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A COMPARISON OF TRUSS STRUCTURAL OPTIMIZATION TYPES 
WITH AND WITHOUT BUCKLING DYNAMIC CONSTRAINTS 

Nenad Petrovi 1, Nenad Kosti 2, Nenad Marjanovi 3 

Abstract: Most research to date which covers the topic of truss structural optimization 
either doesn’t consider, or uses fixed constraints for buckling. This paper presents a 
comparison of truss structural optimization types with and without the use of Euler 
buckling dynamic constraints. The difference is presented on a standard test model with 
17 bars using continuous variables for cross section and node positions. The 
optimization method used is genetic algorithm for optimizing sizing, shape, topology, and 
their combinations. The implementation of dynamic constraints significantly increases 
the complexity of the calculations, however the results of using such an approach leads 
to practically applicable results.  

Key words: Dynamic constraints, Euler buckling, Genetic algorithm, Structural 
optimization, Truss 

1 INTRODUCTION  
Truss structural optimization is a complex engineering problem which considers 

many variables and constraints. Minimal weight optimization can be approached through 
optimizing aspects of sizing, shape, and topology or their combinations. Truss sizing 
optimization observes each cross-section geometry as a variable, shape optimization 
varies the geometrical configuration’s set node positions, and topology optimization 
creates new geometrical configurations by removing elements. The goal of this process 
is to achieve a truss design conceptwith a minimal weight, and consequently decrease 
costs. 

In order to achieve practically applicable results the resulting truss construction 
must be able to withstand applied stress and avoid buckling, while keeping displacement 
within limits. Researchers have only recently started to include buckling constraints in 
optimization. This is largely due to the fact that buckling constraints change with every 
iteration of the optimization process according to the current truss setup. As a result 
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using this constraint increases the problem complexity, and thereby calculation times 
drastically. The optimization of just one, or a combination of two or all three, of these 
types has been the subject of a lot of research using a broad range of heuristic 
optimization methods. 
 Researchers in [1] have used natural frequency bounds for truss optimization 
using an improved method in order to minimize truss weight. Khatibinia and Yazdani 
have in [2] used a multi-gravitational search algorithm for truss sizing optimization on 10, 
18, 72, and 200 bar truss problems without considering buckling constraints on all 
examples. Tejani et al. [3] conducted simultaneous sizing, shape and topology 
optimization of planar and space trusses without considering buckling, but accounting 
for possible unacceptable topologies using Grubler’s criterion. Assimi et al [4] considered 
a static critical buckling load constraint for sizing and topology optimization, using genetic 
programing. 
 Dynamic buckling constraints have only recently become part of structural 
optimization calculations when it comes to testing new methods. Ozbasaran [5] even 
added frequency analyses to further validate optimization results, and tested them on 
basic planar and space truss models. Degertekin et al [6] used Jaya algorithm for sizing 
shape and topology design optimization in order to minimize weight and tested it on 
common benchmark problems. Authors in [7-9] included dynamic constraints for 
buckling in their research using various optimization methods. Comparison of 
optimization results with and without buckling was done in [10], using continuous 
variables on a 10 bar truss example, and a sizing optimization comparison was done by 
researchers in [11], showing the drastic increases in weight when these constraints are 
implemented. Further research done in [12] shows the influence of using discrete 
variables as opposed to continuous for cross-section dimensions on all combinations of 
truss optimization types on a 10 bar truss problem.  
 This research is focused on showing the difference in using buckling constraints 
for solving complex truss structural optimization problems and gives a comparison of 
results on a typical 17 bar truss problem. The example is optimized for sizing, topology, 
shape and all their combinations in order to illustrate the importance of using dynamic 
buckling constraints on all types of structural optimization problems. 

2 PROBLEM FORMULATION 
The general problem of structural truss optimization implies the simultaneous 

optimization of sizing, topological, and shape aspects of the initial model. Nevertheless, 
practice shows that the combination of two, or all three of these aspects is not always 
possible or desired. The goal of this research is to analyse and show difference in results 
of optimizing any single, or any combination of these aspects on one of the most 
frequently used examples for truss optimization with and without using buckling 
constraints.  

The objective functions of all optimization configurations used aim to find the 
combination of variables that minimize weight. For truss optimization found in literature 
the minimum weight design problem, limited by a range of cross-section areas and 
displacement, can be defined as: 
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In (1) ,n is the number of used truss elements, k is the number of nodes, li is the 
length of the ith element, Ai is the area of the ith element cross section, uj is displacement 
of the jth node. This objective function criteria, depending on which combination or single 
optimization is conducted, changes accordingly, while the constraints remain the same 
for all problems. 

2.1 Euler Buckling Constraint 
Truss elements are subjected to either compression or tension forces. In order 

to ensure a stable construction, compressed elements must be checked for buckling. 
FAi is the axial compression force, FKi is Euler’s critical load, Ei is the modulus of 
elasticity, and Ii is the minimum area moment of inertia of the cross section of the of the 
ith element. 

Since the same areas figure as denominators in the Euler buckling expression, 
the critical force load (2) can be used as the buckling constraint to minimize calculation. 
Therefore the constraint used in this research is given as (3). 
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As force distribution changes in shape and/or topology optimizations and their 
combinations and the minimal area moment of inertia changes with every iteration of 
sizing optimization this constraint is considered to be dynamic. Dynamic constraints are 
very complex as the constraint value changes with each iteration making the search 
space much more difficult for the algorithm to navigate without getting a local optimum. 
This is why, especially with the combination of all three simultaneous optimizations, it is 
necessary to repeat the optimization multiple times to ensure a global optimum. This 
type of optimization problem requires the use of non-linear optimization and in this paper 
genetic algorithm (GA) was used due to availability and its favorable characteristics.  

2.2 The Design Problem 
In order to show the difference between optimal models which do not consider 

buckling and ones that do, this research uses the 17 bar truss problem. The initial truss 
model bar and node layout is given in figure 1. This is one of the more commonly used 
examples from literature for truss optimization. For this example the material 
characteristics are: Young modulus 206842.719MPa, and density of 7.4g/cm3. A single 
point load of 444.82kN is applied in node 9, as shown in figure 2. Each bar cross section 
is an independent variable minimal area of all members is limited to 0.643cm2 for full 
circular cross-section profiles. The only other fixed constraint is a displacement limitation 
for all nodes of ±0.0508m of all nodes in both x and y directions.  
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Figure 1. Initial 17 bar truss model configuration 

The initial cross-section area for all calculations is 8659.01mm2 (105mm 
diameter). This model has a weight of 3181.777kg and is calculated by optimizing the 
initial model which would have the same diameter of all bars and a minimal weight in 
such a configuration for the example with buckling. For examples which do not consider 
sizing the areas are 6361.73mm2 (90mm diameter) without buckling, and 8659.01mm2 
(105mm diameter) with buckling. Topology optimization is limited to the removal of at 
most 6 bars. A 1mm precision for node location is set when using shape optimization. 
Shape optimization observes the x and y positions of nodes 3-8 as variables, as well as 
the y position of node 9. 

3 RESULTS 
The originally software used for all calculations was verified in [10] and used in 

this paper for examples both with and without buckling. Sizing results with and without 
buckling are the same as in [11]. All three individual types of optimization, their three 
combinations of two, and a complete structural optimization using all three 
simultaneously were conducted according to the aforementioned setup without buckling, 
and repeated with buckling included. Table 1 gives the optimal cross-section areas, 
weight and displacement for the 17 bar truss example without using the buckling 
constraint. Cross-section areas marked in bold do not meet buckling criteria, while the 
ones in italic are also subjected to compression but are loaded below the buckling 
threshold.  

Table 2 shows the optimal coordinates of nodes with variable positions for the 
results which take into account shape optimization without buckling constraints. Since 
node 9 only has a variable for its y coordinate, the x coordinate is the same for all four 
cases. 

Optimal results for all three optimization types and their combinations is given in 
table 3. Coordinates for the results which take into account shape optimization with the 
buckling constraints are given in table 4. 
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Table 1. Optimal solutions of the 17 bar truss problem without buckling constraints 

Table 2. Optimal coordinates without buckling constraints where shape is optimized

Opt. type 
Shape  Sizing and 

shape 
Topology and 

shape 
Sizing, topology 

and shape Node 

3 (x; y) [m] (2.88; 0.059) (2.253; -0.172) (2.063; 0.003) (2.225; -0.138) 

4 (x; y) [m] (2.887; 2.548) (3.507; 2.873) (3.777; 2.476) (3.882; 2.2848) 

5 (x; y) [m] (5.302; 0.295) (6.229; 0.041) (5.132; 0.219) (6.317; -0.076) 

6 (x; y) [m] (5.331; 2.271) (5.271; 2.789) (6.051; 2.335) (5.215; 2.818) 

7 (x; y) [m] (6.753; 0.291) (7.6; 0.095) (6.917; 0.486) (7.753; 0.012) 

8 (x; y) [m] (7.09; 2.086) (8.449; 2.076) (7.518; 2.3) (8.464; 2.018) 

9 (x; y) [m] (10.16; 1.042) (10.16; 1.26) (10.16; 1.245) (10.16; 1.193) 

 

Area 
of bar  
[cm2] 

Sizing Topo. Shape 
Sizing 
and 

topology 

Sizing 
and 

shape 

Topology 
and 

shape 

Sizing, 
topology 

and shape 
1 90.883 63.317 63.317 83.046 74.199 63.317 71.742 
2 13.98 63.317 63.317 39.549 41.279 63.317 44.602 
3 88.314 63.317 63.317 110.916 92.793 63.317 94.952 
4 0.645 63.317 63.317 31.164 8.793 63.317 9.194 
5 64.084 63.317 63.317 57.694 65.659 63.317 64.746 
6 22.763 63.317 63.317 40.997 2.749 63.317 2.817 
7 64.636 63.317 63.317 90.019 43.572 63.317 43.433 
8 0.645 63.317 63.317 31.18 1.726 63.317 3.996 
9 41.186 63.317 63.317 31.107 34.842 63.317 32.218 

10 23.089 63.317 63.317 42.817 15.138 63.317 14.809 
11 39.158 63.317 63.317 61.154 38.27 63.317 36.241 
12 9.805 63.317 63.317 31.809 0.662 63.317 0.646 
13 36.981 63.317 63.317 41.192 29.868 63.317 29.579 
14 30.296 63.317 63.317 31.54 30.24 63.317 29.984 
15 25.136 - 63.317 - 6.08 - - 
16 14.517 - 63.317 - 25.527 - 31.59 
17 11.113 - 63.317 - 7.52 - 6.419 

Weight 
[kg] 1183.071 1839.241 2133.025 1463.045 1070.09 1656.366 1068.898 

Displ. 
[m] 0.508 0.508 0.508 0.508 0.508 0.508 0.508 
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Table 3. Optimal solutions of the 17 bar truss problem without buckling constraints 

 
Table 4. Optimal coordinates with buckling constraints where shape is optimized

Figure 2 shows a graphic comparison of optimal weights between continuous 
and discrete cross-section models.

Area of 
bar  

[cm2] 
Sizing Topo. Shape 

Sizing 
and 

topology 

Sizing 
and 

shape 

Topology 
and 

shape 

Sizing, 
topology 

and shape 
1 79.794 86.59 86.59 80.269 78.254 86.59 62.467 

2 6.962 86.59 86.59 32.662 13.465 86.59 26.469 
3 93.299 86.59 86.59 107.101 94.455 86.59 93.592 
4 15.636 86.59 86.59 42.494 1.825 86.59 0.669 

5 56.137 86.59 86.59 56.941 59.775 86.59 64.587 

6 0.774 86.59 86.59 41.937 12.859 86.59 34.21 
7 59.62 86.59 86.59 88.991 71.12 86.59 71.2 
8 4.695 86.59 86.59 42.382 0.655 86.59 32.394 

9 31.191 86.59 86.59 29.254 52.748 86.59 35.391 

10 35.44 86.59 86.59 38.146 12.844 86.59 29.162 

11 55.431 86.59 86.59 64.149 64.51 86.59 42.798 

12 35.57 86.59 86.59 42.211 0.6959 86.59 27.721 

13 30.352 86.59 86.59 41.01 57.076 86.59 35.775 

14 41.459 86.59 86.59 42.125 67.148 86.59 42.63 

15 61.006 - 86.59 - 50.437 - 39.921 

16 68.013 - 86.59 - 31.262 - - 

17 38.345 - 86.59 - 25.147 - - 
Weight 

[kg] 1522.064 2503.411 2720.756 1501.902 1380.235 2091.971 1345.12 

Displ. 
[m] 0.0508 0.0375 0.0508 0.0508 0.0508 0.0508 0.0508 

Opt. type 
Shape  Sizing and 

shape 
Topology and 

shape 
Sizing, topology 

and shape Node 

3 (x; y) [m] (2.679; 0.104) (2.491; 0.359) (2.886; 0.052) (2.765;- 0.096) 

4 (x; y) [m] (3.003; 2.211) (3.933; 2.495) (2.764; 2.404) (2.751; 2.375) 

5 (x; y) [m] (5.37; 0.315)  (5.171; 0.741) (5.384; 0.23) (5.1; 0.188) 

6 (x; y) [m] (5.467; 1.799) (6.176; 2.272) (5.006; 2.249) (2.254; 242) 

7 (x; y) [m] (6.873; 0.274) (7.013; 1.039) (7.310; 0.409) (7.379; 0.5) 

8 (x; y) [m] (6.642; 1.712) (7.390; 2.308) (6.660; 2.158) (8.174; 2.22) 

9 (x; y) [m] (10.16; 0.968) (10.16; 1.547) (10.160; 1.305) (10.16;1.334) 
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Figure 2. Comparison of discrete and continuous optimization results according to type 

4 CONCLUSION  
In real-world applications it is impossible to produce trusses which are the result 

of optimization with continuous cross-sectional variables, simply because of the costs 
linked to the production of specific, non-standard, dimensions of cross-sections in high 
enough tolerances. It was noted that even the slightest variations in cross-section 
diameter of optimal solutions with continuous variables leads to the construction not 
meeting constraint criteria. This paper showed the influence of using discrete cross-
section variables, and compared results of all types, and combinations of truss structural 
optimization on a 17 bar truss example. In addition to the use of discrete variables, in 
order to ensure practically useable designs, the optimization process was constrained 
using dynamic buckling constraints. As a result the resulting structures which use 
achieved using this method weigh more than their counterparts from literature which do 
not consider buckling constraints.  

The use of discrete variables gives models with similar weights. The difference 
between continuous and discrete variable models is around 3% for sizing optimization, 
around 7% for sizing and topology, around -2% for shape, and around -3% for sizing, 
shape and topology optimization. Since the Euler buckling constraint is added, it is very 
difficult for the method to achieve an absolute optimum, hence the continuous models 
have, an unexpectedly greater weight than their discrete counterparts, however this 
difference is negligible and is most likely caused by method parameters. The more 
complex the optimization, with more aspects being optimized and the addition of 
constraints which further divide the search space, the more difficult it is to achieve global 
optima. It can also be noted, that the topology optimization and shape optimization for 
both examples give the same results. This is because in order to define a cross-section 
to use for these two cases the initial model was optimized for sizing first, with using the 
same cross-section for all elements. The resulting value for both continuous and discrete 
models were close to 86.59cm2, which is a discrete diameter of 90mm, so the results 
were considered to be the same. 

The intent of this research was to prove that there are insignificant differences in 
optimal weight between continuous and dynamic constraints. It can be concluded from 

Sizing Topology Shape Sizing and
topology

Sizing and
shape

Topology
and shape

Sizing,
topology
and shape

continuous 1522.064 2503.411 2720.756 1501.902 1380.235 2091.971 1345.12
discrete 1571.875 2503.411 2720.756 1607.739 1355.876 2091.971 1303.889
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the results that using discrete variables in optimization gives useable results when 
combined with buckling constraints. Further research in this field will include the 
influence of cross-section standard tolerances on optimal models in terms of satisfying 
set constraints.  
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