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INFLUENCE OF BUCKLING CONSTRAINTS ON TRUSS
STRUCTURAL OPTIMIZATION
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Summary: In order to achieve the most practically applicable results the optimization
model must have the most realistic variables, loading and constraints. One of the main
constraints which is frequently overlooked in previously published research is bucking.
Since this constraint is changing in each iteration of the optimization process it is very
complex and is considered a dynamic constraint. This paper shows the implementation
of such a constraint into the structural optimization process. A typical space truss
example with 25 bars is optimized both with and without the use of buckling constraints
for sizing, shape, topology and all their possible combinations, and a comparative
analysis of the two cases is done. All models are optimized for minimal weight.

Key words: truss, structural optimization, Euler buckling, continuous variables

1. INTRODUCTION

The problem of truss structural optimization is a complex engineering problem
which is more and more finding its application in various types of applications. The goal
of using as little material as possible in order to achieve applicable results has driven the
development of this field which in a lot of research published to date has been focused
on the difference in the heuristic optimization methods used. As the constructions being
optimized should be applicable in the real world it is important to develop methodologies
of truss optimization which will produce useful results. One very important, yet frequently
overlooked aspect of truss structural optimization is buckling load of compressed
elements. The addition of buckling loads to truss structural optimization means creating,
so called, dynamic constraints which change in each iteration of optimization. This
constraint drastically increases the complexity of the entire process and discretizes the
search space making finding a global optimum very difficult.

A lot of research published in recent years does not consider buckling [1-3].
Tejani et al. [4] used multi-objective modified adaptive symbiotic organism search to
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minimize mass and maximize nodal deflection on five truss optimization problems
without explicit use of buckling constraints. Authors in [5] applied fixed stress constraints
for both compression and tension while using a novel hybrid method on discrete truss
structures. Researchers in [6] have used fixed compressive stress limits for different bar
groups in their examples to account for buckling failure. They used move limits definition
with sequential linear programming to achieve optimal results for sizing and shape
optimization of 20 problems. Simultaneous sizing, shape and topology optimization of
planar and space trusses without considering buckling, but accounting for possible
unacceptable topologies using Grubler’s criterion was done in [7]. More recent papers
have started using different dynamic constraints to overcome the problem of potential
buckling failure of optimal structures. Degertekin et al. [8] conducted sizing, layout and
topology optimization on truss structures using a constraint for buckling which has a
higher limit than Euler buckling. Authors in [9-11] compared results of various
optimization types with and without using Euler buckling constraints.

The main focus of this research is to show the difference in results for minimal
weight optimization with and without the use of dynamic constraints for Euler buckling.
The test example used is a standard 25 bar truss problem. The example is optimized for
sizing, topology, shape and all their possible combinations.

2. TRUSS STRUCTURAL OPTIMIZATION PROBLEM

Structural optimization of trusses in the majority of cases has the goal of
minimizing overall construction weight while maintaining structural stability. The weight
minimization problem is defined by the total weight of all used elements, and generally
does not account for the additional weight of joints. This is done because in most truss
analyses used for optimization bar elements are represented in finite element analysis
as one-dimensional elements and therefore there is a certain overlap between elements
which accounts for the added weight of joints. Structural optimization for trusses can be
divided into three categories, according to the aspect of the construction which is being
optimized. Sizing optimization considers cross-section area (dimensions and types) as
variables. Topology optimization considers the utilization of bars as variables (adding or
removing bars). Shape optimization views the position of nodes (joints) as variables, and
depending on the type of problem it can vary one to all three coordinates of nodes which
are allowed to be displaced. These optimization types can be combined to optimize two,
or even all three aspects in order to achieve even better results, either sequentially or,
ideally, simultaneously. This combination additionally complicates the optimization
process as the search-space becomes larger and more variables are added to an
already complex problem. The goal function for minimal weight optimization is defined
as follows:

minW (A)=> p Al with A=(A,...,A)
i=1
n<A<A, fori=1..n
' Oin S0, <0, fori=1...,n
subjected to .
min SU; SU for j=1,...k
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where n is the number of truss elements, k is the number of nodes, li is the length of the
i" element, A; is the area of the i element cross section, g; is the stress of the i element,
and u;j is displacement of the j" node. More constraints can be added depending on the
problem in order to achieve desired results. In order to test compressed bars for buckling
this paper uses the following expressions to define the constraint for Euler buckling.

P
On < Oy
F Fi
P _ " Ai _ ki
for o, =—~ and o, =—,
e _7 Bl
ki_l—z
ki

Fi|<F fori=1,...n.

where o, is axial compression stress, and oy is critical buckling stress of the i element.
Fai®™ is axial compression force, Fg; is Euler’s critical load, E; is modulus, and I; is
minimum area moment of inertia of the cross section of the of the i element.

As the cross section area changes in each iteration of sizing optimization and
lengths change in each iteration of shape optimization this constraint is considered a
dynamic constraint. It should also be noted that both shape and topology optimizations
can result in the changes of load types in certain bars, so some bars which were
subjected to compression in certain iterations might be subjected to tension in other
iterations. This is an additional problem in finding global optima in an already hard to
navigate search-space. Such complex problems require the use of heuristic optimization
methods, and in this paper the method used is genetic algorithm due to its availability
and ease of use.

3. TEST EXAMPLE

For the purposes of this research a typical 25 bar truss problem was optimized
for sizing, topology, shape, and all possible combinations of two as well as all three
simultaneously. The layout of the 25 bar truss problem is shown in figure 1. Bars are
made from Aluminium 6063-T5 which has a Young modulus of 68947 MPa, and a density
of 2.7 g/cm?®. Forces are distributed on the following nodes with vectors: node 1 (4.448,
-44 .48, -44 48) kN, node 2 (0, -44.48, -44.48) kN, node 3 (2.224, 0, 0) kN, and node 6
(2.6688, 0, 0) kN.
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1.905m

Fig. 1 Layout of 25 bar truss problem.

Truss member cross-sections for this problem are grouped as follows: 1 (A1), 2
(A2 = As), 3 (A — Ag), 4 (A10— A11), 5 (A12 — A13), 6 (A14 — A17), 7 (A1s — A21), 8 (A2 — A2s).
The constraints for this problem are: tensile stress limit for all bar groups of 40kN, and a
maximal displacement of £0.00889m for all nodes in all directions, as well as Euler
buckling constraints for all bars. Optimization types where topology is considered, can
eliminate only entire groups of elements. For the optimization considering shape, the
node coordinate constraints are as follows:

0,508m<x,, X,, —X,, —X, <1.524m;
Lolem<y.,vy,, -y, —Y, <2,032m;
2,286m<z,1z2, 12,2, <3,302m;

-X, <2,032m;

10 —

1,016m< X, X,, —X

79

2,540m <y, Y., —Y,, =Y, <3,556m.

10 —

Optimization without the use of buckling constraints is done using continuous
variables and has a minimal diameter limit of 1.433mm. For the optimization using
buckling constraints in order to achieve the most realistic results discrete variables are
used for full round cross-section of Aluminium 6063-T5. A list was compiled with
available standard dimensions from several vendors. There are 50 possible cross-
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section profiles diameters ranging from 12mm (1.131 cm?) to 356mm (995.382 cm?). The
list of possible diameters of bars is as follows: 12, 16, 20, 25, 30, 34, 35, 40, 45, 55, 60,
65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 140, 145, 150, 152, 160,
165, 170, 175, 178, 180, 190, 200, 210, 220, 230, 240, 250, 254, 260, 270, 278, 280,
300, 305, 356, given in mm.

4. RESULTS

For the purposes of this research optimization was conducted in an original
software developed in Rhinoceros 5.0, Grasshopper using the Karamba plugin. The
optimization module used is Galapagos which uses genetic algorithm as the optimization
method. Optimal results for topology and shape for the case without considering buckling
constraints uses a cross-section area derived from optimizing the model firstly, in its
original configuration, for a single cross-section for all bars. The example which
considers buckling constraints uses different cross-sections for topology and shape as
the optimal cross-section in the case where all the bars are the same does not allow for
exclusion of bars, so the topology optimized solution uses larger bars.

The optimal weight and cross-section areas of bar groups for all optimization
types are given in table 1 for the example not using buckling constraints, and in table 2
for the example with buckling constraints added. Node coordinates depending on the
constraints used are given in table 3.

Table 1 Cross-section areas of bar groups and weight according to optimization type
without the buckling constraint

Cross- S
section . - izing.
ars:rof Sizing Topology Shape S;Zr:gg S;angg Toztr)]lé)gy sgﬁze
group topology | shape shape topology
[erm?]

1 1.131 - 19.635 1.131 1.1314 - 1.1310

2 1.131 19.635 19.635 6.716 1.131 19.635 1.1310

3 23.495 19.635 19.635 18.960 7.208 19.635 8.553

4 1.131 - 19.635 - 1.131 - -

5 3.005 - 19.635 - 1.136 - -

6 3.774 19.635 19.635 7.282 1.131 19.635 1.131

7 12.399 19.635 19.635 5.561 1.131 19.635 1.131

8 20.205 19.635 19.635 31.188 8.513 19.635 7.411
W[iig]ht 233.299 | 396.957 | 394.671 259.556 | 67.599 | 352.027 64.303
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Table 2 Cross-section areas of bar groups and weight according to optimization type
with the buckling constraint

Cross-
section Sizing Sizing Topology Sizing.
area of Sizin Topolo Shape and and and shape
bar 9 pology P and
group topology shape shape topology
[cm?]
1 1.131 44179 33.183 - 1.131 38.485 -
2 23.758 44179 33.183 23.758 23.758 38.485 12.566
3 33.183 44179 33.183 33.183 33.183 38.485 33.183
4 2.011 44179 33.183 - 1.131 38.485 -
5 4.909 44179 33.183 28.274 4.909 38.485 -
6 28.274 44179 33.183 28.274 7.069 38.485 4.909
7 38.485 44179 33.183 38.485 28.274 38.485 9.621
8 44179 44179 33.183 44179 28.274 38.485 38.486
W[i'g]ht 6871'1 L 893.153 | 666.993 679.37 413.612 | 689.972 | 328.893

Table 3 Node coordinates according to type of constraints used

Node coordinate C%l#;‘,:rlg}gt Shape Sti(fgl,?ozr;d Siiiggp’:nd Saiﬁén%pzi:gg;
X Xa, X o [m) | e es 0% | o6
Yo Yoo s Yolml R ot a0 224
2021 25 2ol 5|24t |25
X0 Xa Yo Xoolm) [ 06016 rols
Y1 Yo o Yoo lml [R50 sea0 s

5. CONCLUSION

Structural optimization of trusses is a powerful tool in the design process of any
truss structure. Through the use of various types of optimization it is possible to derive
a structure which would otherwise require a lot more time end experience to achieve, or
even create a structure with a geometry unfathomable by human calculation. This way
substantial savings can be achieved through the minimization of weight, thereby the
amount of material used to create a structure with certain geometrical, spatial, loading
and deformation constraints.

This paper analyses the results of structural optimization results and shows the
difference in overall weight of various types of optimizations when accounting for
buckling constraints as opposed to not considering them. It is evident that there is a
substantial difference in construction weight for examples which do not consider
buckling. These models, while lighter, in real world application would buckle under the
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set loads. The examples which do use Euler buckling constraints give solutions with a
larger overall weight, but they are sized so as to handle the compressive forces without
buckling. In addition to this, a common error in some truss optimization research has
also been addressed, which is the use of continuous variables for cross-section areas.
As it is impractical, and virtually impossible to create cross-sections of non-standard
dimensions to a certain tolerance this research for the example which uses buckling
constraints also uses discrete variables for cross-section sizing. Optimization using
sizing, topology and shape as well as all their possible combinations show the range of
abilities in minimizing weight. It is not always possible to optimize all three aspects of a
construction, but comparative analyses such as this show the difference in their
combinations or individual use.

It has also been found, even though the bars are grouped in this particular
example, that a large number of different cross-sections are used for optimal solutions.
Further research in this field will include the possibility of limiting the number of different
cross-sections used in a truss construction so as to create more practical constructions.
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