

Ministry of Science, Technological Development and Innovation

eering guievac Motor Vehicles & Motors 2024 ECOLOGY -VEHICLE AND ROAD SAFETY - EFFICIENCY Proceedings

University of Kragujevac

Department for Motor Vehicles and Motors

October 10th - 11th, 2024 Kragujevac, Serbia

10th International Congress Motor Vehicles & Motors 2024

ECOLOGY -VEHICLE AND ROAD SAFETY - EFFICIENCY

Proceedings

October 10th - 11th, 2024 Kragujevac, Serbia

Publisher:	Faculty of Engineering, University of Kragujevac Sestre Janjić 6, 34000 Kragujevac, Serbia
For Publisher:	Prof. Slobodan Savić, Ph.D. Dean of the Faculty of Engineering
Editors:	Prof. Jasna Glišović, Ph.D. Asst. prof. Ivan Grujić, Ph.D.
Technical preparation:	Asst. prof. Nadica Stojanović, Ph.D. Asst. prof. Ivan Grujić, Ph.D.
Cover.	Nemanja Lazarević
USB printing:	Faculty of Engineering, University of Kragujevac, Kragujevac
ISBN:	978-86-6335-120-2
Year of publication:	2024.
Number of copies printed:	100

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

629.3(082)(0.034.2) 621.43(082)(0.034.2)

INTERNATIONAL Congress Motor Vehicles and Motors (10 ; 2024 ; Kragujevac) Ecology - Vehicle and Road Safety - Efficiency [Elektronski izvor] : proceedings / [10th] international congress Motor vehicles & motors 2024, October 10th - 11th, 2024 Kragujevac, Serbia ; [editors Jasna Glišović, Ivan Grujić]. - Kragujevac : University, Faculty of Engineering, 2024 (Kragujevac : University, Faculty of Engineering). - 1 USB fleš memorija ; 1 x 1 x 6 cm

Sistemski zahtevi: Nisu navedeni. - Nasl. sa nasl. strane dokumenta. - Tiraž 100.

Bibliografija uz svaki rad.

ISBN 978-86-6335-120-2

a) Моторна возила -- Зборници b) Мотори са унутрашњим сагоревањем --Зборници

COBISS.SR-ID 153339657

Copyright © 2024 Faculty of Engineering, University of Kragujevac

Publishing of this USB Book of proceedings was supported by Ministry of Science, Technological Development and Innovation of the Republic of Serbia

SCIENTIFIC BOARD

President:	Prof. dr Jasna Glišović, UniKg, FE, Serbia
Secretary:	Assoc. Prof. dr Aleksandar Jovanović, UniKg, FE, Serbia
<i>Members:</i>	Prof. dr Giovanni Belingardi, Politecnico di Torino, Italy Prof. dr Ivan Blagojević, University of Belgrade, FME, Serbia Prof. dr Adrian Clenci, University of Pitesti, Romania Assoc. Prof. dr Aleksandar Davinić, University of Kragujevac, FE, Serbia Prof. dr Miroslav Demić, University of Kragujevac, FE, Serbia Prof. dr Jovan Dorić University of Novi Sad, FTS, Serbia Assoc. Prof. dr Boris Stojić, University of Novi Sad, FTS, Serbia Prof. dr Jovan Dorić University of Kragujevac, FE, Serbia Prof. dr Jovanka Lukić, University of Kragujevac, FE, Serbia Prof. dr Jovanka Lukić, University of Kragujevac, FE, Serbia Prof. dr Jovanka Lukić, University of Kragujevac, FE, Serbia Prof. dr Valentina Golubović Bugarski University of Banja Luka, FME, Republic of Srpska, Bosnia and Herzegovina Prof. dr Aleksandra Janković, University of Kragujevac, FE, Serbia Assoc. Prof. dr Aleksandar Jovanović, University of Kragujevac, FE, Serbia Assoc. Prof. dr Aleksandar Jovanović, University of Kragujevac, FE, Serbia Prof. dr Emrullah Hakan Kaleli, YTU, Istanbul, Turkey Prof. dr Dimitrios Koulocheris, NTUA, Athens, Greece Prof. dr Danijela Miloradović, University of Kragujevac, FE, Serbia Prof. dr Danijela Miloradović, University of Kragujevac, FE, Serbia Prof. dr Božidar Krstić, University of Kragujevac, FE, Serbia Prof. dr Radivoje Pešić, University of Kragujevac, FE, Serbia Prof. dr Radivoje Pešić, University of Kragujevac, FE, Serbia Prof. dr Radivoje Pešić, University of Kragujevac, FE, Serbia Prof. dr Radipa Abdulah, TU Ham, Germany Prof. dr Radipa Mužanović, University UAS, Germany Prof. dr Boežana Petković, University of Novi Sad, FTS, Serbia Assoc. Prof. dr Aleksandar Stevanović, UniPitt, USA Assist. Prof. dr Slobodan Mišanović, Project Manager GSP Beograd, Serbia Prof. dr Igor Gjurkov, FME, Skopje, Republic of North Macedonia Prof. dr Igor Gjurkov, FME, Skopje, Republic of North Macedonia Prof. dr Jogniew Lozia, WUT, Warsaw, Poland Prof. dr Zbigniew Lozia, WUT, Warsaw, Poland Prof. dr Zbigniew Lozia, WUT, Warsaw, Poland

ORGANIZATIONAL BOARD

President: Asst. prof. dr Ivan Grujić, UniKg, FE, Serbia

Secretaries: Asst. prof. Nadica Stojanović, Ph.D., UniKg, FE, Serbia Assist. Slavica Mačužić Saveljić, M.Sc., UniKg, FE, Serbia

CONGRESS ORGANIZERS

University of Kragujevac Faculty of Engineering of the University of Kragujevac Department for Motor Vehicles and Motors, FE Kragujevac International Journal "Mobility & Vehicle Mechanics"

CONGRESS PATRONS

Ministry of Science, Technological Development and Innovation City Council of Kragujevac

CONTENT

INTRODUCTORY LECTURES

MVM2024-IL1	Ralph Pütz	EU ENERGY AND PROPULSION TRANSITIONS IN THE MOBILITY SECTOR OF GERMANY – A REALIZABLE STRATEGY OR EVEN RATHER IDEOLOGICAL ASTRAY?	3
MVM2024-IL2	Nenad Miljić Slobodan Popović	HYDROGEN AND INTERNAL COMBUSTION ENGINES – STATUS, PERSPECTIVES AND CHALLENGES IN PROVIDING HIGH EFFICIENCY AND CO2 FREE POWERTRAIN FOR FUTURE	13
MVM2024-IL3	Hakan Kaleli Selman Demirtaş Veli Uysal	NANOSCALE TRIBOLOGICAL INFLUENCE OF NBA ADDED IN ENGINE OIL FOR FRICTION AND WEAR BEHAVIOUR IN DIESEL ENGINE CYLINDER LINER SURFACE RUBBED UNDER 1ST AND 2ND PISTON RINGS	35

SECTION A Power Train Technology

MVM2024-008	Vanja Šušteršič Vladimir Vukašinović Dušan Gordić Mladen Josijević	APPLICATION OF HYDROSTATIC TRANSMISSION IN MOBILE MACHINE	55
MVM2024-010	Miloš Maljković Ivan Blagojević Branko Miličić Dragan Stamenković	TOWARDS AN ENERGY EFFICIENT OPERATION OF A SUPERCAPACITOR ELECTRIC BUS	65
MVM2024-013	Zoran Masoničić Siniša Dragutinović Aleksandar Davinić Slobodan Savić Radivoje Pešić	SOME ASPECTS OF COMBUSTION MODEL VARIATION ONTO FLAME PROPAGATION AND EXHAUST EMISSIONS OF IC ENGINES	75
MVM2024-016	Predrag Mrđa Marko Kitanović Slobodan Popović Nenad Miljić Nemanja Bukušić	MATHEMATICAL MODELING OF AN ELECTRONIC THROTTLE VALVE USING NARX NEURAL NETWORKS	83
MVM2024-018	Nemanja Bukušić Predrag Mrđa Marko Kitanović Nenad Miljić Slobodan Popović	GASOLINE DIRECT INJECTION STRATEGY ANALYSIS FOR IMPROVED COMBUSTION	93
MVM2024-020	Nenad Miljić Predrag Mrđa Mihailo Olđa Slobodan J. Popović Marko Kitanović	THE METHOD AND INSTRUMENTATION FOR ENGINE POSITIONING ON A TESTBED WITH FAST SHAFT ALIGNMENT	103

MVM2024-026	Minja Velemir Radović Danijela Nikolić Nebojša Jurišević Saša Jovanović	APPLICATION OF WASTE PLASTIC OIL IN THE MODERN AUTOMOTIVE INDUSTRY	111
MVM2024-031	Miroljub Tomić Dragan Knežević Miloljub Štavljanin	CYLINDER DEACTIVATION IN IC ENGINES IN CYLINDER PROCESS SIMULATION	123
MVM2024-037	Marko Nenadović Dragan Knežević Željko Bulatović	CHARACTERISTICS OF TORSIONAL OSCILLATIONS OF PERKINS 1104 ENGINE CRANKSHAFT	131
MVM2024-038	Marko Nenadović Dragan Knežević Željko Bulatović	ANALYSIS OF CRANKSHAFT TORSIONAL OSCILLATION DUMPER FOR ENGINE V-46-6	141
MVM2024-047	Attila Kiss Bálint Szabó Zoltán Weltsch	THE SAFETY ISSUES OF HYDROGEN- GASOLINE DUAL-FUEL INJECTION IN NATURAL ASPIRATED INTERNAL COMBUSTION ENGINES	153
MVM2024-049	Ivan Grujic Aleksandar Davinic Nadica Stojanovic Zeljko Djuric Marko Lucic Radivoje Pesic	THE NUMERICAL INVESTIGATION OF THE WORKING CYCLE OF DUAL FUEL IC ENGINE	163

SECTION B Vehicle Design and Manufacturing

MVM2024-005	Gordana Bogdanović Dragan Čukanović Aleksandar Radaković Milan T. Đorđević Petar Knežević	FUNCTIONALLY GRADED MATERIALS IN AUTOMOTIVE INDUSTRY-MODELLING AND ANALYSIS OF FG PLATE ON ELASTIC FOUNDATION	171
MVM2024-006	Dušan Arsić Djordje Ivković Dragan Adamović Vesna Mandić Marko Delić Andjela Mitrović Nada Ratković	APPLICATION OF HIGH STRENGTH STEELS IN AUTOMOTIVE INDUSTRY	179
MVM2024-011	Saša Vasiljević Jasna Glišović Marko Maslać Milan Đorđević Sonja Kostić Dobrivoje Ćatić	TIRE WEAR: VEHICLE SAFETY AND ENVIRONMENTAL PROBLEM	187
MVM2024-012	Zorica Đorđević Sonja Kostić Saša Jovanović Danijela Nikolić	THE INFLUENCE OF FIBER ORIENTATION ANGLE ON THE STABILITY OF A COMPOSITE DRIVE SHAFT	199
MVM2024-014	Vojislav Filipovic Milan Matijevic Dragan Kostic	DIGITAL PREVIEW CONTROLLER DESIGN USING REINFORCEMENT LEARNING	205
MVM2024-015	Milan Matijevic Vojislav Filipovic Dragan Kostic	ITERATIVE LEARNING (ILC) IN MANUFACTURING SYSTEMS: DESIGN OF ILC ALGORITHMS AND OVERVIEW OF MODEL INVERSION TECHNIQUES FOR ILC SYNTHESIS	213

MVM2024-017	Marko Delić Vesna Mandić Dragan Adamović Dušan Arsić Đorđe Ivković Nada Ratković	ANALYSIS OF PHOTOGRAMMETRY APPLICATION POSSIBILITIES FOR REVERSE ENGINEERING OF COMPONENTS IN THE AUTO INDUSTRY	229
MVM2024-023	Dániel Kecskés László Tóth István Péter Szabó	STRENGTH TESTING OF 3D PRINTED SPECIMENS	235
MVM2024-027	Milan Stanojević Milan Bukvić Saša Vasiljević Lozica Ivanović Blaža Stojanović	RESEARCH METHODS IN THE DESIGN PROCESS OF HYDRAULIC SYSTEMS WITH CYCLOID TEETH	247
MVM2024-028	Dragan Adamovic Vesna Mandic Nada Ratkovic Dusan Arsic Djordje Ivkovic Marko Delic Marko Topalovic	MODERN MATERIALS IN AUTOMOTIVE INDUSTRY - REVIEW	255
MVM2024-029	Dragan Adamović Fatima Živić Nikola Kotorčević Nenad Grujović	REVIEW OF THE USE OF NANOTECHNOLOGIES AND NANOMATERIALS IN THE AUTOMOTIVE INDUSTRY: DEVELOPMENT, APPLICATIONS AND FUTURE DIRECTIONS	269
MVM2024-032	Nada Ratković Dragan Adamović Srbislav Aleksandrović Vesna Mandić Dušan Arsić Marko Delić Živana Jovanović Pešić	ADVANCED WELDING TECHNOLOGIES: FSW IN AUTOMOTIVE MANUFACTURING	281
MVM2024-035	Milan Bukvić Sandra Gajević Slavica Miladinović Saša Milojević Momčilo Đorđević Blaža Stojanović	CHARACTERISTICS AND APPLICATION OF POLYMER COMPOSITES IN THE AUTOMOTIVE INDUSTRY	289
MVM2024-036	Gordana Bogdanović Aleksandar Radaković Dragan Čukanović Nikola Velimirović Petar Knežević	SHAPE FUNCTION OPTIMIZATION FOR STATIC ANALYSIS OF COMPOSITE MATERIALS USED IN AUTOMOTIVE INDUSTRY	295
MVM2024-039	lgor Saveljić Slavica Mačužić Saveljić Nenad Filipović	THE MODERN APPROACH TO PROBLEM- SOLVING IN MECHANICAL ENGINEERING - APPLICATION OF ARTIFICIAL INTELLIGENCE	303
MVM2024-040	Slavica Mačužić Saveljić Igor Saveljić Jovanka Lukić	DETERMINATION OF THE SEAT-TO-HEAD TRANSFER FUNCTION AND INFLUENCING FACTORS ON COMFORT UNDER VERTICAL RANDOM VIBRATIONS	309
MVM2024-041	Dobrivoje Ćatić Saša Vasiljević Živana Jovanović Pešić Vladimir Ćatić	DISC BRAKE FAILURE ANALYSIS OF THE MOTOR VEHICLE BRAKING SYSTEM	315

MVM2024-048	Isak Karabegović Ermin Husak Edina Karabegović Mehmed Mahmić	DEVELOPMENT AND IMPLEMENTATION OF ADVANCED ROBOTICS IN THE AUTOMOTIVE AND ELECTRO-ELECTRONIC INDUSTRY OF CHINA	321
MVM2024-051	Jasna Glišović Saša Vasiljević Jovanka Lukić Danijela Miloradović	SUBSYSTEM AND SYSTEM ANALYSIS OF BRAKE WEAR PARTICLES FOR PREDICTION AND CONTROL OF THE TRAFFIC NON- EXHAUST EMISSION	331
MVM2024-052	Dobrivoje Ćatić Vladimir Ćatić	DETERMINING THE RELIABILITY OF BRAKE BOOSTERS IN LIGHT COMMERCIAL VEHICLES	343
MVM2024-053	Nikola Komatina Danijela Tadić Marko Djapan	QUANTITATIVE ANALYSIS OF NONCONFORMING PRODUCTS: A CASE STUDY IN THE AUTOMOTIVE INDUSTRY	349
MVM2024-054	Danijela Miloradović Jasna Glišović Jovanka Lukić Nenad Miloradović	SUSPENSION RATIOS OF MACPHERSON STRUT SUSPENSION	357
MVM2024-056	Nenad Miloradović Rodoljub Vujanac	INFLUENCE OF SELECTION OF MATERIAL HANDLING DEVICES ON SOLUTION FOR WAREHOUSE SYSTEM IN AUTOMOTIVE INDUSTRY	369
MVM2024-057	Nenad Petrović Strahinja Milenković Živana Jovanović Pešić Nenad Kostić Nenad Marijanović	DETERMINING 3D PRINTED HOUSING DIAMETERS FOR PRESS-FITTING STANDARD BALL BEARINGS	379

SECTION C Vehicle Dynamics and Intelligent Control Systems

MVM2024-002	Mihai Blaga	VOLVO FH POWERTRAIN, VEHICLE ENGINE DIAGNOSTICS	387
MVM2024-007	Abdeselem Benmeddah Momir Drakulić Aleksandar Đuric Sreten Perić	MODELING AND VALIDATION OF TRUCK SUSPENSION SYSTEMS USING ADAMS SOFTWARE	401
MVM2024-030	Vesna Ranković Andrija Đonić Tijana Geroski	ROAD TRAFFIC ACCIDENTS PREDICTION USING MACHINE LEARNING METHODS	409
MVM2024-034	Vasko Changoski Igor Gjurkov Vase Janushevska	HANDLING AND STABILITY ANALYSIS OF AN AUTOMATED VEHICLE WITH INTEGRATED FOUR-WHEEL INDEPENDENT STEERING (4WIS)	417
MVM2024-042	Bojana Bošković Nadica Stojanović Ivan Grujić Saša Babić Branimir Milosavljević	THE INFLUENCE OF THERMAL STRESS OF DISC BRAKES ON VEHICLE DECELERATION	431
MVM2024-046	Andjela Mitrović Vladimir Milovanović Nebojša Hristov Damir Jerković Mladen Josijević Djordje Ivković	ANALYSIS OF PLACING ADDITIONAL SUPPORTS OF THE INTEGRATED ARTILLERY SYSTEM CALIBER 130 mm	439

SECTION D Driver/Vehicle Interface, Information and Assistance Systems

MVM2024-001	Miroslav Demić Mikhail P. Malinovsky	INVESTIGATION OF TORSIONAL VIBRATIONS OF THE STEERING SHAFT FROM THE ASPECT OF MINIMAL DRIVER-HAND FATIGUE IN HEAVY MOTOR VEHICLES	451
MVM2024-009	Mikhail P. Malinovsky Miroslav Demić Evgeny S. Smolko	TECHNICAL SOLUTIONS FOR CATASTROPHIC EXTENT OF THE HUMAN FACTOR IN DRIVERS TRAINING AND STRUCTURAL SAFETY OF BUSES AND HEAVY VEHICLES	459
MVM2024-050	Jovanka Lukić Danijela Miloradović Jasna Glišović	MASKING EFFECTS UNDER DUAL AXIS WHOLE BODY VIBRATION	477

SECTION E Transport Challenges in Emerging Economies

MVM2024-004	Slobodan Mišanović	PERFORMANCES OF FAST CHARGERS FOR ELECTRIC BUSES IN BELGRADE ON THE EKO2 LINE	485
MVM2024-019	Siniša Dragutinović Zoran Masonicic Aleksandar Davinić Slobodan Savić Radivoje Pešić	APPLICATION OF THE AHP METHOD FOR THE ASSESMENT OF INFLUENTIAL CRITERIA IN RISK ANALYSIS OF ROAD TRANSPORT OF DANGEROUS GOODS	493
MVM2024-021	Željko Đurić Snežana Petković Valentina Golubović Bugarski Nataša Kostić	METHODS FOR CATEGORIZING ROAD TUNNELS ACCORDING TO DANGEROUS GOODS REGULATIONS	501
MVM2024-025	Franci Pušavec Janez Kopač	TRAFFIC HAZARD DUE TO HIGH CENTRE OF GRAVITY	511
MVM2024-043	Alexander Koudrin Sergey Shadrin	DEVELOPMENT OF AN ENERGY-EFFICIENT CONTROL SYSTEM FOR CONNECTED, HIGHLY AUTOMATED VEHICLES	517
MVM2024-055	Marko Miletić Ivan Miletić Robert Ulewich Ružica Nikolić	EV CHARGING STATIONS: CURRENT SITUATION AND FUTURE PERSPECTIVES	527

International Congress Motor Vehicles & Motors 2024 Kragujevac, Serbia October 10th - 11th, 2024

MVM2024-008

Vanja Šušteršič¹, Vladimir Vukašinović² Dušan Gordić³ Mladen Josijević⁴

APPLICATION OF HYDROSTATIC TRANSMISSION IN MOBILE MACHINE

ABSTRACT: Hydrostatic transmissions are widely used in the field of mobile machines in construction, mining, agriculture, forestry, both to start working bodies (multipliers) that perform technological operations, and for motion drives. In the first part of the paper, hydrostatic power transmissions and their classification are described, followed by an explanation of the working principles of hydraulic pump and hydraulic motor. In the second part of the paper, the application of the hydrostatic transmission in different mobile machines is presented. The third part represents the most crucial segment, where the calculation to obtain the key parameters for hydrostatic transmission design is presented. Finally, the main components of the hydrostatic transmission are selected.

KEYWORDS: hydraulic pump, hydraulic motor, calculation, hydrostatic transmission

INTRODUCTION

The hydraulic power transmission is carried out by means of liquids, which are most often mineral hydraulic oils and non-flammable fluids for hydraulics. In the components of these transmissions, the mechanical energy of the working fluid is converted into its fluid energy and vice versa. Depending on the principle of operation of these hydraulic devices for energy conversion, hydrostatic and hydrodynamic power transmissions are distinguished. In hydrostatic transmissions, the energy converters are a volume pump at the input and a volume hydro-motor or hydraulic cylinder at the output [1].

Compared to others, hydraulic drives have a significantly lower mass and smaller aggregate dimensions, and therefore have a low inertia; the rotational mass of hydraulic motors of rotational action is several times smaller than the rotational mass of electric motors of the same power. They make it possible to achieve a stepless change of the output speed, convert rotary motion into translational and translational into rotary motion; constructively, it simply

¹ Vanja Šušteršič, PhD, full prof., University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, vanjas@kg.ac.rs (*Corresponding author)

² Vladimir Vukašinović, PhD, assos. prof, University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, vladimir.vukasinovic@kg.ac.rs

³ Dušan Gordić, PhD, full prof., University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, gordic@kg.ac.rs

⁴ Mladen Josijević, PhD, ass. prof., University of Kragujevac, Faculty of Engineering, Sestre Janjić 6, 34000 Kragujevac, Serbia, mladenjosijevic@gmail.com

ensures the protection of hydro aggregates from overloading. Disadvantages include the high price of aggregates, the complexity of exploitation, and a relatively short service life [1].

In recent years, the progress has been made in the development and practical application of hydrostatic transmission and management in all branches of economy. Hydrostatic transmissions (HST) are particularly widely used in the field of mobile machines in civil engineering, mining, agriculture and forestry, wind turbines, etc. These hydrostatic systems are intended for movement of working organs (manipulators) which perform technological operations and also as driving power [2].

When we talk about the global hydrostatic transmission market, it was at 5.1 billion USD in 2023. and is predicted to reach 7.9 billion USD by 2032 (Figure 1). This sector has a strong presence in the North American market, especially the United States and Canada in the agricultural sector. Technological improvements and the deployment of modern machinery drive the market in this area even further.

When we talk about the application of hydrostatic transmisisons in the EU, Germany, France, the United Kingdom, Italy, and Spain are leading the way. The increase of building and mining operations, notably in Eastern European nations, is driving market growth in Europe. Adoption of hydrostatic transmissions is further aided by stringent rules encouraging energy efficiency and environmental practices [3].

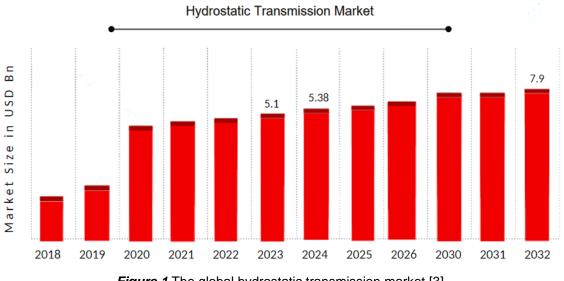


Figure 1 The global hydrostatic transmission market [3]

Configuration of hydrostatic transmission

There are four types of hydrostatic transmission, two with open circuit and two with closed circuit. In open-loop circuit transmission (Figure 2, a), the working fluid enters the regulating pump through the reservoir, then passes through the hydraulic motor and finally reaches the reservoir, or rather, returns to it. In a closed-loop circuit, (Figure 2, b) the path of fluid movement is continuous, so the fluid flows along a constant path from the output of the control pump to the input of the control motor and vice versa [2]. An open circuit is not used in vehicles, because it cannot be reversed; and lacks braking. It is used for conveyor belts where load is resistant and where rotation in one direction is possible.

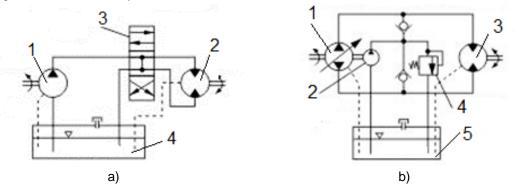


Figure 2 Scheme of the hydrostatic transmission

- a) open-loop hydraulic circuit, 1 hydraulic pump, 2 hydraulic motor, 3 directional valve, 4 oil tank
- b) closed-loop hydraulic circuit, 1 hydraulic pump, 2 feed pump, 3 hydraulic motor, 4 pressure regulator, 5 oil tank [4]

The configuration of the hydrostatic transmission can be with a pump with a constant (or variabile volume), and with a hydraulic motor with a constant (Figure 2, a) or variable working volume. HST with constant displacement pump and motor is cheap, but its application is limited, mainly because other types of power transmission are inefficient. The most widespread configuration of hydrostatic transmission consists of a regulating pump (Figure 2, b) and a regulating motor with a variable working volume. Theoretically speaking, this arrangement provides an infinite number of torque and speed ratios. With the throttle motor at maximum operating volume, the variable output volume of the throttle pump directly changes the speed and power output, while the torque remains constant. By reducing the working volume of the engine at the full working volume of the control pump, the speed of the control motor increases to its maximum value, the torque changes inversely with the speed, and the power remains constant.

Figure 3 shows the working characteristics of the hydrostatic transmission. Range 1 covers changing the angular speed of the motor by varying only of displacement of the hydraulic pump from zero to maximum values, while the working volume of the engine is fixed at its maximum value. Range 2 starts when the pump reaches its maximum move. To obtain higher values for the angular velocity, engine displacement must be reduced. Within this range, the system ensures constant power and flow, while hydraulic torque is proportional to engine volume move.

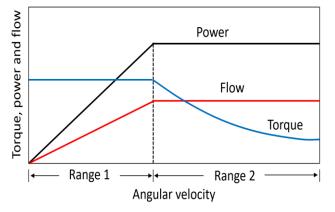
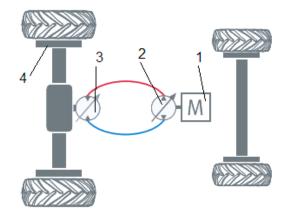


Figure 3 Operational characteristics of the hydrostatic transmission [5]


APPLICATION OF HYDROSTATIC TRANSMISSION

Hydrostatic transmission is widely used in agriculture. It is used in tractors, all types of self-propelled machines such as combine harvesters for sugar cane, sugar beet harvesters, silage harvesters, sprayers, telescopic manipulators, silo mixers, etc. Hydrostatic transmission is the most modern, but also the most expensive transmission and is used mainly in special agricultural machines. In order to achieve cost reduction, manufacturers of agricultural machinery apply hydro-mechanical transmissions with less or greater use of reducers and mechanical drive bridges [4]. At the beginning of the 2000's, the most commonly applied type of transmission was with rear-wheel drive only, with one variable-flow piston-axial pump and one two-flow piston-axial motor connected to a mechanical drive bridge (Figure 4).

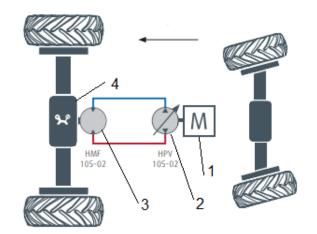
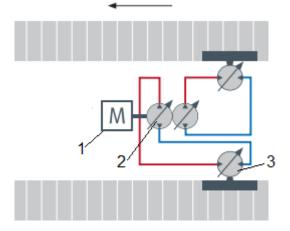
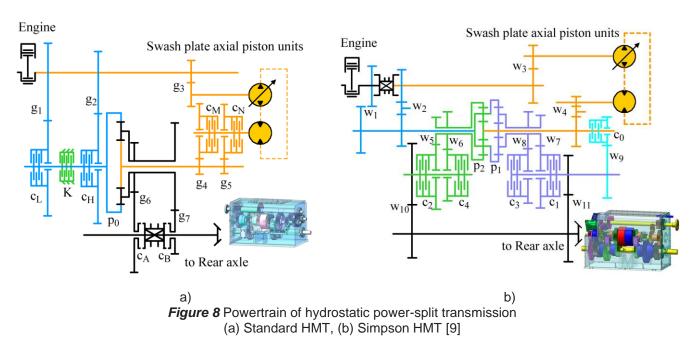

Figure 4 Mechanical drive bridge with attached hydraulic motor and reducers [6]

Figure 5 shows the hydrostatic drive solution with a speed reducer between the hydraulic motor and the wheel. This a hydrostatic circuit consists of a piston-axial pump, a two-flow piston-axial hydraulic motor with an inclined axis and a speed reducer. The most common transmission ratio in such reducers is i = 35 - 45. An integrated parking brake or an active disc brake are installed in the reducer. The big advantage of this type of hydrostatic system is its price. Two-flow piston-axial engines have a price of about 60% lower compared to high-torque piston-radial low-speed engines, while the reducers are from mass production, slightly modified to meet the needs of the machine manufacturer [7].


Figure 5 Classic hydrostatic drive system with a speed reducer (1 - power unit, 2 - piston-axial pump, 3 - piston-axial hydraulic motor, 4 - reducer) [7]

One example of the use of hydrostatic transmission in a combine harvester is shown in Figure 6. This harvester uses a diesel engine, a variable-displacement hydraulic pump with mechanical-hydraulic control, and a constant displacement hydro-motor connected to a three-speed gearbox. Gear ratios are adjusted for different conditions of use such as harvesting, moving around the field, as well as the road. In the cabin, there is a mechanical-hydraulic controller, with which the operator of the machine regulates the operation of the hydro-pump.


Figure 6 Hydrostatic transmission for combine harvesters (1 - diesel engine, 2 - hydraulic pump, 3 – hydro-motor, 4 - gearbox) [7]

Hydrostatic transmission is also used to drive sugarcane harvester. In Figure 7, the concept with two hydraulic circuits is shown and works without a transfer mechanism with a distributor. The power unit drives two variable displacement hydraulic pumps, which transmit hydraulic power, each separately, to variable displacement hydraulic motors that drive the tracks.

Figure 7 Hydrostatic transmission at sugarcane harvester (1 – diesel engine, 2 - hydraulic pump, 3 - hydraulic motor) [7]

When we talk about tractors, manual transmission, hydrostatic (HST) and hydro-mechanical transmission (HMT) are used today. HST and HMT transmission are continuously variable transmissions and can operate the engine with high thermal efficiency independently of the vehicle speed in the transmission range, thereby reducing fuel consumption and exhaust gases. In addition, being able to automatically control the gear ratio increases the driver's work efficiency, and finally, they are environmentally friendly and highly efficient [8]. In order to improve the comfort of driving a tractor with HST, this transmission is often combined with a planetary gearbox (Figure 8) [9].

CALCULATION OF HYDROSTATIC TRANSMISSION

The most important assumption for setting up a satisfactory solution to the problem is the previous system procedure of planning and execution of the hydrostatic system. When designing the hydrostatic system, the requirements and parameters of the function of the members of the kinematic chain of the machine that the actuators of the hydrostatic system should strengthen are first analyzed in detail. For the correct selection and definition of hydrostatic components, it is necessary to know their characteristics: principles, methods and conditions of operation, basic parameters and transmission functions, methods of installation and maintenance, prices and methods of delivery.

In this part, the calculation of hydrostatic transmissions is described, which is used to drive wheeled tractors and crawler tractors, and based on which the choice of hydro-pump and hydro-motor is then made. First, it is necessary to calculate the parameter values of individual components that are within this transmission. Some of the quantities are hydraulic power, maximum pump flow, specific flow, etc. The general scheme of the hydrostatic transmission used in the calculation is shown in Figure 9.

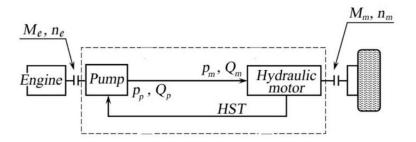


Figure 9 Model of hydrostatic transmission [10]

 M_e , n_e - torque and motor shaft speed; M_m , n_m - torque and rotational speed of the hydraulic motor shaft; p_p , Q_p - pump pressure and flow rate; p_m , Q_m - pressure and supply to the hydraulic motor

For wheeled tractor, the circulation of the working fluid is in a closed circuit. This type of hydraulic drive consists of a power unit, specifically a diesel engine, a hydraulic pump with a variable working volume, which drives a hydraulic motor with a constant working volume, and which is connected via a two-stage mechanical gearbox to the drive bridge, which drives the wheels and transmits power to the ground.

The basic equations for torque and flow of hydraulic pump and hydraulic motor are given by equations 1-4.

$$M_p = \frac{\Delta p \cdot q_p}{2 \cdot \pi \cdot n_p} \tag{1}$$

$$M_m = \frac{\Delta p \cdot q_m \cdot \eta_m}{2 \cdot \pi} \tag{2}$$

$$Q_p = q_p \cdot n_p \cdot \eta_{\nu p} \tag{3}$$

$$Q_m = \frac{q_m \cdot n_m}{\eta_{vm}} \tag{4}$$

where are: Δp - pressure difference across hydraulic motor/pump (Pa); Q_p , Q_m - flow rate of hydraulic pump/motor (I/min); M_p , M_m - torque of hydraulic pump/motor (Nm); n_p , n_m - number of revolutions of pump/motor (rpm), q_p , q_m - specific flow rate of hydraulic pump/motor - displacement (cm³/rev); η_{vp} , η_{vm} - volumetric efficiency.

Table 1 gives the initial data for the calculation of hydrostatic transmission for wheeled and crawler tractors, and Figure 10 shows the calculation flow.

Wheeled Tractor		Crawler tractor	
Vehicle weight [kN]	42.8	Mass of tractor [t]	7.5
Wheel radius [mm]	590	Engine power [kW]	120
Nominal speed of pump [min-1]	2100	Maximum flow of pump [l/min]	250
Maximum vehicle speed [km/h]	25	Maximum working pressure [MPa]	40
Type of road	macadam	Maximum vehicle speed [km/h]	10
Maximum ascent [°]	15	Maximum required traction force of	2590
_		one track [N]	

Table 1 Basic data for calculation

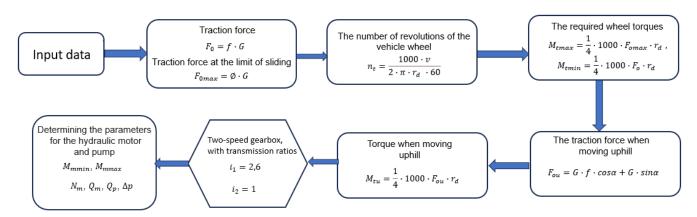


Figure 10 Calculation flow for wheeled tractor

After obtaining the necessary parameters, the pump and motor are selected. The hydraulic motor and hydraulic pump, based on the data obtained from the calculation, were adopted from the catalog of the manufacturer "Bosh Rexroth", model MCR-F, and the hydraulic pump AA4VG Series 32 (Table 2).

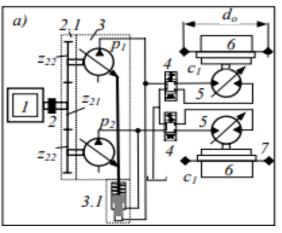
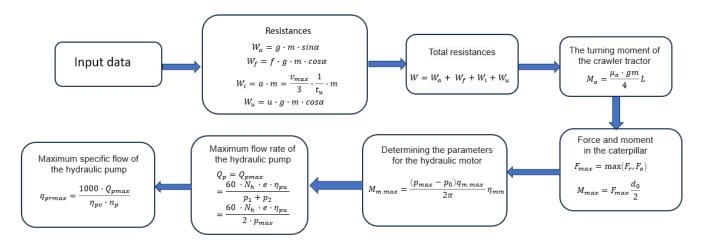

For the crawler tractor used a hydrostatic transmission system with two open circuits (Figure 11), consisting of: diesel engine, elastic coupling, toothed distributor, hydraulic pumps, distributors, modular drive transmission with an integrally connected hydraulic motor and planetary reducer to which the caterpillar's drive sprocket is attached. The calculation is based on the maximum required torque on the output shaft of the drive reducer, i.e. the maximum required torque on the drive sprocket of one caterpillar. It is necessary to first calculate the maximum required traction force of one caterpillar.

Table 2 Technical data on the hydraulic pump and motor from the manufacturer's catalog [11]


Radial piston hydraulic motor "Bosh Rexroth MCR-F"	
Displacement	565 cm ³ /rev
Maximum torque	4047 Nm
Maximum pressure	450 bar
Maximum number of revolutions	385 min ⁻¹

Axial piston pump "Bosh Rexroth AA4VG Series 32"		
Displacement	40 cm ³ / <i>rev</i>	
Nominal pressure	400 bar	
Maximum pump flow	160 l/min	
Maximum pressure	450 bar	

Figure 11 Functional scheme of transmission with two open hydrostatic circuits [12] (1 – diesel engine, 2 – elastic coupling, 2.1 – gear distributor, 3 – hydraulic pump, 3.1 – collective distributor, 4 – flow regulator, 5 – hydromotor, 6 – reducer, 7 – sprocket)

Figure 11 Calculation flow for crawler tractor

Based on the maximum specific flow determined by calculation, according to the manufacturer's catalog, the closest available value of the specific flow of the pump is adopted. If there is a significant difference between the magnitude of the required and available specific flow of the hydraulic pump, while maintaining the desired maximum flow of the hydraulic pump, the required gear ratio is determined from the power distributor. After that, the maximum number of revolutions of the hydraulic pump is determined through the ratio and checked in the manufacturer's catalog. The hydraulic pump were adopted, based on the data obtained from the calculation (Table 3):

- two piston-axial pumps from the catalog of the manufacturer "Danfoss", series 45, with frame E, and
- two hydraulic pump two hydraulic motors model A10VE manufactured by "Bosh Rexroth"

Table 3 Technical data on the hydraulic pump and motor from the manufacturer's catalog [11, 13]

Radial piston hydraulic motor "Bosh Rexroth A10VE"		
Displacement	45 cm ³ / <i>rev</i>	
Maximum torque	250 Nm	
Maximum pressure	350 bar	
Maximum number of revolutions	5400 min ⁻¹	

Piston - axial pump "Danfo	
Displacement	130 cm ³ /rev
Nominal pressure	310 bar
Maximum pump flow	250 l/min
Maximum pressure	400 <i>bar</i>

CONCLUSIONS

The paper presents a mathematical calculation that enables a preliminary calculation of the working volumes of hydraulic machines with further specification in accordance with standard values. The pressure produced by the pump is determined according to the load during the movement of the transport machine. The power of the drive motor should take into account both the movement of the vehicle and the possibility of creating special systems with a hydraulic drive.

The main disadvantages of the mechanical transmission are the sudden change in the transmission ratio due to the gearbox that works on the principle of toothed transmission, a small ratio of power per unit of mass, poor flexibility and the inability to regulate. On the other hand, the use of hydrostatic transmission in vehicles enables the achievement of large forces and moments with devices of small dimensions. Continuously variable transmission is also achieved within the entire working area, giving the best transfer measures between the drive motor and the wheels, which increases dynamic performance and reduces fuel consumption.

Further development of hydrostatic transmission components (primarily piston-axial hydraulic pumps and pistonradial hydraulic motors) as well as the integration of electronics and computers into these systems will dictate further directions of development of these systems. Some types of hydrostatic systems are the most acceptable with their price and will be used as basic systems for driving mobile machines for a long time. On the other hand, other types of hydrostatic systems presented in this paper are dominant in special agricultural machines (corn pickers, sugar beet harvesters), while the most modern hydrostatic systems are used in the most complex self-propelled agricultural machines (vegetable harvesters).

REFERENCES

- [1] Babić M., Stojković S., Turbomašine, Mašinski fakultet, Kragujevac, 1997.
- [2] Šušteršič V., Gordić D., Josijević M., Vukašinović V., Čalculation and dimensioning of hydrostatic transmission in agriculture machines, MVM, Vol. 42, No 2, p. 55-65, 2016.
- [3] Hydrostatic Transmission Market Size Global Industry, Share, Analysis, Trends and Forecast 2023

 2032 (available at https://www.acumenresearchandconsulting.com/hydrostatic-transmission-market) (03.08.2024)
- [4] Marković D., Branković D., Primena najnovije generacije hidrostatskih transmisija u razvoju poljoprivrednih mašina, Savremena poljoprivredna tehnika, Vol. 30, No. 1-2, p. 1-92, 2004.
- [5] Danh D. N, Aschemann H., Tracking Differentiator-Based Sliding Mode Velocity Control of a Hydrostatic Transmission, 25th International Conference on Methods and Models in Automation and Robotics (MMAR) p. 269-274, IEEE, 2021.
- [6] Heavy Duty Transaxsles, Planetary Rigid Tandem Axles (available at https://hdtransaxle.com/product/axletech-off-highway/planetary-rigid-tandem-axles/) (03.08.2024)
- [7] Drive System for Agricultural Machines, Linde Hydraulics, (available at https://www.linde-hydraulics.com/wpcontent/uploads/Linde_DriveSystems_AM_PDF.pdf) (03.08.2024)

- [8] Choi et al., Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission, Journal of Biosystems Engineering, Vol. 38, No. 3, 2013.
- [9] Zhao Y., Chen X., Song Y., Wang G., Zhai Z., Energy and Fuel Consumption of a New Concept of Hydro-Mechanical Tractor Transmission, Sustainability, 15, 10809, 2023
- [10] Vorozhtsov O., Seleznev E., Design and justification of hydrostatic transmission parameters for special transport vehicles, E3S Web of Conferences, XI International Scientific and Practical Conference Innovative Technologies in Environmental Science and Education (ITSE), Vol. 431, 08013, 2023.
- [11] Bosh Rexroth (available at https://store.boschrexroth.com/Hydraulics) (03.08.2024)
- [12] Janošević D., Projektovanje mobilnih mašina, Mašinski fakultet, Niš, 2006, ISBN 86-80587-44-3
- [13] Danfoss (available at https://www.danfoss.com/en/products/dps/hydraulic-pumps/hydrostatic-pumps/opencircuit-axial-piston-pumps/) (03.08.2024)

