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OPTIMAL CONTROL OF A TWO-WHEELED SELF-BALANCING 
MOBILE ROBOT BASED ON ADAPTIVE DYNAMIC PROGRAMMING 

Vladimir Stojanović1, Vladimir Djordjević2 Ljubiša Dubonjić3, Saša Prodanović4 

Abstract: This paper considers optimal tracking control for a two-wheeled self-
balancing mobile robot with unknown dynamics. The aim is to achieve asymptotic 
tracking and disturbance rejection by minimizing some predefined performance index. 
Through the combination of adaptive dynamic programming (ADP) and internal model 
principle, an approximate optimal controller is iteratively learned online using 
measurable input/output data. Unmeasurable states are also reconstructed from 
input/output data. The discrete-time algebraic Riccati equation is iteratively solved by 
ADP approach. Simulation results demonstrate the feasibility and effectiveness of the 
proposed approach. 
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1 INTRODUCTION 

A self-balancing mobile robot is a typical robot that has potential applications in 
many fields, such as transportation and research. Control of a self-balancing robot is 
attracting a lot of attention, both in academia and industry. Namely, the self-balancing 
robot is inherently unstable, high-order, multivariable, nonlinear and strongly coupled 
system, and at the same time represents an underactuated mechanical system. For 
such an underactuated system, which has fewer control inputs than generalized 
coordinates, it is necessary to indirectly control non-activated generalized coordinates, 
via dynamic coupling. Underactuation, although resulting in fewer actuators and thus 
helping to reduce manufacturing costs and failure rates, presents challenges for 
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controller design. Moreover, unlike simpler systems, such as the inverse pendulum on 
a trolley, which are limited to a guided path, the self-balancing robot moves along its 
own path while balancing the pendulum. One of the difficulties in controlling a self-
balancing robot is to simultaneously control its linear motion, tilt motion, and yaw. 

Adaptive dynamic programming (ADP) offers a viable and effective approach to 
achieving optimal control performance using standard or intelligent control methods. It 
integrates the concepts of dynamic programming with neural networks, attempting to 
fix optimal control issues in dynamic programming problems utilizing the approximation 
feature of neural networks [1]. Recent years the ADP also has been extended and 
applied to many different areas, such as robots, spacecraft and so on [2].  

When the state of a system is not immediately quantifiable and the system 
matrices are unknown, it is appropriate to use output feedback-based ADP. [3] 
proposes an output feedback ADP approach for discrete-time linear systems. 
Measurable input/output data are utilized to characterize the state of the discretized 
model, followed by policy iteration (PI) and value iteration (VI) to produce the optimal 
control policy. However, in order to obtain a unique solution in each iteration step, 
some exploration noise must be incorporated, which may affect the accuracy of results. 

Direct measurement of system states is frequently too costly. Self-applied state 
estimation approaches presume that the system parameters remain constant. In the 
real world, these criteria cannot be known. It is also recognized that complex systems' 
dynamic behavior may be characterized by a linear stochastic state-space model with 
online estimated dynamics [4]. The precise understanding of system characteristics 
and states is critical for the successful implementation of various control strategies.  

In this study, the continuous-time linear plant is discretized for simpler practical 
implementation, and the optimum control problem is then addressed. A self-balancing 
mobile robot with uncertain dynamics is controlled using an adaptive optimal output 
feedback technique for the discretized model. Simulation findings show that the 
suggested control strategy is valid and effective, with exploration noise having no 
influence on the correctness of the solution of the discrete Riccati equation. 

2 DESCRIPTION OF A TWO-WHEELED SELF-BALANCING MOBILE ROBOT 

A self-balancing robot is a multivariable underactuated mechanical system [5]. 
Underactuated mechanical systems have a larger number of generalized coordinates 
than the number of actuators. In these systems, the generalized coordinates are 
controlled indirectly, through their interconnection. Also, a self-balancing robot is a 
high-order nonlinear and unstable system. The mobile robot consists of a chassis to 
which are attached wheels driven by electric motors, see Fig. 1. 

The robot has three degrees of freedom (generalized coordinates): 

1) tilt angle θ (rotation around the Z-axis) 
2) linear motion along the X-axis  
3) yaw angle δ (rotation around the Y-axis) 

These three generalized coordinates and their corresponding velocities fully 
describe the dynamics of the robot and represent the elements of the state vector. 



Vladimir Stojanović, Vladimir Djordjević, Ljubiša Dubonjić, Saša Prodanović 

166 
 

 

Figure 1. A self-balancing mobile robot 

The robot is controlled by two electric motors that drive the respective wheels 

with torques L and R. Other parameters of the robot are: M [kg] - Mass of the chassis; 

m [kg] - Mass of each wheel; R [m]  - Radius of the wheel; D [m]  - Distance between 
the two wheels; L [m]  - Distance between the center of gravity of the robot and the Z-
axis; Jy [kg⋅m2] - Moment of inertia of the chassis with respect to the Y-axis; Jz [kg⋅m2] 

- Moment of inertia of the chassis with respect to the Z-axis; J𝜔 [kg⋅m2] - Moment of 
inertia of the wheel with respect to the Z-axis; xL,xR [m] - Displacements of the left and 
right wheels; xC,yC [m] - The position of the center of gravity of the robot; XL, XR [N] 
Interacting forces between the wheels and the chassis on the X-axis; YL, YR [N] 
Interacting forces between the wheels and the chassis on the Y-axis; FL, FR [N] - 

Frictions between the wheels and the ground surface; L,R [N⋅m] - Torques generated 

from the left and right actuators; 𝜃L, 𝜃R [rad] - Rotational angles of the left and right 
wheels. The dynamics of the wheels is defined by the sum of forces: 

 
L L Lmx F X= − , (1) 

R R Rmx F X= − ,                         (2) 

and sums of moments 

 L L LJ F R = − , (3) 

 R R RJ F R = − . (4) 

The dynamics of the chassis is described by the sums of the forces for the x 
and y axes, as well as the sums of the moments for the z and y axes as follows: 

C L RMx X X= + , 
C L RMy Y Y Mg= + − , ( )

2
y L R

D
J X X = −                      (5) 
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( ) ( ) ( )sin( ) cos( )z L R L R L RJ Y Y L X X L    = + − + − +                       (6) 

If we assume no wheel slip, then 
L Lx R= and 

R Rx R= . Based on this, we 

can solve equations (1)-(4) and eliminate from them the angles of rotation of the 

wheels 
L  and 

R , as well as the friction forces on the wheels 
LF  and 

RF . As a result, 

we get the following equations that describe the dynamics of the left and right wheel: 

2

L
L L

J
M x X

R R

  
+ = − 

 
,   

2

R
R R

J
M x X

R R

  
+ = − 

 
.                    (7) 

The relationship between yaw angle δ of the robot and the linear motion of the 

wheels 
Lx  and 

Rx  is given by the expression: 

 
L RD x x = − . (8) 

The center of mass of the robot is determined by coordinates 

 sin( )Cx x L = + , cos( )Cy L =                                   (9) 

where ( )
1

2
L Rx x x= + . Based on the above equations, we can obtain the nonlinear 

equations of the system 

 ( ) ( )2

2

2 1
2 cos( ) sin( ) L R

J
x M m ML

R R

      
 

+ + + − = + 
 

, (10) 

 ( )
2

2 1y

L R

J DJ
Dm

D R R

   
 

+ + = − 
 

, (11) 

 

( )

2 2

2

2 2

2 cos( ) sin( ) sin ( )

cos( )
sin( )cos( ) 1 .

z

L R

J
J xL m MgL ML

R

L
ML

R

    


    

 
= + + − − 

 

 
− − + + 

 

 (12) 

Linearizing these nonlinear equations around the operating point 0 = , we 

obtain the following linear state space model of the self-balancing mobile robot 

 

21 2223

41 4243

61 62

0 00 1 0 0 0 0

0 0 0 0 0

0 00 0 0 1 0 0

0 0 0 0 0

0 00 0 0 0 0 1

0 0 0 0 0 0

x x

b bx a x

b ba

b b

 

 

 

 

      
      
      
      

= +       
      
      
      

              

, (13) 



Vladimir Stojanović, Vladimir Djordjević, Ljubiša Dubonjić, Saša Prodanović 

168 
 

 

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

T

y x x    

 
   =   
  

, (14) 

where 
T

x x     
   is a state vector,  

T

L R  is an input vector, 

 
T

x   is an output vector, while the model parameters are defined as 

( )( )

2 2

23 2 22z z

M L g
a

MJ J ML m J R

−
=

+ + +
, 

( )
( )( )

2 2

43 2 2

2

2z z

M gL MgL m J R
a

MJ J ML m J R





+ +
=

+ + +
, 

( )
( )( )

2

21 22 2 22

z

z z

J ML R ML
b b

MJ J ML m J R

+ +
= =

+ + +
,

( ) ( )
( )( )

2

41 42 2 2

2

2z z

R L M R m J R
b b

MJ J ML m J R





− + − +
= =

+ + +

( )
61 62 2

2

(2 )y

D R
b b

J D R mR J R

= − =
+ +

. 

3 OPTIMAL PROBLEM FORMULATION 

For practical application in a self-balancing mobile robot's control system, we 
shall explore the discretized system represented by 

 
1k d k d kx A x B u+ = +                                                       (15) 

 
k ky Cx=                                                                  (16) 

in which 
Ah

dA e= , ( )
0

h

A

dB e d B =   and 0h   is the sampling period, assuming 

2h h =  is non-pathological sampling frequency [6]. In other words, there are no two 

eigenvalues of A  with equal real and imaginary components that vary by an integral 

multiple of 
h . The state, input, and output vector at the sampled instant kh  are 

kx , 

ku , 
ky , respectively. Then, both ( ),dA C  and ( )1 2,dA Q C  are observable and 

( ),d dA B  is controllable. Cost for (15)-(16) is: 

 
0

0

( ) T T

d j j j j

j

J x y Qy u Ru


=

= +                                                  (17) 

The optimal control law minimizing (un) is 

    
*

k d ku K x= −                                                                   (18) 
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where discrete optimal feedback gain matrix is ( )
1

* * *T T

d d d d d d dK R B P B B P A
−

= + , and 
*

dP  

is the unique symmetric positive definite solution to 

 
* * * * 0T T T

d d d d d d d dA P A P C QC A P B K− + − =                                     (19) 

This well-known optimal control design approach has so far been limited to low-
order simple linear systems. In reality, for high order, large scale systems, it is 

frequently challenging to directly solve 
*

dP  from (19), which is nonlinear in 
dP . 

Nonetheless, numerous effective techniques have been created to numerically 
estimate the solution of (19). A certain algorithm has been established by Hewer [7]. 
By iteratively solving the Lyapunov equation 

( ) ( ) 0
T

T T

d d j j d d j j jA B K P A B K C QC K RK− − + + =                             (20) 

which is linear in jP , and updating jK  by 

 ( )
1

1 1

T T

j d j d d j dK R B P B B P A
−

− −= +                                            (21) 

the solution to the nonlinear equation (19) is numerically approximated. It has been 

concluded that sequences  
0j j

P


=
 and  

0j j
K



=
 computed from this algorithm 

converge to 
*

dP  and 
*

dK , respectively. Moreover, for 0,1,j = , d d jA B K− is a Schur 

matrix. 

It should be emphasized that Hewer's approach is a model-based policy 
iteration (PI) algorithm that cannot be used when all of the system matrices are 
undetermined, as it is an offline technique that relies on system parameters. To 
implement it online, we will create an adaptive optimal control technique for the 
discretized system (15)-(16) using output feedback that does not need to know the 
system matrices. The online output feedback learning technique can now be 
formulated based on (20)-(21). 

( )1k j k d j k kx A x B K x u+ = + +                                            (22) 

where j d d jA A B K= − . Letting 
j jK K=  and 

T

j jP P=  , from (20) and (22) it 

follows that, 

( )1 1 2 2

1 1 ( ) ( )T T T T T

k j k k j k к j к j k k k j j kz P z z P z vec H vec H y Qy z K RK z + + − = + − +                 (23) 

in which 
1 T

j d j dH B P B= , 
2 T

j d j dH B P A=  , 
1 ( )( )T T T T T T

к k k k k j ju u z z K K =  −   , 

2 2 ( )( ) ( )T T T T T

к k k q j k kz z I K z u  =   +   . 

This assumption is related to the condition of persistent excitation according to 

adaptive control theory [8]. Then, 
1jK +
can be calculated as ( )

1
1 2

1j j jK R H H
−

+ = + .  
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Here, (23) is called policy evaluation, which is used to uniquely solve 
jP , and 

1jK +
 is 

policy improvement (PI). 

4 SIMULATION RESULTS 

In this section, we conduct simulations on the two-whelled self-balancing 
mobile robot to show the effectiveness of the output-feedback ADP control algorithm in 
the case with unknown system matrices and unmeasurable states. Through iterative 
calculation, the approximated optimal control gain and performance index for the 
discrete-time system can be obtained. Furthermore, the discrete control policy is 
implemented on the continuous plant by zero-order holder. Adopted sampling time is 

0.1h s= . Robot parameters which are used in the simulations are: M=21 kg, m=0.42 

kg, R=0.106 m, D=0.44 m, L=0.3 m, Jy=0.3388 kgm2, Jz=0.63 kgm2, Jw=2.4·10−3 kgm2. 

Weight matrices Q and R are unit matrices, while for learning purposes, in a 
period of 4 s, optimal exploration noise in the form of sums of sinusoids was used: 

                                          
6

1

( ) sin ( )i ij

j

e t t
=

= ,                                             (24) 

where the optimal frequencies for both inputs are 

                   
4.65 15.44 17.90 44.51 20.92 38.06

39.09 16.58 19.87 30.21 46.94 24.40


− − 
=  

− − − 
.                  (25) 

Also, in simulations, the initial value of the state vector was taken as 

 0 0.1 0.1 0.1 0.1 0.1 0.1
T

x = , while the convergence threshold is 
1010 −= . 

The input/output data are collected from 0.8 to 4 seconds, and the PI is started from t = 
4s. The inputs and outputs of the robot controlled by the ADP-based controller are 
shown in Fig. 2. 

 

Figure 2. Input and output signals of the robot       Figure 3. Trajectory of states 
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Fig. 3 shows the state trajectories of the mobile robot. From this figure it can be seen 
that the states converge to the equilibrium state quickly after the controller is updated. 

Fig. 4 shows the convergence of the approximate values of the matrices 
jP  and jK  

towards their optimal values 
*P  and 

*

K . 

 

Figure 4. Convergence of the approximated matrices 
jP  and jK  

5 CONCLUSIONS 

This paper considers ADP-based optimal controller design for two-whelled self-
balancing mobile robot with entirely unknown dynamics. The applied sampled-data 
adaptive optimal control technique based on the discretized model and output 
feedback has been proved to be a beneficial tool in these situations. It should be 
emphasized that exploration noise has no effect on the correctness of the solution to 
the discrete Riccati equation. The simulation results suggest that the proposed control 
strategy is valid and effective. 
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