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Abstract: In this article, we study the application of NetworkX, a Python library for dealing with traffic
networks, to the problem of signal optimization at a single intersection. We use the shortest-path algorithms
such as Bellman-Ford (Dynamic Programming), A star (A*), and Dijkstra’s algorithm to compute an optimal
solution to the problem. We consider both undersaturated and oversaturated traffic conditions. The results
show that we find optimal results with short Central Processor Unit (CPU) time using all the applied algorithms,
where Dijkstra’s algorithm slightly outperformed others. Moreover, we show that bee colony optimization can
find the optimal solution for all tested problems with different degrees of computational complexity for less
CPU time, which is a new contribution to knowledge in this field.
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1 Introduction

The shortest-path problem is a problem of finding the shortest path from a starting point to a final destination.
Shortest-path algorithms are mainly divided into two groups: single-source shortest paths (SSSP) and all-pairs
shortest paths (APSP). The goal of the SSSP is to find the shortest path from a source node to all other nodes in
the graph, while APSP aims to find the shortest paths between each pair of the nodes in the graph. In this
article, the shortest-path solution algorithms are used to solve the problem of controlling signal intersection.
Recall that a single intersection can be controlled using a varying number of phases. An increase in the
number of phases results in greater combinatorial complexity of the problem.

In recent decades, there has been a vast interest in researching the problem of optimizing the control of a
single intersection. The total vehicle delay, the total number of stopped vehicles, and the total throughput
represent the usual criteria functions for optimization. Since the 1970s, by applying mathematics and numer-
ical methods to complex transportation engineering problems, various strategies have been developed to find
optimal solutions in this area. The development of one of the first software packages aimed at controlling a
single intersection can be found in [1]. One of the pioneer’s works considering both public transport vehicles
and pedestrian flows in optimizing the control of a single intersection is [2]. The work of Pappis and Mamdani
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[3], in which the problem of a single intersection was solved using fuzzy logic, is considered to be one of the
first applications of artificial intelligence (AI) in traffic engineering.

In [4], a simulation approach is developed to find the values of the control parameters at a single
intersection for both undersaturated and oversaturated demand. The application of Markov chains to optimize
the control at a single intersection was presented in [5], while genetic algorithms were used to solve the same
problem in [6]. The solution of a similar traveling salesman problem by the Hopfield-type neural network was
explored in [7]. Technological development has promoted the application of various AI techniques in the field
of single intersection control, which led to numerous research articles, among which we highlight [8–10]. In
[11], a predictive controller was developed for optimal green time balancing considering short-term traffic
demand prediction. The research showed a significant reduction in queue lengths compared to traditional
control logic. In [12–14], etc., different options for isolated intersection control in the presence of oversaturated
traffic flows have been studied.

In this study, we present a new approach of solving the single intersection timing optimization problem by
using different algorithms to solve the shortest-path problem. One of the ways to solve the shortest-path
problem is to use graphs. Recall briefly that a graph, as an abstract mathematical object, is a collection of
points (nodes) and lines connecting some of the points (edges). A graph is called a directed or undirected graph
if one can walk along the edges on both sides or only on one side of the graph. The length of the edges is often
referred to as weights and is used to calculate the shortest-path from one point to another. To compare
algorithms for the shortest-path problem, we used Python and its libraries, focusing on application of the
NetworkX [15]. NetworkX is a Python package publicly released in April 2005 that is used to create, manipulate,
and study the structure, dynamics, and functions of complex networks. In this study, we used the latest version
2.6, released in July 2021.

Recall that nodes can be any hashable Python object, edges can contain arbitrary data represented as
tuples. The library includes generators for many classical graphs and random graph models, as well as various
graph algorithms for finding the shortest paths in graphs. Modeling and analyzing network data and testing
new algorithms or network metrics are presented in [16]. There, the authors showed how NetworkX, in
conjunction with Python packages such as SciPy, NumPy, and Matplotlib, and interfacing with other tools
written in FORTRAN and C, provides a powerful tool for computational network analysis. NetworkX provides
classes for representing directed and undirected graphs with optional weights and self-loops, as well as
multigraphs that allow multiple edges between pairs of nodes. Adding or removing nodes and edges can be
done via class methods. Graphs can be represented in three ways: as a list of edges, an adjacency matrix, or an
adjacency list. Since NetworkX is easy to install and use, it has positioned itself as a powerful tool for analyzing
complex networks. Numerous applications of NetworkX can be found in many research articles on various
problems in engineering, epidemiology, sociology, chemistry, and other fields. Selected articles representing
various applications of NetworkX are listed in Table 1.

Table 1: Selected articles with NetworkX applications

Article NetworkX application – area and main results

[17] The SAGE open-source mathematics system has incorporated NetworkX and extended it with more graphtheoretical
algorithms and functions

[18] An application of NetworkX in an investigation of connectivity and profits of airline companies. Graph analytics technique
for the optimum solution was used for analyzing complex multigraph airlines

[19] A novel time series classification algorithm based on complex network topology features is presented
NetworkX was applied to calculate the density, modularity, average degree assortativity coefficient, etc.

[20] A comparative analysis of four social network analysis tools – Networkx, Gephi, Pajek, IGraph based on platform,
execution time, graph types, algorithms complexity, input file format, and graph features

[21] Authors generate an undirected multigraph in NetworkX for the analysis of co-authorship of scientific documents
published on malaria

[22] A MeVer NetworkX tool is proposed, designed for analyzing and visualizing social media conversations
[23] A hybrid data structure for storing temporal networks is implemented in DyNetworkX
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As far as the authors are aware, the NetworkX package has not yet been used to solve optimization
problems at a single intersection. This also represents the initial step for further application of this software
package to traffic-related problems. Our motive for this work is to investigate the Central Processor Unit (CPU)
time required to solve this optimization problem with different shortest-path algorithms and additionally to
compare the efficiency of NetworkX with the well-known bee colony optimization (BCO), a technique that has
already been used to solve this problem in [24]. In order to make this comparison, a Python code for the BCO
algorithm is created. Dynamic programming (DP) is the method with optimal structure. In other words, it
provides an optimal solution to a given problem. In the 2017 work [24], the authors showed that DP succeeded
in solving the optimization problem for a single intersection with five phases in a CPU time of 29,120 s. In the
case of control with six phases, DP was not able to solve the problem in a reasonable CPU time at that time.
Therefore, the application of the BCO meta-heuristic method was justified.

The results show that NetworkX is a very useful package to solve computationally complex problems. An
additional value is its accessibility and open-source concept, which makes it a highly desirable environment
for solving the shortest-path problems. We emphasize that in practice, it is much easier for engineers to
implement the shortest-path algorithms in such environments than to use complicated metaheuristic
approaches such as BCO. Moreover, we develop the code of the BCO algorithm in the same environment,
which seems to be more powerful in terms of CPU time. The optimal solution to the considered problem is
provided by the present DP method, even in the complex case of traffic demand oversaturation with six-level
control. Thus, we can compare the BCO results with the optimal result in the case of six-level control (with and
without oversaturation).

Novelty of this study could be summarized in the following:
(1) We prove that BCO (as a swarm metaheuristic algorithm) can find the optimal solutions for six-phase

single traffic control with oversaturated traffic conditions using NetworkX.
(2) Using NetworkX, in the case of optimal control at a single intersection with more than four phases, we have

achieved a significantly lower CPU time than is known from the current state-of-the-art.
(3) We compared different algorithms for the shortest-path in the case of controlling a single intersection and

found Dijkstra’s algorithm to be the most efficient.
(4) This study serves as a comprehensive guide for those venturing into traffic network optimization. It

elucidates commonly employed classical algorithms and delves into the advanced BCO technique, accom-
panied by pertinent pseudocodes.

This article is organized as follows. Section 2 describes the problem. Section 3 presents the proposed
methodology with brief explanations and pseudocodes of the algorithms used. An experimental evaluation of
the proposed approach is presented in Section 4. Recommendations for future research and conclusions are
given in Section 5.

2 Statement of the problem of optimal control of single
intersection

In this section, we briefly explain the pre-timed optimization of a single intersection with a given number of
phases. The objective of traffic control at a single intersection is to find the optimal values for cycle length and
split of green time of phases. Note that cycle length represents the execution time of all phases, to which the so-
called red times are added (this is the time between two initializations of the same phase of the signal plan). A
typical layout of a single intersection with associated phases is shown in Figure 1, which presents five different
ways to execute traffic control in two to six phases. In Figure 1, a brief explanation of traffic control is provided
by abbreviations on the left side of the figure. The simplest two-phase control is implemented by a scheme
where phase 1 gives a green light for the north–south direction and phase 2 for a green light for the west–east
(WE) direction. The next option is to control in three phases, where phase 1 is for the green light for the
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direction NS, while WE is controlled in two new phases, phase 2 for the green light on lanes H, L, R, and M and
phase 3 for the green light for left turns G and T, similarly for phases 4, 5, and 6.

The problem we deal with in this article could be formulated as follows: for a given number of phases,
determine optimal values for the cycle length and green times to minimize the average control delay for all
vehicles arriving at the intersection within a predefined period. Furthermore, in this work, we consider both
undersaturated and oversaturated traffic conditions. Oversaturated traffic conditions assume that there is no
traffic demand after an analysis period (T).

2.1 Definition of the criteria function

If we denote by i the lane index, =i K1, 2,…, (in Figure 1, lane indexes A, B, C, ... correspond to =i 1, 2, 3,… ), the
optimization criterion is the average control delay per vehicle that occurs during the period of analysis T

(which is 1 h in this case) of vehicles arriving (di) and is defined as follows [25]:

= + +d d d d .i i i i1 2 3 (1)

Note that d i1 represents the uniform delay per vehicle in the ith lane expressed in seconds per vehicle (s/veh),
d i2 indicates the incremental delay per vehicle in the ith lane (s/veh), and d i3 stands for the initial queue delay
per vehicle in the ith lane (s/veh). Mentioned delays are calculated as follows:
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Figure 1: Layout of the single intersection with phases.
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Other labels used in (2)–(4) are as follows:C is a cycle length in seconds; g
i
is the green time in the ith lane (veh/h);T

is the analysis period duration (1 h), andQ
bi
is the initial queue at the start of periodT . Furthermore, capacity of the

ith lane (ci), in veh/h, can be calculated as:
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where si denotes the saturation flow in the ith lane (veh/h). The saturation flow rate of a traffic lane is
determined by the maximum number of vehicles that could be served during one hour of green.

Volume-to-capacity ratio (Xi) can be calculated as:
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Duration of unmet demand in T is denoted by ti (h) and can be calculated as:
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Finally, ui is the delay parameter in the ith lane and can be calculated as:
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2.2 Mathematical formulation of the problem

If we denote by j the phase index, { }∈j 2, 3, …,6 , or theoretically { }∈ =j F f1, 2, …, , the following optimiza-
tion problem can be defined as:

∑
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where L is all-red time (s), g
min

is the minimum green time (s), Cmin is the minimum allowed cycle length (s),
and Cmax is the maximum allowed cycle length (s).

The objective function (9) to be minimized represents the average control delay experienced by all
vehicles arriving at the intersection within a given period. Equation (10) defines the integer interval of possible
cycle length values, while equation (11) defines the integer interval of possible green time values. The relation-
ship between cycle length, green time, and all-red time is described by equation (12).
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3 Methodology

A main component of this approach for controlling individual intersections is the creation of a network in the
Python environment that contains nodes and edges. Each node represents a value from the range defined in
(11), while the edges represent the corresponding values of the criterion function obtained from equations
(1)–(8). Then, using NetworkX, the Python library for network processing, we applied algorithms to find the
optimal shortest-path, such as Dijkstra, Dynamic Programming, and A*. We also compare the optimal solutions
obtained using the NetworkX package with those obtained using BCO solutions obtained, also programmed in
the Python environment. That way, we obtain additional contribution of this study – the validation that BCO
consistently determines optimal values for both cycle length and green times across varying numbers of
phases.

3.1 Network building for the application of the shortest-path algorithms

The network is divided into a series of layers, each layer (except the first) consisting of all allowed green time
values for that phase. The first layer contains the cycle length value minus all-red time, while the last layer
contains the sum of all green times. Thus, the first and last layers each consist of only one node with the same
value.

Let us show the structure of the sub-network in Figure 2, for the case of four phases with a cycle length of
=C 64 s, the all-red time of =L 14 s and the minimum green time of =g 5 s

min
.

The sub-network of Figure 2 is an oriented graph in which the nodes are connected only between layers,
while the edges in the layer itself do not exist. Furthermore, the layers are conditionally connected as the g

min

value is maintained. For instance, the nodes of layer g
1
and the nodes of layer +g g

1 2
are connected if and

only if:
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Exceptions are the first and the last layers, which are completely connected with their neighboring layers.
The values of the green times within each layer are determined by the sum of the green times of all previous
layers. Thus, the minimum green time for these layers is subject to g

min
, as shown in Figure 2. The maximum
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The weights of network edges between layers i and j( )−wi j represent the values of the criterion function.
For example, the weight between node 5 (layer g

1
) and node 10 (layer +g g

1 2
) is equal to (Figure 1):
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Figure 2: An example of the corresponding sub-network design with four phases.
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where dC and dD take corresponding values from (1). The number of sub-networks corresponds to the number
of possible cycle length values determined by (10). We solve each sub-network, with the global optimal solution
corresponding to the minimum value of the objective function resulting from all sub-networks. The pseudo-
code for the building of the corresponding network is presented as follows:

Pseudocode for building of the corresponding network:

Set number of phases: nop

Set initial values for minimum allowed cycle length: Cmin

Set initial values for maximum allowed cycle length: Cmax

Set initial value for minimal green time: Zmin

Set initial value for lost time (all red time): L

For =C Cmin to +C 1max

For =i 1 to nop

Set initial traffic demands q
i
as list of values

Set saturation flows si as list of values
Define Z as list of values from Zmin to ( )− − − ⋅ +C L nop Z1 1min

Define capacity function ( )k s Z C, ,i i to return ( )⋅ ∕s Z Ci

Define volume-to-capacity ratio ( )X q k,i i i to return ∕q k
i i

Define control delay by phases function ( )d Z C k X, , ,i i i to

return ( ) ( )
{ }
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Z

C

i

Z

C

i

i

2

Define function Di for each phase
Initialize bidirectional Graph G

Add node ( )−C L to the Graph G

For =i 1 to −nop 1

Create list of nodes for each cycle
Add nodes to Graph G

Calculate D function for each pair of neighboring nodes
Add edges between neighboring nodes and set distance D

Call shortest-path algorithm
Save values returned by algorithm

Find minimum values of the algorithm returned values
Print optimal values for cycle length and green times

3.2 Solution algorithms

Regarding the existing literature, there are a certain number of articles in which authors discussed and
compared the results received from using shortest-path algorithms, or tried to short their execution time,
etc. For example, authors in [26] presented a new hybrid algorithm called Bellman-Ford-Dijkstra by combining
Bellman-Ford and Dijkstra algorithms with the proof that the new algorithm can generate the shortest-path
tree. In [27], Dijkstra and Bellman-Ford algorithms were compared. The authors tested the execution time of
these algorithms for a different number of nodes and concluded that when the number of nodes is small, the
running time of Bellman-Ford algorithm is better than Dijkstra’s. If a graph has a greater number of nodes, the
results show that Dijkstra’s algorithm has a lower execution time. For real-time applications, the authors give
an advantage to the Dijkstra’s. Similar results were obtained in [28], where authors show that the Bellman-
Ford algorithm is slightly superior in the case of a small number of nodes, while Dijkstra is more effective for a
large number of nodes.
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The main novel contribution of this article in this field is a new approach to address the pre-timed
optimization problem at a single intersection by using different shortest-path algorithms. As far as authors
know, NetworkX package has not been used so far to deal with optimization problem at single intersection.
Our motif for this study is to explore the CPU time required to solve this optimization problem, and to compare
the efficiency of NetworkX with the well-known BCO metaheuristic approach that has already been used to
solve the problem.

To make this article self-readable, we briefly explain the ideas behind algorithms used in the analysis and
present pseudocode for each of them.

3.2.1 Dijkstra’s algorithm

The original algorithm, published in 1959 in [29], contains a set of approximations for the shortest paths from
one source to the other nodes and improves these approximations in each iteration of the algorithm. To
this end, it defines two sets of nodes, one for which the shortest-path problem has already been solved and
one that contains all other nodes. In the first step of Dijkstra’s algorithm [30], the distance for the starting point
is set to 0 and the distance for all other points is set to infinity. Second, all points (including the starting point)
are set as unvisited nodes. Third, the unvisited node with the smallest current distance is set as the current
node C. The further procedure is applied for each neighbor N of the current node: the current distance of C is
added with the weight of the edge connecting C–N, and if it is smaller than the current distance of N, it is set as
the new current distance of N. After that, the current distance of N is set as the new current distance of C.
Finally, the current node C is marked as visited and the previous procedure is repeated until the target point is
visited.

Pseudocode for Dijsktra’s Algorithm for graph G:

for c in G:
distance(c)=∞
visited(c)=0

distance(nstart)=0
do while visited(ngoal)==0
REPEAT

min_dist=∞, currentNode= [ ]G 0

for c in G:
if min_dist > distance(c) then

min_dist=distance(c), currentNode=c

for c in G:
if visited(c)==0 AND (c is neighbor of currentNode) then

if (distance(currentNode)+edge_distance(c,currentNode)) < distance(c)
distance(c)=distance(currentNode)+edge_distance(c,currentNode)

visited(currentNode)=1
UNTIL visited(ngoal)==1

The time complexity of the Dijkstra’s algorithm is ( )O n2 and with the use of a Fibonacci heap can be
reduced to (( ) )+ ⋅O n E nlog [31,32], where n represents the number of nodes, while E is the number of edges.
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3.2.2 A* Algorithm

A* algorithm was first published in 1968 [33]. Briefly, it is working the following way: it generates a tree of
paths from the start node and extends them by one edge at a time until it reaches the goal node or if there are
no paths suitable to be extended.

Pseudocode for A* Algorithm:

for c in G:
distance(c)=∞
visited(c)=0

distance( )nstart =0, condition = TRUE
do while visited(ngoal)==0
REPEAT

min_dist=∞
currentNode= [ ]G 0

for c in G:
if min_dist > distance(c) then

min_dist=distance(c)
currentNode=c

for c in G:
if c==ngoal then condition = FALSE
if visited( )c ==0 AND (c is neighbor of currentNode) then

temp_distance=distance(currentNode)+edge_distance(c,currentNode)+heuristic(c)
if temp_distance < distance(c)

distance(c)=temp_distance
visited(currentNode)=1

UNTIL condition

Based on the estimate of the cost of the path, A* determines which path to extend at each iteration. More
formally, it follows the same steps as described in Dijkstra’s algorithm with the exception. Heuristic is added to
the third step, which can be described as, [30]: for each neighbor N of the current node, add the current
distance of C with the weight of the edge connecting C–N and the weight to the destination point (heuristic). If
it is smaller than the current distance of N, its new value is the new current distance of N. The remaining steps
stay the same as in Dijkstra’s algorithm.

The time complexity of A* is ( )O bd , where d represents the depth of the solution and b is a branching factor
(the average number of successors per state). It can also be interpreted as (( ) ( ))+ ⋅O n E nlog , where E repre-
sents the number of edges and n represents a number of nodes [34].

3.2.3 Bellman-Ford’s algorithm

First published in [35] and [36], Bellman-Ford’s algorithm is based on the idea that there can be at most −n 1

edges in one of the paths from the starting node to any other node in the graph, where n represents the
number of nodes in the graph.

The shortest-path algorithms  9



Pseudocode for Bellman-Ford’s:

for c in G:
distance(c)=∞, previous(c)=null

distance( ) =c 0start

for c in G:
for edge ( )′c c, in G:

if (distance( )′c +edge_weight( )′c c, )<distance(c) then
distance(c)= distance( ′c )+edge_weight( )′c c,

previous( )c = ′c

Therefore, if we iterate −n 1 times, we are guaranteed to find the shortest-path from source to goal.
Bellman-Ford updates along all edges for every iteration – it examines each edge if it lessens the shortest-path
distance. At the beginning, Bellman-Ford’s algorithm initializes the distance from the source to all other nodes
to infinity. Then, if the distance to the destination can be shortened by taken the edge, the distance values are
updated to the new lower value. It searches the structure of the graph and generates a better solution.

The time complexity of this algorithm is ( )⋅O n E , where n represents the number of nodes, while E

represents a number of edges, [37].

3.2.4 BCO

The BCO algorithm is part of the swarm optimization metaheuristic and was originally proposed by [38] and
[39]. BCO seeks feasible solutions to difficult combinatorial optimization problems by mimicking the behavior
of natural bees in nectar collection.

In this study, we apply the improved version of the BCO algorithm with the following parameters: B, the
number of bees involved in the search; IT , the number of iterations; NP, the number of forward and backward
passes in a single iteration; NC , the number of changes in a forward pass; and S , the best-known solution. The
pseudo-code of the BCO algorithm [40] is as follows:

Pseudocode for BCO:

Set number of bees: B

Set the number of iteration: IT

Set the number of forward and backward passes in a single iteration: NP

Set number of changes: NC

REPEAT
For =i 1 to B

Determine an initial solution for the ith bee
Evaluate the solution of the ith bee

Set S : calculate the best solution of the bees
For =j 1 to IT :

For =i 1 to B:
Set the initial solution for bee i

For =k 1 to NP:
For =i 1 to B:

For =r 1 to NC :
Evaluate modified solutions generated by possible changes of the ith bee solution
By roulette wheel selection choose one of the modified solutions
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For =i 1 to B:
Evaluate solution of the ith bee

For =i 1 to B:
Make a decision whether the ith bee is loyal

For =i 1 to B:
if the bee i is not loyal

Choose one of the loyal bees to be followed by the ith bee
if the best solution of the bees is better then the solution S

Set S : the best solution of the bees
UNTIL criteria is met
RETURN S

More details about the BCO algorithm and some practical applications can be found in the handbook [41].
The BCO algorithm proves to be a useful tool for solving the problem of traffic control at a single intersection.
In [24], the authors have shown that BCO can outperform genetic algorithms and provide optimal solutions. In
that article, optimality is demonstrated using a dynamic programming approach, which was, however, very
time-consuming due to the technical characteristics of the available computers at that time. The BCO approach
to control individual intersections is described in detail in articles [42,43]. In this article, BCO is used as a
comparison tool for the shortest-path algorithms.

For this purpose, we rewrote the original BCO code from Java to Python. In the beginning, we assign the
initial solution and compute its fitness function. Then, we go through iterations to find the smaller fitness
function. The rest of the code is divided into two phases: the forward phase and the backward phase. The BCO
algorithm goes through iteration after iteration until a stopping condition is met. Our stopping condition was
minimal CPU time achieved by the shortest-path algorithms. When the stopping condition is satisfied, the
current best solution is reported as the final solution. We compared this solution to the solution obtained by
the other shortest-path algorithms.

4 Numerical example

The proposed algorithms are tested using the layout in Figure 1 as an example. We have analyzed the cases
where the total number of phases is 2, 3, 4, 5, and 6, respectively. All-red times increase with the number
of phases, from 10 s for 2 phases to 18 s to oversaturated scenario with 6 phases, with a step size of 2 s.
The minimum allowable cycle length Cmin and the maximum allowable cycle length Cmax are 30 and 120 s,
respectively, while the minimum value for the green time g

min
is 5. The analyzed period is set to 1 h (T = 1 h).

The traffic demands (q
i
in veh/h) and the saturation flows (si in veh/h) used for the calculations are given in

Tables 2 and 3, respectively.
Note that values for initial queue Q

bi
are assignable only in the case of 6-phase control, just because this is

the most complex case from the perspective of CPU time usage. By introducing the initial queue, our aim was to
further intricate Formula (1) in this most complex scenario and assess its impact on the code execution
CPU time.

Table 2: Traffic demands data per lane

Traffic demands Lane

A B C D E F G H L M R T

q
i

210 315 145 190 290 180 175 300 185 200 320 165
Q

bi
0 30 0 0 27 0 0 58 0 0 14 0

The shortest-path algorithms  11



In the implementation of the proposed BCO algorithm, we set =B 20, =NP 20, =NC 1. These values were
chosen based on previous experience with similar problems. In this article, the stopping criteria for BCO are
the shortest CPU time achieved among all other tested algorithms.

4.1 Experimental results

In this subsection, we present experimental results. All experiments were initially performed on a PC with a 2.7
GHz Intel Core i7-6828HQ processor and 32 GB RAM under MS Windows OS. This configuration represents a
performance standard accessible to home users, which motivated our choice for the study. However, to
validate these results, we also executed the Python codes on a faster computer to determine if the computer’s
performance would influence the execution speed ranking of the tested algorithms. Those validated results are
presented in the Appendix.

To evaluate the performance of three considered algorithms (Dijkstra, Bellman-Ford’s, and A*), we exe-
cuted a Python code written using the NetworkX library ten times for each algorithm. With conditions
described in Tables 2 and 3 (the traffic demands and the saturation flows), each algorithm provided the
optimal solution for cycle length and green times (given in seconds) that minimized the average control delay
experienced by all vehicles arriving at the intersection within a given period. These optimal solutions and
corresponding minimal delays are given in Table 4.

Recall that the relationship between cycle length, green time, and all-red time is described by equation
(12), so the cycle length presented in Table 4 is obtained as the sum of green times given below corresponding
cycle and all-red time, which is equal to 10 s for two phases to 18 s for six phases.

Mean values and standard deviations (STD) of CPU times (in seconds) for performed ten tests for each of
the three tested shortest-path algorithms are presented in Table 5. All tests are carried out for the total number
of phases equal to 2, 3, 4, 5, 6 as well as for an oversaturated scenario with six phases.

Obtained results showed that A* and Dijkstra’s algorithm have similar performance, but slight advantage
may be given to Dijkstra’s algorithm due to lower values of CPU time for all scenarios except with five phases,
as well as lower standard deviations that are observed for Dijkstra’s algorithm with six phases, which is
probably caused by the heuristic in A*. CPU times for Bellman-Ford’s algorithm are slightly larger than for the
other two algorithms and that trend becomes more visible by the increased number of phases (Figure 3).

Table 3: Saturation flow data per lane and per number of phases

Lane

Number of phases A B C D E F G H L M R T

2 1,500 1,600 1,350 1,300 1,600 1,500 1,400 1,600 1,500 1,500 1,600 1,300
3 1,500 1,600 1,350 1,300 1,600 1,500 1,500 1,900 1,500 1,500 1,900 1,500
4–6 1,500 1,900 1,500 1,500 1,900 1,500 1,500 1,900 1,500 1,500 1,900 1,500

Table 4: Optimal values for the cycle length, green times, and delay

Number of phases

2 3 4 5 6 6 o.s.

Cycle length 32 41 56 90 139 140
Green times 11, 11 12, 10, 7 12, 9, 12, 9 17, 13, 17, 14, 13 23, 20, 18, 24, 19, 17 26, 19, 17, 26, 18, 16

Delay 131.37 240.74 409.70 759.36 1576.91 2327.77
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Also, results from Table 5 are visually presented in Figure 4 on which mean values of CPU times in seconds
are shown in the form of error bars, showing how precise a measurement is.

Based on the obtained CPU times, we set the minimum obtained time for each number of phases as the
termination criterion for BCO to allow comparison. The application of this sophisticated method resulted in
optimal values for cycle length and green times for all numbers of phases. The added value of this research is
to continue the results obtained in [24]. The application of the shortest-path and BCO algorithms in Python and
NetworkX confirmed the ability of BCO to converge to an optimal solution in a very short time, even for
problems of controlling a single intersection with five and six phases, a result that we were not able to confirm
a few years ago with the technical capabilities available to us. This result further confirms the application of
BCO to even more complex problems, where the implementation of shortest-path algorithms is still too time-
consuming.

Table 5:Mean values and standards deviations of CPU times (performed on a PC with a 2.7 GHz Intel Core i7-6828HQ processor and 32
GB RAM under MS Windows OS)

Number of phases

2 3 4 5 6 6 o.s.

Dijkstra’s algorithm
Mean CPU time (s) 0.929 2.526 3.012 3.852 4.955 5.900
STD (s) 0.038 0.061 0.183 0.307 0.074 0.113

Bellman-Ford’s algorithm
Mean CPU time (s) 0.940 2.618 3.123 3.914 5.486 6.442
STD (s) 0.019 0.117 0.123 0.077 0.138 0.188

A* algorithm
Mean CPU time (s) 0.930 2.620 3.048 3.797 5.134 5.929
STD (s) 0.019 0.049 0.164 0.114 0.299 0.167

1 2 3 4 5 6 6 o.s.
# of phases

1

2

3

4

5

6

7

Figure 3: Mean CPU times per number of phases for tested algorithms.
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5 Conclusion

In this study, we have proposed a comparison between the sophisticated meta-heuristic optimization method
BCO and a classical shortest-path algorithms in a Python environment, specifically the NetworkX package. The
implementation was motivated by a problem from traffic engineering-optimizing the control of a single
intersection. Although it is a relatively simple optimization problem, until recent technological development,
it was very time-consuming to apply the shortest-path algorithms in the case of six-phase control. Based on the
results obtained, we see that the Dijkstra and A* algorithms slightly outperform the Bellman-Ford’s algorithm
for all numbers of phases, with the difference in CPU times being more pronounced for a larger number of
phases. A* and Dijkstra’s algorithm showed very similar CPU times, with slightly varying standard errors that
are larger for Dijkstra’s algorithm in the case of five phases and for A* in the case of six phases, for both
undersaturation and oversaturation.

It has already been shown that BCO can find a good solution with reasonable CPU time and outperforms
the genetic algorithm in the case of controlling a single signalized intersection [24]. However, in the time when
that research was conducted, 2017, it was not possible to find the optimal solution for a complex control, such
as oversaturated optimization with six phases. With the improvement of hardware, we found that BCO can
achieve the optimal solutions in all cases of controlling a single intersection. Even more, the obtained CPU
times presented in this article for the most computationally intensive tasks opens a new avenue for the
application of real-time control strategies for complex intersections and coordination systems based on the
achieved CPU time for an optimal solution in fixed-time optimization. One possible application is the optimi-
zation policies for adaptive control strategy proposed in [44].

One of the added values of this research is its educational purpose, as we systematize the pseudocodes of
all implemented algorithms. The codes in Python are also available upon request. The authors believe that
traffic engineers can benefit from this research, as well as mathematicians who can also solve the problem of
controlling a single intersection by modifying the proposed codes by applying newly developed optimization
techniques.

Figure 4: Mean CPU times with error per number of phases for tested algorithms.
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In future work, the authors hope to develop similar techniques to address optimization problems of
arterial or even area-wide urban traffic and also to implement NetworkX options and capabilities to solve
the problems of controlling new, alternative intersection solutions with quite complicated geometry (such as
restricted crossing U-turn or diamond diverging intersections).
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Appendix

Mean values and standard deviations (STD) of CPU times (in seconds) for performed ten tests for each of the
three tested shortest-path algorithms on faster computer (PC with a 4.6 GHz AMD Ryzen 5,900 × 12-core
processor and 16 GB RAM under MS Windows OS) are presented in Table A1.

Results presented in Table A1 confirm that Dijkstra’s slightly outperformed other the shortest-path algo-
rithm regarding execution speed and BCO was always able to find optimal solution in given time frame.

Table A1: Mean values and STD of CPU times (performed on a PC with a 4.6 GHz AMD Ryzen 5,900 × 12-core processor and 16 GB RAM
under MS Windows OS)

Number of phases

2 3 4 5 6 6 o.s.

Dijkstra’s algorithm
Mean CPU time (s) 0.531 1.284 1.587 1.967 2.710 3.132
STD (s) 0.003 0.010 0.006 0.007 0.022 0.009

Bellman-Ford’s algorithm
Mean CPU time (s) 0.539 1.318 1.647 2.115 2.897 3.353
STD (s) 0.012 0.011 0.013 0.015 0.011 0.021

A* algorithm
Mean CPU time (s) 0.534 1.307 1.605 1.997 2.732 3.159
STD (s) 0.004 0.017 0.019 0.008 0.017 0.009
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