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PREDICTING STRESS CONCENTRATION FACTORS IN TENSION-
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Abstract: This paper presents a novel approach to determining the stress concentration 
factor (Kt) for tension-loaded machine parts using artificial neural networks (ANNs). 
Analytical methods for calculating Kt rely heavily on empirical data and standardized 
charts, which are often limited to specific geometries and load conditions. To overcome 
these limitations, we trained an ANN model using a comprehensive dataset of 
empirical Kt values, covering a wide range of dimensions for tension-loaded shafts. 
The input parameters for the ANN model were the key geometric dimensions: the 
smaller diameter, the larger diameter, and the radius at the critical section of the shaft. 
By leveraging the ANN's capability to learn complex, non-linear relationships within the 
data, the model was able to accurately predict the stress concentration factor for any 
given set of input parameters. The results demonstrate that the ANN-based approach 
can serve as a reliable and efficient tool for engineers, reducing the reliance on time-
consuming finite element analyses or limited empirical charts and providing quick and 
accurate predictions of Kt across a wide range of applications. 
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1 INTRODUCTION  
Stress concentration factors (Kt), also labelled αk in some literature, play a 

crucial role in the design and analysis of mechanical components, especially when 
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dealing with parts subjected to tension loading. These factors represent the 
amplification of stress around geometric discontinuities such as notches, holes, or 
sharp transitions in cross-section, which often become critical points of failure. The 
precise calculation of Kt is, therefore, fundamental for ensuring the safety and durability 
of machine parts. Engineers have traditionally relied on empirical data and 
standardised charts to determine Kt values, typically derived from experiments or finite 
element simulations. However, such approaches are often limited to discrete datasets 
and are limited to specific dimension values. 

In recent studies [1-3], ANN has been used to solve complex engineering 
problems in various fields previously solved using conventional optimisation methods. 
Ozden and Gokce [4] estimated the stress concentration factor using ANN in T-weld 
joints forced by bending. They used a data set consisting of 8500 unique data points 
covering a wide range of geometric structures and parameters created with the Latin 
Hypercube method to calculate Kt values with a parametric equation. In [5], Dabiri et al. 
estimated the stress concentration factors in butt and T-welded joints using artificial 
neural network-based models. Sivak et al. in [6] presented regression and correlation 
analysis and intercomparison of stress concentration factors obtained from FEM 
analysis with factors imported from external sources. Nagpal et al. in their research, 
[7], gave a critical review of stress concentration and its mitigation techniques in flat 
plates with singularities. The research showed that this maximum value for Kt value 
could be reduced either by material removal at the vicinity of the observed location by 
shape optimisation or by strengthening the hole by the inclusion of additional, more 
robust material. 

Given the need for a wide range of dimensions when designing modern 
mechanical systems, more flexible and efficient tools for determining Kt have become 
increasingly evident. Recent advancements in computational techniques, particularly in 
artificial intelligence, have opened new avenues for addressing these challenges. 
Among these, artificial neural networks (ANNs) have emerged as powerful tools for 
modeling non-linear relationships within complex datasets, making them well-suited for 
applications where traditional methods may fall short. 

2 PROBLEM DEFINITION 
The stress concentration factor (Kt) is a dimensionless factor that quantifies 

how much stress is amplified at a geometric discontinuity in a material, such as a 
notch, hole, or sudden change in cross-section. When a component is subjected to an 
external load, the presence of these discontinuities causes the local stress to be 
significantly higher than the average stress over the rest of the part. Kt is defined as 
the ratio of the highest local stress to the nominal stress in the component, and it is 
crucial for predicting the potential points of failure in mechanical designs. By 
accounting for these stress concentrations, engineers can ensure that components are 
properly designed to withstand expected loads without failure. Figure 1 shows the 
empirical data for the example with a change in shaft diameter with a radius. The 
values are shown as relations of the smaller diameter (d), larger diameter (D), and 
radius (r). The curves presented as r/t use t as a short form of the relation (D-d)/2. On 
the vertical axis is the stress concentration factor αk (Kt). 
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Figure 1. The diagram for determining αk (Kt) for a change in shaft diameter 

with a radius [8] 

Determining the stress concentration factor (Kt) for any combination of values 
for the smaller diameter, larger diameter, and radius at the stress concentration point 
becomes challenging when available empirical data is only presented in diagrams for 
specific relationships between these dimensions. These diagrams typically cover a 
limited range of geometric configurations, meaning engineers must rely on interpolation 
or extrapolation to estimate Kt for dimensions not represented in the standard charts. 
Such estimates can often be inaccurate, as they fail to capture the complex, non-linear 
relationships between the dimensions and stress concentrations, leading to potentially 
unreliable results and an increased risk of design errors. 

This paper presents a viable approach for predicting stress concentration 
factors using ANNs. By training a neural network on an extensive dataset of empirical 
Kt values, the model developed in this study can accurately predict Kt for a wide range 
of geometric configurations of tension-loaded shafts. The input parameters for the ANN 
include the key geometric dimensions of the critical section: the smaller diameter, the 
larger diameter, and the radius at the stress concentration point. By leveraging the 
ANN's ability to capture intricate patterns and relationships in the data, this approach 
provides engineers with a fast, reliable, and accurate tool for predicting Kt across 
various scenarios, thereby reducing the reliance on traditional methods such as finite 
element analysis (FEA) and empirical charts. 
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3 ANN CONFIGURATION 
In this study, an artificial neural network (ANN) was developed using the Neural 

Network/Data Manager (nntool) module in MATLAB to predict the stress concentration 
factor (Kt) for various geometric configurations. The input data matrix was composed of 
2x116 values, representing the ratios r/t (radius to the relation (D-d)/2) and d/D 
(smaller diameter to larger diameter), extracted from diagrams in Figure 1. The 
corresponding value of the stress concentration factor Kt was determined for each of 
these input combinations. These data points were used to train a feed-forward 
backpropagation neural network, an architecture well-suited for capturing complex, 
non-linear relationships in datasets like this. 

The feed-forward backpropagation method is a common neural network 
architecture where data flows forward through the network layers while errors are 
propagated backwards to adjust the weights and improve the model’s performance. 
This iterative adjustment of weights continues during training until the error between 
the predicted and actual values is minimized. The training process in this network 
utilized the Levenberg-Marquardt (TRAINLM) algorithm, known for its fast convergence 
and suitability for small to medium-sized networks. This algorithm combines the 
advantages of the Gauss-Newton method and gradient descent, providing an efficient 
solution for training networks with non-linear optimisation problems. 

Gradient Descent with Momentum (LEARNGDM) was the adaptation learning 
function, which enhances the primary gradient descent method by adding momentum. 
This helps the network avoid local minima during training by maintaining the direction 
of previous weight updates, leading to faster convergence. 

The network's performance was evaluated using the Mean Squared Error 
(MSE) function, which measures the average squared difference between the 
network’s predictions and the actual data. Lower MSE values indicate better model 
performance, reflecting more minor network prediction errors. The neural network 
training results in the nntraintool are shown in Figure 2. 

 
Figure 2. Neural network training results in the nntraintool   
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The network had two layers. The first layer consisted of 10 neurons, with the 
transfer function TANSIG (a hyperbolic tangent sigmoid function) mapping input data 
into a range between -1 and 1, helping the network learn complex patterns. The 
second layer, which produced the final output, used the PURELIN transfer function, a 
linear function ideal for regression tasks, where continuous values like Kt must be 
predicted. This combination of layers and functions allowed the ANN to accurately 
capture the relationship between the geometric inputs and the stress concentration 
factor, offering a robust tool for engineering design applications.  

4 RESULTS  
Neural network training for regression involves adjusting the network weights 

based on the errors between predicted outputs and actual target values, allowing the 
model to learn the underlying relationships in the data. During this process, 
optimization algorithms, such as gradient descent, minimize errors using performance 
metrics like Mean Squared Error (MSE) to guide the adjustments. Successful training 
results in a model capable of accurately predicting continuous output values for new, 
unseen input data. The neural network training regression (plotregression) results 
(Figure 3) show that training, validation, testing, and overall results converge. 

 
Figure 3. Neural network training regression 

Table 1 shows the expected results from the diagram shown in Figure 1 and 
ANN results for 25 cases of various dimension ratios. Figure 4 shows a graphic 
representation of the stress concentration factor results from Figure 1 compared to 
ANN results. 
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Table 1. Expected and ANN results for 25 cases of various dimension ratios. 

d/D r/t Expected values (Figure 1) ANN results 
0.8 5 1.25 1.1449 
0.93 2.5 1.5 1.5501 
0.95 1.6 1.75 1.765 
0.94 1 2 2.0468 
0.65 0.5 1.75 1.9704 
0.78 0.5 2 2.1696 
0.55 0.4 1.75 1.8211 
0.7 0.4 2 2.1428 
0.45 0.3 1.75 1.7465 
0.6 0.3 2 2.0461 
0.65 0.25 2.25 2.2725 
0.85 0.25 2.75 2.6702 
0.55 0.2 2.25 2.1702 
0.75 0.2 2.75 2.6272 
0.65 0.15 2.75 2.7656 
0.95 0.15 3.75 3.7002 
0.55 0.1 2.8 2.9651 
0.75 0.1 3.58 3.6366 
0.65 0.08 3.5 3.6871 
0.89 0.08 4.5 4.6966 
0.57 0.06 3.5 3.7395 
0.89 0.06 5 5.2631 
0.65 0.05 4.25 4.367 
0.75 0.04 5.15 5.0989 
0.75 0.03 5.8 5.4461 

 
Figure 4. Graphical representation of expected and ANN results for 25 case examples 

of various dimension ratios. 
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There are some discrepancies between the values derived from the diagram in 
Figure 1 and the ANN results, but the results are usable. This validates that the 
approach presented in this research can be used for practical applications. 

5 CONCLUSION  
The trained neural network in this paper demonstrated its practical applicability 

by obtaining results for specific, known cases of dimension ratios. By utilising the input 
data derived from a matrix of geometric configurations, the ANN created in MATLAB 
could predict the stress concentration factor (Kt) accurately. This approach capitalises 
on the strengths of artificial intelligence, allowing for the effective modeling of complex, 
non-linear relationships that traditional methods may struggle to capture. The 
successful application of the ANN model showcases the potential for more efficient 
assessments in mechanical design. 

The predicted Kt values were compared with those obtained from established 
empirical diagrams to validate the neural network's performance. A total of 25 samples 
were evaluated in this process, which provided a comprehensive basis for assessing 
the model's accuracy. While some discrepancies were noted between the predicted 
and actual values, the results were considered satisfactory, indicating that the ANN 
can effectively serve as a reliable alternative to traditional methods. The flexibility of 
the ANN allows for rapid predictions across a broader range of geometric 
configurations, which is particularly advantageous in scenarios with limited time and 
resources. 

The evaluation of the ANN's performance revealed a mean error of -0.04717 
and a mean absolute error of 0.114832 among the tested samples. These metrics 
highlight the model's capability to produce accurate predictions while demonstrating a 
relatively low deviation from empirical values. Such results affirm the potential of using 
artificial neural networks to predict stress concentration factors and suggest avenues 
for further research and refinement of the model. As engineers seek more efficient and 
reliable methods for analysing complex mechanical systems, integrating ANN 
technology into standard practices represents a significant advancement in the field. 
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