computer Graphics
and Interactive Techniques, 7(1), 1–15.
doi:10.1145/3651289

[27] Choi, H., Han, S., Jeon, J., Ahn, S., & Yoo, J.

(2024). Simulation-Based SOTIF Hazard
Analysis and Risk Assessment Methodology for
Autonomous Driving System. Transaction of

the Korean Society of Automotive Engineers,
32(4), 331–347. doi:10.7467/ksae.2024.32.4.
331

[28] Knievel, C., Pejic, A., Krüger, L., Ziegler, C., &
Adamy, J. (2023). Boids Flocking Algorithm for
Situation Assessment of Driver Assistance
Systems. IEEE Open Journal of Intelligent

Transportation Systems, 4, 71–82.
doi:10.1109/ojits.2023.3236985

[29] Edwards, G., Subianto, N., Englund, D., Goh,
J. W., Coughran, N., Milton, Z., Mirnateghi, N.,
& Ali Shah, S. A. (2021). The Role of Machine

Learning in Game Development Domain - A

Review of Current Trends and Future
Directions. 2021 Digital Image Computing:
Techniques and Applications (DICTA), pp. 1-7,

29-30th November, Gold Coast, Australia.

doi:10.1109/dicta52665.2021.9647261

[30] Cherukuri, A., & Glavin, F. G. (2022).
Balancing the Performance of a FightingICE
Agent using Reinforcement Learning and
Skilled Experience Catalogue. 2022 IEEE
Games, Entertainment, Media Conference
(GEM), pp.1-6, 27-30th November, St.
Michael, Barbados. doi:10.1109/gem56474.

2022.10017566
[31] Maulana, A., Mardi, S., Yuniarno, E. M., &

Suprapto, Y. K. (2022). Behavior NPC
Prediction Using Deep Learning. 2022
International Conference on Computer
Engineering, Network, and Intelligent
Multimedia (CENIM), pp. 1-5, 22-23th

November, Surabaya, Indonesia.
doi:10.1109/cenim56801.2022.10037328

[32] Sehrawat, A., & Raj, G. (2018). Intelligent PC
Games: Comparison of Neural Network Based
AI against Pre-Scripted AI. 2018 International
Conference on Advances in Computing and

Communication Engineering (ICACCE), pp.
378-383, 22-23th June, Paris, France.
doi:10.1109/icacce.2018.8441745

[33] Ryan, J., Summerville, A. J., Mateas, M., &
Wardrip-Fruin, N. (2016). Translating Player
Dialogue into Meaning Representations Using
LSTMs. Lecture Notes in Computer Science,

383–386 doi:10.1007/978-3-319-47665-0_38
[34] Wang, J., & Zhao, R. (2022). Deep

reinforcement learning and application in self-
driving. Theories and Practices of Self-Driving
Vehicles, 307–326. doi:10.1016/b978-0-323-
99448-4.00010-2

[35] Arun Sampaul Thomas, G.,

Muthukaruppasamy, S., Nandha Gopal, J.,
Sudha, G., & Saravanan, K. (2024).
Unleashing the Power of XAI (Explainable
Artificial Intelligence). Explainable AI (XAI) for
Sustainable Development, 303–316.
doi:10.1201/9781003457176-18

[36] Vingilis, E., Yıldırım-Yenier, Z., Fischer, P.,
Wiesenthal, D. L., Wickens, C. M., Mann, R. E.,
& Seeley, J. (2016). Self-concept as a risky
driver: Mediating the relationship between

racing video games and on-road driving
violations in a community-based sample.
Transportation Research Part F: Traffic

Psychology and Behaviour, 43, 15–23.
doi:10.1016/j.trf.2016.09.021

[37] Forneris, L., Pighetti, A., Lazzaroni, L., Bellotti,
F., Capello, A., Cossu, M., & Berta, R. (2023).
Implementing Deep Reinforcement Learning
(DRL)-based Driving Styles for Non-Player
Vehicles. International Journal of Serious

Games, 10(4), 153–170. doi:10.17083/ijsg.
v10i4.638

248

