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Abstract: This paper aims to demonstrate how analysing a practical example, such as an aquifer system, 

can enhance understanding of the Control Systems course teaching materials. The aquifer system was 

chosen because it is a multivariable system with multiple inputs and outputs, and thus has numerous 

variables that can be monitored over time. This makes it suitable for both time and frequency domain 

analysis using various MATLAB tools. Since the system is nonlinear, it was necessary to linearize it. A Taylor 

series expansion approach was used for this purpose. The linearized model was represented in both state-

space form and as a block diagram. The state-space model was suitable for testing the controllability and 

observability of the system, while the block diagram model was used to assess stability and analyse the 

system's behaviour during transient and steady states.  
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NOMENCLATURE 

qik[m3/s] The flow rate of liquid into the k-th tank; 

qok[m3/s] The flow rate of liquid out of the k-th tank; 

qk[m3/s] The flow rate between tanks; 

q21[m3/s] The flow rate between Tank 1 and Tank 2; 

dk[m] Diameter of flow area between tanks; 

d21 [m] Diameter of flow area between Tank 1 and 

Tank 2; 

ak[m2] Cross-section of flow area between tanks; 
2 4

k k
a d=  ; 

a21[m2] Cross-section of flow area between Tank 

1 and Tank 2; 

221

2

1
4a d=  ; 

k
D [m] Diameter of the k-th rank; 

Sk[m2] The cross-sectional area of k-th tank; 
2 4

k k
S D=  ; 

hk[m] Height of liquid in the k-th tank; 

H1[m] The reference value of the liquid in the 

first tank; 

hks [m] Stationary value of the height of liquid in 

the k-th tank; 

g[m/s2] Ground acceleration; 

1. INTRODUCTION

In recent years, there has been a lack of motivation 

among students to listen to classes in certain 

subjects. In student surveys that are carried out 

during the year, and are carried out for the purpose 

of self-evaluation, poorer grades are observed on 

the question of whether the knowledge acquired in 

this subject will be useful for their future 

professional work. Even in subjects where practical 

application is obvious, students are disinterested 

and do not see the purpose of learning certain 

teaching contents. 

When talking about control systems, the first thing 

that comes to mind is physical systems in industrial 

processes. However, physical systems are also 

encountered in everyday life. For example, 

controlling the temperature and speed of a vehicle, 

as well as regulating temperature in apartments, 

refrigerators, and stoves. There are also numerous 

real systems in nature that are not physical but still 

represent control systems. One example is the 

human body. The regulation of body temperature 

and maintaining blood pH are examples of such 

systems. Also, one of the earliest models of 

physiological control systems is the pupil light 

reflex. This reflex involves the iris responding to 

changes in light intensity on the retina. As ambient 

light levels increase or decrease, the iris muscles 

adjust the pupil size to maintain a consistent 

amount of light reaching the retina. Furthermore, 

the natural process of groundwater storage and 

utilization is an example of a control system. These 

systems are highly complex, but like physical 

systems, they can be modelled and simplified for 

analysis and synthesis purposes [1, 2]. 

This paper aims to showcase how to apply some of 

the teaching materials from the Control Systems 

subject using the aquifer system as an example. 

We chose this example because the aquifer system 

is a multivariable system with multiple inputs and 

outputs, along with many variables that can be 
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monitored over time. This makes it suitable for 

analysis in the state-space and is also interesting 

for applying MATLAB tools. 

An aquifer represents a geological environment 

completely or partially saturated with free 

underground water, capable of accumulating and 

releasing free underground water that feeds 

springs, freely flows into rivers, lakes, and seas, 

and is captured by various water-receiving facilities 

(wells, water-receiving ditches, etc.) [3]. Aquifer 

systems are used to supply drinking water, for 

industrial purposes, or in agriculture for irrigation 

[1, 4, 5, 6, 7]. Such a system can be modelled with 

three interconnected reservoirs with corresponding 

liquid levels, called heads [1]. Groundwater 

naturally flows through aquifer material, which can 

be permeable or fractured rocks, or unconsolidated 

materials such as gravel, sand, or silt, altering 

water levels in reservoirs as it makes its way to the 

sea or river. The aquifer is made up of three main 

layers from top to bottom: the groundwater, the 

saturated zone, and the impermeable layer. 

The deepest layer, the impermeable layer, prevents 

further downward movement of water, causing it to 

gather and move horizontally. This process plays a 

crucial role in the water cycle and the geological 

cycle. 

In reality, single aquifers are rare in hydraulic 

systems. An aquifer is usually part of a larger 

system comprising multiple aquifers. This system 

consists of a series of aquifers separated by less 

permeable confining layers. The flow dynamics in 

such a system can be quite complex, depending on 

how well the individual aquifers are connected 

hydraulically [5]. 

In the first part, a description of the system, its 

modelling, and linearization will be provided. 

Subsequently, the model will be presented in both 

state-space form and as a block diagram. The 

results will highlight significant features of the 

system achieved through these modeling 

approaches. The state-space model will be used to 

test controllability and observability, while the 

block diagram model will be applied to assess 

stability and analyse and to improve the system's 

behaviour during transient and steady state. 

2. THE SYSTEM MODEL  

In Fig.1 a variant of the model of aquifer system 

consisting of three interconnected horizontally 

placed natural storage tanks is presented [1]. 

Natural water flow is towards the sea or river with 

the flows q1, q2, and q3. The water level of the k-th 

tank is hk, k=1, 2, 3. Engineered flow is from the 

Tank 2 to the Tank 1. If the water level in Tank 1, 

denoted as h1, drops below the reference value H1, 

it will be refilled with water from Tank 2. 

Conversely, if h1 is higher than H1, water will be 

pumped back to Tank 2, reducing the leakage 

towards the sea. The water flow between Tanks 1 

and 2 is indicated as q21 and is dependent on the 

difference in water levels between H1 and h1. 

The water in an aquifer system can be naturally 

replenished through processes such as rain, snow, 

irrigation return flow, and seawater intrusion, or 

artificially replenished through methods like filling 

tanks from wells [6, 7]. The artificial replenishment 

is illustrated using flows qik, k=1, 2, 3 in Fig. 1. 

Underground water can be utilized for industrial, 

domestic, and irrigation purposes. These are 

represented by flows qok, where k= 2, 3. 
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Figure 1. Model of the aquifer system [1] 
 

2.1. Mathematical modelling of the system 

The nonlinear mathematical model of the aquifer 

system can be derived using the mass balance 

equation. The equations that describe the dynamics 

of each aquifer are as follows: 

 1
1 1 2 1 21

,
i

dh
S q q q q

dt
= + − +  (1) 

 2
2 2 2 3 2 21

,
i o

dh
S q q q q q

dt
= − + − −  (2) 

 3
3 3 3 3

.
i o

dh
S q q q

dt
= − −  (3) 

Relations (1) -(3) can be written as: 
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 1
1 1 2 2 1 1 1 21 1 1

,
i

dh
S q h h h H h

dt
= +  − −  +  −  (4) 

 

2
2 2 2 3 3 2 2 2 1

21 1 1
            ,

i o

dh
S q q h h h h

dt

H h

= − +  − −  −

−  −

 (5) 

 3
3 3 3 3 3 2

,
i o

dh
S q q h h

dt
= − −  −  (6) 

where 

 
1 1 2 2

3 3 21 21

2 , 2 ,

2 , 2 .

a g  a g  

a g  a g

 =  =

 =  =
 (7) 

2.2. The model linearization 

After linearizing the model using a Taylor series 

expansion around the stationary state, the 

linearized model is obtained in the following form: 

 1
1 1 2 2 1 1 1 21 1 1

( ) ( ),
i

dh
S q B h h B h B H h

dt
= + − − + −  (8) 

 

2
2 2 2 3 3 2 2 2 1

21 1 1

( ) ( )

            ( ),

i o

dh
S q q B h h B h h

dt

B H h

= − + − − −

− −

   (9) 

 3
3 3 3 3 3 2

( ),
i o

dh
S q q B h h

dt
= − − −  (10) 

where 

 

1 2
1 2

1 2 1

3 21
3 21

3 2 1 1

2 2
,  ,

2 2

2 2
,  .

2 2

s s s

s s s

a g a g
B B

h h h

a g a g
B B

h h H h

= =
−

= =
− −

 (11) 

2.3. The state-space model of the system 

According to (8)-(10), by selecting the liquid levels 

in the tanks as state variables 

 x h x h x h
1 1 2 2 3 3

,  ,  ,= = =  (12) 

and by defining the input and output vectors as 

 

1 21 1 1

2 2 21 1 2

3 3 3

,  ,

i

i o

i o

q B H h

q q B H h

q q h

+   
   

= − − =   
   −   

u y  (13) 

the state-space model of the system (14) can be 

formed, 

 
,

,

= +

=

x Ax Bu

y Cx
  (14) 

where the state, input and output matrices 

respectively are: 

 

1 2 21 2

1 1

3 2 32 21

2 2 3

3 3

3 3

1

2

3

0

,  

0

1
0 0

1 0 0
1

0 0 ,  0 1 0 .

0 0 1
1

0 0

B B B B

S S

B B BB B

S S S

B B

S S

S

S

S

 + +
− 

 
 ++
 = −
 
 
 −
  

 
 
   
   

= =   
   

  
 
  

A

B C

 (15) 

Simulink state-space model of the aquifer system 

given with (13), (14), and (15), is shown in Fig.2. 

 

Figure 2. The state-space model of the aquifer 

system. 

2.4. The transfer function model of the system 

The transfer system model can be obtained by 

transforming equations (8), (9), and (10) into the 

Laplace domain: 

+ = + +

+ = − − + +

+ = − +

i

i o

i o

h T s q B H k k h

h T s q q B H k k h k h

h T s q q k h

1 1 1 21 1 11 12 2

2 2 2 2 21 1 21 22 1 23 3

3 3 3 3 31 2

( 1) ( ) ,

( 1) ( ) ,

( 1) ( ) ,

 (16) 

where 

 
SS S

T  T  T
B B B B B B

31 2
1 2 3

1 2 21 2 3 3

, , ,= = =
+ + +

 (17) 

 

2
11 12

1 2 21 1 2 21

2 21
21 22

2 3 2 3

3
23 31

2 3 3

1
, ,

1
, ,

1
, .

B
k  k

B B B B B B

B B
k  k  

B B B B

B
k  k

B B B

= =
+ + + +

+
= =

+ +

= =
+

 (18) 
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The block diagram, created using the transfer 

function model of the system (16), is illustrated in 

Fig.3. 

 

Figure 3. The block diagram of the aquifer 
system in open loop. 

3. RESULTS 

Table 1 shows the adopted parameters of the 

aquifer system. It was chosen d1=d2=d3=d21=d 

and D1=D2=D3=D which implies a1=a2=a3=a21=a, 

and S1=S2=S3=S. 

Table 1. Adopted parameters of the aquifer 
system  

Symbol Value Unit 
h1s 20 m 

H1 30 m 

h2s 30 m 

h3s 50 m 

a 0.1963 m2 

S 314.1593 m2 

Table 2. Adopted values of flows of the aquifer 

system  

Symbol Value Unit 
qi1 15.768·106 m3/year 

qi2 189.216·106 m3/year 

qi3 94.608·106 m3/year 

qo2 47.304·106 m3/year 

qo3 69.379·106 m3/year 

Based on the state-space model (Fig. 2) and the 

corresponding block diagram (Fig. 3), the outputs 

of the aquifer system, which are the liquid heights 

in Tanks 1, 2, and 3, for the given inputs defined 

within Table 2, are shown in Fig. 4.  

 

Figure 4. The outputs of the aquifer system. 

It can be seen that the stationary state is reached 

after 5·106s which is equivalent to 57.87 days. 

3.1. Results obtained on the basis of state-

space models 

The Kalman test is a method for determining the 

controllability of a system. According to this test, a 

linear multivariable time-invariant system is 

completely controllable if and only if the rank of the 

controllability matrix  

 n

c

1− =  Q A AB AB  (19) 

is equal to n, where n is the number of state 

variables in the system. 

 c
nrank =Q . (20) 

After performing the Kalman test using the MATLAB 

package (n=3), it was found that the observed 

system is completely controllable. This means that 

it is possible to determine the values of the input 

vector u(t) that will transfer the system from an 

initial state x(0) to a desired state x(t), i.e. initial 

liquid levels to the desired liquid levels, within a 

finite time interval. 

The Kalman test to determine observability is 

applied based on the following condition: 

 
T

T T T T n T

o

1( ) − =  Q C A C A C , (21) 

 o
nrank =Q . (22) 

Given that the matrix C in our case is C=I (15), 

observability − which indicates that each state x(t) 

can be entirely determined by measuring the 

output vector y(t) within a finite time interval − 

does not need to be checked. 

3.2. Results obtained based on the block 

diagram 

Based on the block diagram in Fig. 3, transfer 

functions can be determined for the inputs and 

outputs of interest. The derived transfer functions 

are as follows: 
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From input 1 to output 1 

2 9 14

3 5 2 9 1511

0.0001273   5.382 10   2.76 10

 8.967 10    1.607 10    2.684 10
( )

s s

s
G s

s s

− −

− − −

+  + 

+ + 
=

 + 
; 

From input 1 to output 2 

9 14

32 5 2 9 151

4.459 10  
;

  5.52 10

 8.967 10    1.607 10    2.684 10
( )G

s
s

s

s s

− −

− − −

 + 

+  +  +
=



From input 1 to output 3 

14

3 5 2 9 13 51

5.52 10

 8.967 10  
;

 1.607 10    2.6 4 10
(

8
)G s

s s s

−

− − −
=



+ +  + 

From input 2 to output 1 

9 14

31 5 2 9 152

2.229 10  
;

  2.76 10

 8.967 10    1.607 10    2.684 10
( )G

s
s

s

s s

− −

− − −

 + 

+  +  +
=



From input 2 to output 2 

2 9 1

22

4

3 5 2 9 15

0.0001273   7.611 10    7.472 10

 8.967 10   1.607 1
;

0    2.684 10
( )

s s

s
G

s
s

s

− −

− − −

+  + 

+  + 
=

+ 

From input 2 to output 3 

9 14

33 5 2 9 152

1.576 10  
;

  7.472 10

 8.967 10    1.607 10    2.684 10
( )G

s
s

s

s s

− −

− − −

 + 

+  +  +
=



From input 3 to output 1 

14

3 5 2 9 11 53

2.76 10

 8.967 10  
;

 1.607 10    2.6 4 10
(

8
)G s

s s s

−

− − −
=



+ +  + 

From input 3 to output 2 

9 14

32 5 2 9 153

1.576 10  
;

  7.472 10

 8.967 10    1.607 10    2.684 10
( )G

s
s

s

s s

− −

− − −

 + 

+  +  +
=



From input 3 to output 3 

2 9 1

33

3

3 5 2 9 15

0.0001273   9.841 10    1.023 10

 8.967 10   1.607 1
;

0    2.684 10
( )

s s

s
G

s
s

s

− −

− − −

+  + 

+  + 
=

+ 

With MATLAB's sisotool, it is possible to obtain 

various diagrams to analyse the behaviour of the 

observed system in both transient and steady 

states. For example, Fig. 5 presents the Bode Plots, 

step response, root locus, and Nyquist Diagram for 

the transfer function G13(s) in closed loop system, 

shown in Fig.6. 

Figure 5. Sisotool plots for the transfer function G13(s) in closed loop 

Figure 6. Block diagram of the closed loop system G13(s) 

Based on the obtained Bode Plots (for K=1), it can 

be concluded that the observed system with the 

transfer function G13(s) is stable in close loop and 

has a certain margin of stability. Using the Root 

Locus and Nyquist Diagram, the range of the gain 

K for which the closed-loop system remains stable 

278



Engineering Education and Practice Antić and Milovanović 

 

can be determined. The analysis indicates that the 

system is stable for 0<K<2.7, marginally stable at 

K=2.7 and unstable for K>2.7. Additionally, the 

step response diagrams (for K=1), reveals that the 

transient dynamics of the transfer function G13(s) 

are unfavourable, characterized by a steady state 

error of e()=0.046 (which is due to the lack of 

integrations in the transfer function G13(s)), a rise 

time of Tr=8·104s, a significant overshoot 

P%=48.8%, and large settling time Ts=6.43·105s. 

To enhance the quality of the transient response 

and steady-state behavior, a PID controller was 

designed. This was possible under the assumption 

that the flow qi1 (the output of the PID controller) 

could be controlled. By limiting it to a range of 0 to 

2 m³/s (Fig. 7), the response shown in Fig. 8 was 

obtained using an auto-tuning procedure. The 

auto-tuning procedure resulted in improved 

response dynamics and steady-state behavior, as 

depicted in Fig. 8. A zero steady-state error has 

been achieved e()=0, with a rise time of 

Tr=1.377·105s, a overshoot of P%=23.6%, and a 

settling time of Ts=5.297·105s. 
 

 

Figure 7. Block diagram of the closed loop system G13(s) with PID controller 

 

Figure 8. Step function of the closed loop system 

G13(s) with PID controller 

4. CONCLUSION 

This paper presents the application of teaching 

content from the control systems course using an 

example of an aquifer system. The system is 

multivariable, making it suitable for analysing the 

relationships between different variables within it. 

Both models presented, the state-space model and 

the block diagram model, are essential. The state-

space model was used to analyse the controllability 

and observability of the system, while the block 

diagram model was utilized for analysing time and 

frequency responses. Based on the results shown, 

students can connect much of the teaching content 

covered in the control systems course with a real-

world system. Given that this study models the 

system with three tanks, the analyses provided in 

this paper can be extended to similar systems with 

more tanks for various applications. 
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