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Abstract: The integration of artificial intelligence concepts into digital games design has revolutionized the 

gaming industry. Among other elements, artificial intelligence significantly influenced modern gameplay 

mechanics, elevated player experiences, and streamlined game development processes. Road traffic safety 

driving simulation games are an emerging educational tool aimed at improving road safety awareness and 

skills among drivers. A critical component of these games is the AI-driven Non-Playable Characters (e.g., 

NPCs) that expand dynamic and immersive gameplay experience by exhibiting various realistic road users’ 

behavior patterns, traffic conditions and player actions adaptation. The adaptive AI algorithms ensure 

balanced difficulty, catering to gamers' diverse driving skill levels, while procedural content generation 

opened endless possibilities in designing game levels, environments, and tasks, enhancing game 

replayability and longevity. AI-powered virtual assistants can provide players with seamless in-game 

guidance, enhancing their engagement without disrupting the gameplay flow. Additionally, adaptable 

intelligent road traffic conditions can challenge players to strategize and adapt, contributing to more 

compelling and immersive gaming experiences. Contemporary software tools and engines streamlined 

game development processes and accelerated asset creation, bug detection, and playtesting. Automated 

game design processes, such as AI-driven level and procedural generation, expedited prototyping and 

iteration phases, while AI-driven analytics tools offered valuable insights into player behavior and 

preferences, enabling developers to optimize game mechanics and its content for maximum impact. The 

impact of artificial influence concepts on digital game design is poised to grow even further, promising 

exciting innovations and possibilities for future game designers and enthusiasts alike. 
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1. INTRODUCTION

The digital gaming industry has experienced 

exponential growth and evolution, driven by 

technological advancements and creative 

innovations. Among the pivotal technologies 

influencing this sector, artificial intelligence (AI) 

currently stands out as a transformative force [1]. 

AI has not only revolutionized the way digital 

games are designed and developed but also how 

they are experienced by players. The global 

increase in road traffic accidents has underscored 

the need for effective formal, informal and non-

formal educational tools to promote road safety as 

traditional methods of driver education often lack 

the practical and engaging elements necessary to 

prepare drivers for real-world scenarios. Road 

traffic safety games offer a dynamic and interactive 

platform for learning safe driving practices and 

understanding traffic regulations. This paper 

explores the impact of AI concepts on designing 

NPCs in road traffic safety games, as they play a 

pivotal role in creating realistic traffic environments 

that challenge players to apply their knowledge and 

skills. The behavior of NPCs must mimic real-world 

entities such as other drivers, pedestrians, and 

cyclists to provide authentic experiences. The 

integration of AI in the NPCs design enhances their 

realism by enabling the exhibition of complex 

behaviors and dynamical interaction with the player 

and the game environment. Historically, digital 

games have progressed from simple, rule-based 

systems to complex, interactive environments [2]. 

The early days of game design were marked by 

limited computational power and rudimentary AI, 

which restricted the behavior of NPCs and the 

dynamism of game worlds. However, the 

integration of sophisticated AI algorithms and 

machine learning techniques has enabled the 

creation of more intelligent, adaptive, and realistic 

game objects and elements. These advancements 

have led to significant improvements in NPCs 

behavior, procedural content generation, adaptive 

gameplay, and immersive game environments [3]. 

One of the most noticeable impacts of AI in game 

design is the evolution of NPCs. Modern AI-driven 

NPCs exhibit lifelike behaviors, making them more 
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than just scripted entities. They can learn from 

player actions, adapt their strategies, and interact 

with the game environment in a believable manner. 

This level of sophistication contributes to a more 

immersive and engaging gaming experience, as 

players can interact with NPCs in ways that mirror 

real-world interactions [4]. Moreover, AI has 

enabled the development of adaptive gameplay, 

where the game adjusts its difficulty, paths and 

challenges based on the player's level of skills and 

preferences [5]. This personalization ensures that 

games remain challenging and enjoyable for a wide 

range of gamers, from novices to experts. AI-

driven adaptive systems analyze player behavior in 

real time, providing a tailored gaming experience 

that maintains a balance between challenge and 

reward. Procedural content generation (e.g., PCG) 

is another area where AI has made a substantial 

impact. By leveraging algorithms and machine 

learning, developers can create vast and varied 

game worlds without manually designing each 

element. PCG not only saves development time but 

also enhances replayability, as players can explore 

new content in each playthrough [6]. Games like 

Forza Horizon® exemplify the potential of PCG in 

creating expansive, dynamic, photo-realistic 

environments, as presented in Fig. 1. 

 

Figure 1. Forza Horizon 5 AI PCG environment 

AI has also contributed to the creation of intelligent 

game environments that respond to player actions 

and decisions [7]. These environments use AI 

algorithms to simulate realistic physics, dynamic 

weather conditions, and interactive elements, 

providing a more immersive and engaging 

experience [8]. As a result, players can experience 

a game world that feels alive and responsive, 

enhancing the overall sense of immersion.  

2. AI MODELS IN DESIGNING NPCs 

NPCs are fundamental components of digital 

games, contributing significantly to the game's 

narrative, environment, and player experience [9]. 

Historically, NPCs were driven by a simple rule-

based system that limited their behavior and 

interaction capabilities. However, AI integration 

has revolutionized NPC control, enabling more 

dynamic, intelligent, and responsive characters. 

Road traffic safety games aim to simulate real-

world driving conditions and traffic scenarios to 

educate players about safe driving practices and 

traffic regulations. NPCs in these games represent 

various road users and entities, creating a realistic 

traffic environment that challenges players to 

navigate safely and make informed decisions. In 

the early stages of digital game development, NPC 

behavior was largely predefined and scripted. 

Simple finite state machines (FSMs) were 

commonly used, which allowed NPCs to transition 

between a limited number of states based on 

specific conditions [10]. Implementing an FSMs 

involves defining the states, transitions, and 

actions in a way that can be processed by the 

game's AI system. For example, an NPC driver 

might have states for “driving,” “stopping at a red 

light,” and “yielding to pedestrians”. FSMs are 

straightforward to implement and can effectively 

simulate simple traffic behaviors. This typically 

requires coding the FSM logic into the game engine 

using scripting languages or integrated 

development environments (IDEs) [11]. While 

these systems were sufficient for basic interactions, 

they often resulted in predictable and repetitive 

behaviors, reducing the overall immersion and 

realism [12]. The introduction of AI into NPC control 

marked a significant shift from these rudimentary 

systems. AI techniques such as pathfinding 

algorithms, decision trees, and machine learning 

models provided NPCs with the ability to make 

more complex decisions, adapt to player actions, 

and exhibit lifelike behaviors [13]. This evolution 

has been instrumental in creating more engaging 

and immersive gaming experiences. 

2.1. Pathfinding Algorithms 

Pathfinding algorithms are a crucial component in 

the design of NPCs in digital games, enabling 

characters to navigate complex environments 

efficiently and realistically [14]. Effective 

pathfinding algorithms enable NPCs to navigate 

complex traffic scenarios, avoid collisions, and 

adhere to traffic rules. Key metrics in pathfinding 

algorithms are optimality (finding the shortest or 

most efficient path), completeness (ensuring a path 

is found if one exists), and complexity 

(computational resources required to find the 

path). NPC control can be operationalized by 

several pathfinding algorithms: 

• Dijkstra’s algorithm computes the shortest 

paths from a starting node to all other nodes in 

a graph with non-negative weights [15]. While 

it guarantees finding the shortest path, it can be 

computationally intensive for large game 

environments. Dijkstra’s algorithm is 

particularly useful in scenarios where NPCs need 

to follow specific routes or navigate through 

dense traffic networks, ensuring they take the 

most efficient routes to their destinations [16]. 

• A* algorithm combines the benefits of Dijkstra's 

algorithm and a heuristic approach. It is a widely 
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used technique, enabling NPCs to find the 

shortest path between points while avoiding 

obstacles [17]. The heuristic component enables 

efficient and realistic pathfinding, allowing units 

to move dynamically and strategically, 

particularly in complex and dynamic 

environments. NPCs can maneuver around 

obstacles and other units, reaching their 

destinations without unnecessary delays or 

collisions, thereby enhancing the strategic depth 

of the game. In road traffic games, the A* 

algorithm helps NPCs navigate the game 

environment by considering factors such as road 

layout, traffic signals, and the positions of other 

vehicles. The use-case scenario of hybrid A* 

algorithm implementation for self-driving NPC 

pathfinding in Unity environment is presented in 

Fig. 2. 

 

Figure 2. Self-driving vehicle simulation using A* 
algorithm in Unity environment 

• D* algorithm is an extension of the A* algorithm 

designed for environments that change over 

time. In games with dynamic environments 

where obstacles can appear or disappear, D* 

ensures that NPCs can recalculate and adapt 

their paths, maintaining efficient navigation 

suitable for real-time applications [18].  

• Jump Point Search (JPS) is an optimization of 

the A* algorithm for uniform-cost grids. It 

reduces the number of nodes evaluated by 

"jumping" over nodes that do not affect the final 

path, significantly improving efficiency [19]. 

Like A*, JPS uses a heuristic function to 

estimate the cost of reaching the goal from a 

given node. The heuristic function typically used 

in JPS is the Manhattan distance for grid-based 

environments, which calculates the distance 

between two points as the sum of the absolute 

differences in their x and y coordinates. JPS 

reduces the computational load of pathfinding 

by minimizing the number of nodes that need to 

be evaluated. This allows the game to support 

larger and more complex traffic environments 

without compromising performance. The 

reduced computational load also enables the 

game to handle more NPCs simultaneously, 

creating richer and more diverse traffic 

scenarios. 

• Navigation meshes are a more advanced 

pathfinding technique where the areas of the 

environment are represented as interconnected 

polygons. Waypoints are predefined points in 

the game environment that guide NPC 

movement along specific paths. They are 

commonly used in games to define patrol routes 

or navigation paths for NPCs. Traffic flow 

models, such as the Cellular Automata Model, 

simulate the movement of vehicles and 

pedestrians by dividing the environment into a 

grid of cells, each representing a portion of the 

road [20]. NPCs move from one cell to another 

based on traffic rules and interactions with other 

NPCs, creating a realistic simulation of traffic 

flow. Navigation meshes can be easily scaled to 

handle large and complex environments, 

making them suitable for open-world games and 

large-scale simulations. For instance, the Unreal 

Engine development environment has a built-in 

navigation mesh system that provides tools for 

automatic mesh generation and real-time 

updates, simplifying the implementation of 

advanced navigation in games [21]. A traffic 

training simulator developed using Unreal 

Engine and NavMesh provides a realistic and 

interactive environment for driver training (Fig. 

3). The simulation includes a complex road 

network with various traffic scenarios, such as 

congestion, road closures, and accidents. 

NavMesh enables the vehicles to navigate the 

environment smoothly and realistically, 

providing drivers with valuable training on safe 

driving practices. 

 

Figure 3. Unreal Engine NavMesh NPC vehicle 
navigation 

A hierarchical pathfinding model is used for 

breaking down the environment into multiple levels 

of abstraction where the high-level paths are 

calculated first, followed by detailed paths at lower 

levels. Large-scale massively multiplayer online 

(MMO) games use hierarchical pathfinding for NPC 

optimization by simplifying complex environments 

into manageable sections, ensuring efficient and 

scalable pathfinding [22]. The flow fields technique 

provides a vector field across the environment that 

guides NPCs toward their goals. In cases where 

NPCs operate in close proximity to each other, a 

cooperative pathfinding technique is used to avoid 

collisions and optimize group movement. 
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2.2. Decision Trees and Behavior Trees 

Decision tree algorithms are a versatile and 

powerful tool in the NPCs design. A decision tree is 

a flowchart-like structure where each internal node 

represents a decision point based on certain 

conditions, each branch represents the outcome of 

a decision, and each leaf node represents an action 

or end state [23]. This hierarchical structure allows 

for clear and logical decision-making processes. 

Implementing a decision tree involves defining the 

conditions and actions at each node and creating 

the logic to traverse the tree based on the current 

game state. This transparency allows developers to 

fine-tune AI behavior for a more challenging and 

realistic experience. Decision trees can be easily 

expanded by adding more nodes and branches, 

making them flexible to accommodate complex 

behaviors and scalable to handle a wide range of 

scenarios. This model also allows modular design, 

where individual branches or sub-trees can be 

developed and tested independently. The 

modularity simplifies development and facilitates 

the reuse of decision logic across different NPCs. 

Behavior trees have become a popular framework 

for controlling NPCs due to their flexibility, 

modularity, and ease of understanding. Originating 

from robotics and AI research, behavior trees 

provide a structured way to model complex 

decision-making processes, enabling NPCs to 

exhibit realistic and adaptive behaviors. A behavior 

tree is a hierarchical model that represents the 

execution flow of an NPC’s behavior. It consists of 

nodes, which can be of different types: control 

nodes (such as sequences and selectors) and 

execution nodes (tasks or actions) [24]. Control 

nodes manage the flow of execution. Sequence 

nodes execute the child nodes in order until one 

fails, while selector nodes execute the child nodes 

in order until one succeeds. Execution nodes 

perform specific actions or checks. They return to 

success, failure, or running states. For instance, the 

casual traffic sequence in an NPC car can be reused 

across different NPCs, each with its specific 

waypoints, by simply plugging in different action 

nodes. Rule-based systems use predefined rules to 

guide NPC behavior. These systems are particularly 

effective for simulating complex traffic interactions 

and ensuring that NPCs adhere to traffic laws. For 

example, rules can be defined for stopping at red 

lights, yielding to pedestrians, and maintaining safe 

following distances. Rule-based systems provide a 

straightforward way to implement traffic 

regulations in the game. Behavior trees are highly 

flexible and can be expanded or modified with 

minimal impact on the overall structure. They scale 

well with increasing complexity, making them 

suitable for games with complex NPC behaviors. An 

NPC’s behavior tree can be expanded to include 

additional sequences or selectors for new actions. 

Tools like Unreal Engine’s Behavior Tree editor 

provide a visual representation of the tree, allowing 

designers to intuitively adjust the flow of behaviors 

without deep programming knowledge (Fig. 4). 

 

Figure 4. The example of Unreal 4 behavior tree 
NPC control 

For instance, the Far Cry game series relies heavily 

on behavior trees to control both enemy and 

wildlife NPCs. These trees enable NPCs to exhibit a 

wide range of behaviors, from patrolling and 

engaging in combat to hunting and fleeing, 

contributing to the series' immersive open-world 

gameplay. 

2.3. Fuzzy Logic 

Traditional approaches often struggle with the 

inherent uncertainties and variabilities in driving 

environments and behaviors. Fuzzy logic, with its 

ability to handle imprecise information and model 

human-like reasoning, offers a robust solution for 

enhancing driving simulations. Fuzzy logic is an 

approach to computing that handles the concept of 

partial truth, with truth values ranging between 

completely true and completely false. In the NPC 

context, fuzzy logic algorithms allow for more 

nuanced decision-making processes, enabling NPCs 

to exhibit realistic and adaptive behaviors. Fuzzy 

logic extends classical binary logic to handle the 

concept of partial truth by introducing variables 

that can have a degree of truth represented by 

values between 0 and 1. Fuzzy rules are if-then 

statements that define the relationship between 

fuzzy sets and the decisions made based on those 

sets. The fuzzy inference system evaluates these 

rules to make decisions [25]. Fuzzy logic handles 

uncertainty and imprecision effectively, allowing 

NPCs to make more nuanced decisions. Integrating 

fuzzy logic into Unreal Engine or Unity created NPCs 

significantly improves the fidelity and adaptability 

of driving simulations in total. Fuzzy controllers are 

designed to manage various aspects of the driving 

simulation, such as vehicle dynamics and driver 

behavior. Variables such as speed, distance, and 

steering angle are defined as inputs to the fuzzy 

controller, while acceleration, braking force, and 

steering adjustments are defined as outputs. A set 

of fuzzy rules must also be created to define the 

relationship between input and output variables. 

The following example demonstrates a creation of 

simple fuzzy logic controller visual script for 

controlling NPC vehicle speed based on distance to 

an obstacle using Unreal Engine's Blueprint 

system: 
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- Event Tick
- Get Distance to Obstacle
- Call EvaluateFuzzyLogic

- Input: Distance to Obstacle
- Output: Throttle

- Set Throttle on Vehicle

For basic control, we can use C++ to implement the 

fuzzy logic system. First, we create the 

membership functions to handle distance 

evaluation: 

float MembershipFunction(float x, float a, float b, float c) 
{    if (x <= a || x >= c) return 0.0f; 

 if (x < b) return (x - a) / (b - a); 
    return (c - x) / (c - b);} 

float Close(float distance) 
{return MembershipFunction(distance,0.0f,0.0f,10.0f);} 
float Medium(float distance) 
{return MembershipFunction(distance,5.0f,10.0f,15.0f);} 
float Far(float distance) 
{return MembershipFunction(distance,10.0f,20.0f,30.0f);} 

Next, we implement the fuzzy rules based on the 

input membership values: 

float EvaluateThrottle(float distance) { 
 float closeMembership = Close(distance); 
 float mediumMembership = Medium(distance); 
 float farMembership = Far(distance); 

 // Fuzzy rules 
 float throttleLow = closeMembership; 
 float throttleMedium = mediumMembership; 
 float throttleHigh = farMembership; 

 // Weighted average for defuzzification 
 float totalWeight = closeMembership + 

mediumMembership + farMembership; 
 float throttle = (throttleLow * 0.3f + throttleMedium * 

0.6f + throttleHigh * 1.0f) / totalWeight; 

 return throttle;} 

Finally, we use the computed throttle value to 

control the vehicle in Unreal Engine: 

void UpdateVehicleControl(float DeltaTime) { 
 float distance = GetDistanceToObstacle(); 
 float throttle = EvaluateThrottle(distance); 

 // Apply throttle to vehicle 
 SetThrottle(throttle);} 

// Called every frame 
void Tick(float DeltaTime) 

 {UpdateVehicleControl(DeltaTime);} 

We can easily extend this by adding more complex 

rules, integrating with other vehicle dynamics 

parameters, and enhancing the membership 

functions to suit specific simulation requirements. 

2.4. Interaction with Environment and Players 

For NPCs in road traffic safety games, interaction 

with the game environment and the player is crucial 

for creating a realistic and educational experience. 

NPCs must be able to sense their surroundings, 

respond to dynamic changes, and interact with the 

player in meaningful ways. Perception systems 

allow NPCs to detect and interpret information from 

the game environment. Techniques such as 

Raycasting [26] and Sensor Fusion [27] enable 

NPCs to sense traffic signals, other vehicles, and 

obstacles. These systems provide the necessary 

data for NPCs to make informed decisions and 

navigate the environment safely. Flocking 

algorithms, such as the Boids algorithm [28], 

simulate the collective movement of groups of 

NPCs, such as pedestrian crowds or vehicle 

convoys. These algorithms help NPCs maintain 

cohesion, avoid collisions, and navigate crowded 

environments realistically. Flocking behavior is 

essential for simulating realistic traffic scenarios 

where multiple NPCs must interact and move 

together. Predictive collision avoidance techniques 

enable NPCs to anticipate and avoid potential 

collisions. By calculating the future positions of 

other vehicles and pedestrians, NPCs can adjust 

their paths to prevent accidents. These techniques 

are critical for creating realistic and safe traffic 

scenarios in road traffic safety games. Safety 

Driving Simulator® is a road traffic safety game 

that uses AI to create realistic traffic scenarios. The 

game employs the A* algorithm for pathfinding, 

FSMs for decision-making, and rule-based systems 

to enforce traffic regulations. NPCs in the game 

adapt their behavior based on player actions, 

providing a dynamic and educational learning 

experience that emphasizes safe driving practices 

(Fig. 5). 

Figure 5. Safety Driving Simulator GUI 

2.5. Machine learning 

Machine learning techniques introduced a higher 

level of adaptability and intelligence to NPC control. 

By training NPCs on large datasets of player 

interactions, machine learning models can predict 

player behavior, optimize NPC strategies, and 

continuously improve their performance over time. 

This results in NPCs that can learn and adapt, 

providing a more personalized and engaging 

experience [29]. In supervised learning, the model 

is trained on labeled data, meaning the input data 

is paired with the correct output. The goal is to 

learn a mapping from inputs to outputs that can be 

applied to new, unseen data. For NPCs in traffic 

safety games, supervised learning can be used to 

model specific driving behaviors based on historical 

traffic data. Common algorithms include decision 

trees, support vector machines, and neural 

networks. Unsupervised learning deals with finding 

patterns in data without labeled outputs. 

Techniques include clustering (e.g., k-means) and 

dimensionality reduction (e.g., principal component 

analysis). Clustering algorithms can group NPC 
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behaviors based on similarities, allowing the 

creation of different behavior profiles without 

predefined labels. This approach is used to cluster 

driving behaviors and identify typical traffic 

scenarios that NPCs should be able to handle. 

The first step in applying machine learning to NPC 

design is collecting and preparing relevant data. 

This can include player interactions, game states, 

and desired NPC behaviors. Once data is prepared, 

the next step is to train and validate machine 

learning models. This involves selecting 

appropriate algorithms and tuning their parameters 

to optimize performance. For example, a neural 

network can be trained using backpropagation to 

learn complex behaviors from the dataset. The 

network adjusts its weights based on the error 

between predicted and actual outcomes. After 

training, the machine learning models are 

integrated into the game's NPC control systems, 

enabling real-time decision-making and 

adaptation. 

Reinforcement learning involves training agents to 

make sequences of decisions by rewarding desired 

behaviors. Agents learn to maximize cumulative 

rewards through trial and error [30]. Q-learning is 

a reinforcement learning algorithm where an NPC 

learns a policy to take actions that maximize its 

expected future rewards, adjusting its strategy 

based on received rewards and penalties. In the 

context of traffic simulations, reinforcement 

learning has been used to optimize traffic signal 

control, model driver behavior, and develop 

intelligent transportation systems. 

The first step in applying RL to NPC design is 

defining the environment. This includes specifying 

the road layout, traffic rules, and the types of 

vehicles and obstacles that the NPCs will encounter. 

Several environment components must be defined: 

state space (current situation in the traffic 

simulation, including the positions and velocities of 

vehicles, traffic light statuses, and road conditions), 

action space (set of actions available to NPCs, such 

as acceleration, braking, lane changing, and 

turning), and reward function (feedback to the 

NPCs based on their actions, encouraging safe and 

efficient driving behaviors). The following Python 

code can be used for defining the traffic 

environment: 

import numpy as np 

class TrafficEnvironment: 

    def __init__(self): 

        self.state = None 

        self.reset() 

    def reset(self): 

        self.state = np.array([0, 0]) # Init state:[pos, vel] 

        return self.state 

    def step(self, action): 

        position, velocity = self.state 

# Apply action: 0 = accel, 1 = brake, 2 = maintain speed 

        if action == 0: 

            velocity += 1 

        elif action == 1: 

            velocity -= 1 

# Update position 

        position += velocity 

# Define a simple reward function to encourage 

maintaining a velocity of 10  

        reward = -abs(velocity - 10)  

# Update state 

        self.state = np.array([position, velocity]) 

# Check if simulation is done 

        done = position < 0 or position > 100 

        return self.state, reward, done 

    def render(self): 

        print(f"Position: {self.state[0]}, Velocity: 

{self.state[1]}") 

# Example of using the environment 

env = TrafficEnvironment() 

state = env.reset() 

print(f"Initial state: {state}") 

# Example action: accelerate 

action = 0   

next_state, reward, done = env.step(action) 

print(f"Next state: {next_state}, Reward: {reward}, 

Done: {done}") 

The NPCs are treated as reinforcement learning 

agents that learn to navigate the environment. The 

agent's goal is to maximize the cumulative reward 

by making optimal driving decisions. A simple Q-

learning algorithm without any external libraries 

will be used to keep it straightforward and 

understandable.: 

class QLearningAgent: 

    def __init__(self, num_states, num_actions, 

alpha=0.1, gamma=0.9, epsilon=0.1): 

        self.num_states = num_states 

        self.num_actions = num_actions 

        self.alpha = alpha  # Learning rate 

        self.gamma = gamma  # Discount factor 

        self.epsilon = epsilon  # Exploration rate 

        self.q_table = np.zeros((num_states, 

num_actions))  # Q-value table 

    # Explore or exploit 

    def choose_action(self, state): 

        if np.random.rand() < self.epsilon: 

            return np.random.choice(self.num_actions)   

        else: 

            return np.argmax(self.q_table[state])   

    def update_q_table(self, state, action, reward, 

next_state): 

        best_next_action = 

np.argmax(self.q_table[next_state]) 

        td_target = reward + self.gamma * 

self.q_table[next_state, best_next_action] 

        self.q_table[state, action] += self.alpha * 

(td_target - self.q_table[state, action]) 

# Define states and actions 

num_states = 10  # Example number of discrete states 

num_actions = 3  # Accelerate, brake, maintain speed 

# Create Q-learning agent 

agent = QLearningAgent(num_states, num_actions) 

# Training example 

for episode in range(100): 

    state = env.reset() 

    state = int(state[1])  # Use velocity as simple state 

    for step in range(50): 

        action = agent.choose_action(state) 

        next_state, reward, done = env.step(action) 
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        next_state = int(next_state[1])  # Use velocity as 

next state 

        agent.update_q_table(state, action, reward, 

next_state) 

        state = next_state 

        if done: 

            break 

print(f"Q-table after training:\n{agent.q_table}") 

The training process involves the agent interacting 

with the environment, collecting experiences, and 

updating its policy based on the received rewards. 

The following code implements reinforcement 

learning based NPCs: 

class NPC: 
    def __init__(self, agent, environment): 
        self.agent = agent 
        self.environment = environment 
        self.state = self.environment.reset() 
    def act(self): 
        state = int(self.state[1])  # Use velocity as state 
        action = self.agent.choose_action(state) 
        self.state, reward, done = 

self.environment.step(action) 
        return self.state, reward, done 
# Instantiate NPC with trained agent 
npc = NPC(agent, env) 
# Simulate NPC behavior in the game 
for step in range(100): 
    state, reward, done = npc.act() 
    env.render() 
    if done: 
        break 

Reinforcement learning provides a powerful 

framework for designing adaptive and realistic 

NPCs in road traffic safety games. By leveraging 

various techniques, developers can create NPCs 

that exhibit complex and human-like driving 

behaviors. 

2.6. Deep learning 

Deep learning involves the use of artificial neural 

networks (ANNs) with multiple hidden layers 

(hence "deep") to model and learn complex 

relationships within data. Deep learning has 

revolutionized various fields, including computer 

vision, natural language processing, and 

autonomous driving, by enabling systems to learn 

complex patterns from large datasets. In the 

context of NPC design for traffic simulations, deep 

learning can be used to model and predict driving 

behaviors, making NPCs more adaptive and 

realistic. By leveraging neural networks with 

multiple layers, deep learning models can learn 

complex patterns and behaviors from large 

datasets, enabling NPCs to exhibit more 

sophisticated and realistic interactions [31]. Deep 

neural networks (DNNs) consist of multiple layers 

of neurons that process input data to produce an 

output. DNNs can model complex relationships in 

data, making them suitable for tasks such as 

behavior prediction and decision-making in NPCs. 

Convolutional Neural Networks (CNNs) can be 

employed to enable NPCs to recognize and interpret 

visual data from the game environment, such as 

identifying objects, obstacles, scene 

understanding, and navigation [32]. CNNs are 

specialized for processing grid-like data structures, 

such as images. In traffic simulations, CNNs can be 

used to analyze visual inputs, such as traffic 

camera feeds, to detect and respond to various 

traffic scenarios. CNNs can process visual data in 

real time, allowing NPCs to respond immediately to 

changes in the game environment. An NPC using a 

CNN can perform detailed scene analysis, 

identifying multiple objects and their relationships 

within the environment, leading to more informed 

decision-making. 

Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks are designed to 

handle sequential data, making them suitable for 

tasks requiring memory of past events [33]. In NPC 

control, these networks enable characters to 

remember and learn from previous interactions, 

leading to more coherent and contextually 

appropriate behaviors. An NPC can use an RNN to 

analyze sequences of player actions and predict 

future actions, adjusting its strategy accordingly to 

create more challenging gameplay.  

Reinforcement Learning (RL) involves training an AI 

agent to make decisions by rewarding desired 

actions and penalizing undesired ones. It is a type 

of machine learning where agents learn to make 

decisions by taking actions in an environment to 

maximize cumulative rewards. RL involves an 

agent, environment, actions, states, and rewards. 

Training NPCs involves defining the states, actions, 

and rewards within the game environment and 

iteratively improving the NPC's policy through 

exploration and exploitation. Designing an 

appropriate reward function is crucial for guiding 

the NPC toward desired behaviors. Creating a 

simulation environment that mimics the actual 

game is essential for training NPCs without the 

constraints of real-time gameplay. This allows for 

accelerated learning and extensive 

experimentation. 

Combining deep learning with reinforcement 

learning (deep reinforcement learning) allows NPCs 

to learn complex strategies by interacting with the 

environment and maximizing cumulative rewards. 

Deep reinforcement learning can be used to train 

NPCs to develop advanced strategies, such as 

planning and adapting tactics based on player 

actions and game state changes. When combined 

with deep learning, RL can be used to train NPCs to 

navigate complex traffic environments by learning 

from interactions with the environment. Deep 

reinforcement learning models require substantial 

amounts of data for training. This involves 

collecting relevant gameplay data and 

preprocessing it to ensure it is suitable for neural 

network training. Data might include player 

actions, NPC responses, environmental conditions, 

and game outcomes. Preprocessing steps can 
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involve normalization, augmentation, and 

segmentation of this data. Training learning models 

involves feeding the preprocessed data into the 

neural network, adjusting the weights through 

backpropagation, and validating the model to 

prevent overfitting. Once trained, deep 

reinforcement learning models are integrated into 

the game's NPC control systems for real-time 

decision-making and behavior generation. This 

model excels at processing complex and high-

dimensional data, enabling NPCs to understand and 

react to intricate game environments and 

scenarios. This adaptability results in more 

challenging and unpredictable gameplay, as NPCs 

can dynamically modify their strategies and tactics. 

3. ETHICAL CHALLENGES IN NPC DESIGN

FOR ROAD TRAFFIC SAFETY GAMES

Road traffic safety games serve as critical tools for 

driver training, education, and research. The 

specificity of NPCs used in these games are that 

they simulate realistic traffic behaviors, providing 

learners with scenarios to practice driving skills and 

understand traffic dynamics, which are crucial and 

critical elements in real-world traffic environment 

movement and orientation. AI techniques, 

particularly machine learning and deep learning, 

enable NPCs to exhibit complex behaviors and 

adapt to diverse traffic conditions, enhancing the 

effectiveness of these informal and non-formal 

educational tools. While AI-driven NPC design 

offers numerous benefits, it also introduces ethical 

challenges that must be addressed: 

• Safety and reliability by ensuring that AI-

driven NPCs make safe and reliable decisions

in all traffic scenarios, especially in dynamic

and unpredictable environments. The NPC

algorithms must be extensively tested and

validated in order to verify their appropriate

behavior across a wide range of scenarios and

realistic situations [34];

• Fairness by avoiding bias in NPC behaviors

that may disproportionately affect certain

groups or communities. Biased behaviors can

be efficiently suppressed and prevented by

including diverse demographic groups and

traffic scenarios into training datasets. In

addition, various techniques can be

implemented to detect and mitigate biases in

AI models during its development and

deployment.

• Transparency of how NPCs make decisions to

build trust among users and stakeholders.

Explainable AI (XAI) [35] should be utilized to

provide users with insights into the decision-

making process of NPCs in combination with

user interface design that effectively

communicate NPC behaviors;

• Accountability for establishing mechanisms to

attribute responsibility for NPC actions and

decisions, particularly in the event of accidents 

or incidents. Legal and regulatory frameworks 

that outline responsibilities and liabilities for 

AI-driven NPCs in gaming environments 

should be integrated in combination with clear 

ethical guidelines [36]; 

• Societal impact and societal implications of AI-

controlled NPCs in shaping player attitudes

and behaviors towards road safety.

Comprehensive assessments and evaluation of

potential ethical and/or societal consequences

of AI-driven NPCs should be conducted in

combination with raising awareness about the

role and impact of AI in road traffic safety

games [37];

• Data privacy concerns arise from the

collection, storage, and utilization of personal

information in AI-driven NPC design. User

consent regarding the collection and use of

their data for NPC design purposes should be

obtained. Data anonymization or

pseudonymization techniques should also be

implemented to protect individual identities.

4. CONCLUSION

AI-driven NPCs contribute to a more immersive 

gaming experience by exhibiting lifelike behaviors 

and interactions. This realism is crucial for 

maintaining player engagement and creating 

believable game worlds. NPCs that can react 

dynamically to the player and the environment 

make the game world feel alive and responsive. AI 

models add layers of strategic depth to games. In 

strategy and tactical games, intelligent NPCs can 

challenge players with sophisticated tactics, 

requiring players to think critically and adapt their 

strategies. This complexity enhances replayability 

and keeps players engaged over longer periods. 

Adaptive AI allows NPCs to tailor their behavior to 

individual player styles and preferences. This 

personalization ensures that games remain 

challenging and enjoyable, catering to both novice 

and experienced players. By analyzing player 

behavior and adjusting NPC strategies, AI creates 

a more dynamic and satisfying gaming experience. 

Advances in deep learning, natural language 

processing, and AI ethics will further enhance NPC 

capabilities, enabling more sophisticated 

interactions. Future research should focus on 

improving AI efficiency, reducing development 

costs, and exploring new ways to integrate AI 

seamlessly into game design. 

Implementing advanced AI techniques in NPC 

control is computationally intensive, and can 

potentially affect game performance. Balancing the 

complexity of AI algorithms with the available 

computational resources is a critical challenge for 

developers. Deep learning models require 

significant computational resources, which can be a 

limiting factor for real-time applications in games. 
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Additionally, training deep learning models 

necessitates large datasets that can be difficult to 

obtain and curate. Ensuring the quality and 

diversity of training data is essential for developing 

robust and generalizable NPC behaviors. The use of 

AI models raises ethical questions regarding the 

behavior and representation of NPCs. Ensuring that 

NPC behavior aligns with ethical standards and 

does not perpetuate harmful stereotypes or 

behaviors is essential. 

The future of using AI in NPC control is promising, 

with potential advancements in unsupervised 

learning, transfer learning, and explainable AI. 

These techniques will further enhance NPC 

intelligence, making characters more autonomous 

and capable of even richer interactions. While 

challenges remain, the continued evolution of AI 

integration promises even greater innovations in 

NPC control, pushing the boundaries of what is 

possible in digital game design. As AI continues to 

evolve, it is essential to ensure that it complements 

and enhances the creative aspects of game design 

rather than overshadowing them. 
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