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Abstract

The paper presents the GeNNsem (Genetic algorithm ANNs ensemble)
software framework for the simultaneous optimization of individual neural
networks and building their optimal ensemble. The proposed framework
employs a genetic algorithm to search for suitable architectures and hyper-
parameters of the individual neural networks to maximize the weighted sum
of accuracy and diversity in their predictions. The optimal ensemble con-
sists of networks with low errors but diverse predictions, resulting in a more
generalized model. The scalability of the proposed framework is ensured by
utilizing micro-services and Kubernetes batching orchestration. GeNNsem
has been evaluated on two regression benchmark problems and compared
with related machine learning techniques. The proposed approach exhibited
supremacy over other ensemble approaches and individual neural networks in
all common regression modeling metrics. Real-world use-case experiments in
the domain of hydro-informatics have further demonstrated the main advan-
tages of GeNNsem: requires the least training sessions for individual models
when optimizing an ensemble; networks in an ensemble are generally simple
due to the regularization provided by a trivial initial population and custom
genetic operators; execution times are reduced by two orders of magnitude
as a result of parallelization.

Keywords: ensemble modeling, regression, ANN, genetic algorithm,
distributed computing

1. Introduction

Building a high-quality artificial neural network (ANN) is a demanding
task. The accuracy of the model mainly depends on the network’s archi-
tecture [1] but obtaining a model with good generalization performance also
requires hyperparameters’ fine tunings. Labor-intensive and time-consuming
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tasks of neural architecture search (NAS) and training-related hyperparame-
ter optimization (HPO) can be automated as a part of the AutoML pipeline.
Searching for the best combination of ANN’s architecture and the training-
related parameters for the specific model is a particularly challenging opti-
mization problem. Such complex optimization problems can be successfully
solved using the genetic algorithm (GA) [2] which is proven to be robust and
capable of avoiding local minima. GA randomly searches the hyperparameter
space and utilizes previous results to direct the search, which makes it supe-
rior to other non-manual methods: grid search and random search [3]. The
quality of a model can be significantly improved by training multiple models
and combining their predictions in the form of an model ensemble. Ensemble
learning assumes that, by combining multiple base models, the error of a sin-
gle base model will likely be compensated by other models, and, as a result,
the overall prediction performance of the ensemble will be better than that
of a single base model [4]. A neural network ensemble (NNE) is constructed
by training multiple individual neural networks and combining their outputs
into an ensemble output. Ever since Hansen and Salamon [5] showed that
NNE outperforms the generalization ability of a single network, researchers
have proposed numerous methods for creating ensembles of neural networks.
When choosing networks to be incorporated into an ensemble, two criteria
must be considered: the accuracy of the trained ANNs and the diversity
among them. With diversity in predictions, networks make errors in differ-
ent parts of the input space, allowing the ensemble to reduce the overall error
rate, as there is a lower likelihood of an error by the majority decision rule
[5]. The GA-based NAS procedure generates numerous architectures, offering
the potential to combine these networks into a NNE. However, this approach
does not ensure optimal ensemble construction, as networks are optimized
independently. Additionally, training parameters significantly influence the
performance of individual models, further affecting the overall quality of the
ensemble. To build an optimal ensemble model, simultaneous optimization
of NAS and HPO is essential, guided by the performance of the ensemble
rather than individual model performance. To the best of our knowledge, a
research gap exists in this field: no GA-based methods currently optimize
NAS, HPO, and model selection of ANNs in NNEs simultaneously, with a
focus on ensemble performance during the optimization process. This gap
underscores the need for a fully automated framework that addresses these
aspects, minimizing development costs and enhancing overall performance.

This paper presents a novel evolutionary approach for composing an op-
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timal ensemble of ANNs for regression problems. GA is used to search for
the optimal architectures and training-related hyperparameters of individual
networks, as well as to select the best networks that will constitute an en-
semble based on their weighted sum of training accuracy and diversity. The
architectures are optimized for the number of layers, the number of neurons
in each layer, and activation functions. Training-related hyperparameters’
optimization includes finding the best dropout rate and network training al-
gorithm. It should be emphasized that the search for the best architectures
and hyperparameters of the individual networks is guided not only by their
performances but also by the ensemble’s performance.

A special distributed software framework called GeNNsem was developed
to completely automate the process of ensemble composing. To build an opti-
mal ensemble model within an acceptable time frame, GeNNsem parallelizes
GA using the WoBinGO framework for distributed optimization [6, 7, 8]. To
ensure the scalability of the proposed solution, WoBinGO utilizes a manager-
worker parallelization model and a cloud-native microservice architecture
with Kubernetes [9] orchestration engine.

The proposed approach was evaluated by solving three different regres-
sion problems: the synthetic benchmark problem proposed by Friedman [10],
the Boston housing problem [11], and the real-world use-case from the field
of hydro-informatics - modeling the displacement of a point inside the dam
structure [12]. The experimental study was performed to compare the perfor-
mance of the proposed solution with other ensemble approaches: averaging,
bagging, boosting, Classic Star [13], Random Regression Machines (RRM)
[14], TPOT [15], Ranking Prediction Strategy assisted Automatic Model Se-
lection (RPS-AMS) [16], and AutoSL-GA [17] as well as with an individual
ANN optimized using various techniques. The results show that GeNNsem
requires the least training sessions for individual models when optimizing
an ensemble. Networks in the GeNNsem-generated ensembles are generally
simple due to the regularization provided by a trivial initial population and
custom genetic operator. With GeNNsem, the execution time is reduced by
two orders of magnitude as a result of parallelization.

The key contribution of this paper is the development of the GeNNsem
framework for the automated construction of NNEs using a GA for regression
tasks. The primary advantages include simultaneous optimization of the NAS
and HPO of individual networks, considering both their performance and the
overall performance of the ensemble. The novel chromosome encoding and
custom GA operators enable efficient optimization of key network features by
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guiding the search from simpler to more complex architectures. Additionally,
the distributed execution and scalability are ensured through a cloud-native
micro-service architecture and Kubernetes orchestration.

The obtained results for Friedman and Boston housing datasets demon-
strate the remarkable dominance of the proposed solution over all other
approaches. When dealing with the real-world dataset, techniques rooted
in decision trees proved to be more effective in capturing the intricacies of
point displacement within the dam structure, compared to ensembles reliant
solely on artificial neural networks (ANNs). However, even in this context,
GeNNsem demonstrates comparably promising results within a notably more
reasonable time frame.

The rest of the paper is organized as follows: In Chapter 2, the related
work is introduced followed by the description of methodology in Chapter 3.
Chapter 4 contains the explanation of the proposed microservice architecture
for running optimization tasks in the cloud environment. The experimental
results and discussion are given in Chapter 5 followed by the concluding
remarks in Chapter 6.

2. Related work

Many research papers have focused on using evolutionary algorithms to
optimize neural networks [18]. Various methods of encoding ANN hyperpa-
rameters in GA chromosome have been developed [12, 19, 20, 21], as well
as GA operators for crossover and mutation of individuals [20, 21]. The
GA-based NAS framework Genetic-GNN [22] can simultaneously optimize
Graph Neural Network (GNN) structures and hyperparameters. The im-
proved multi-objective evolutionary algorithm, MMEAPSL [23], uses a GNG
[24] network to enhance its performance, making it highly effective for multi-
objective neural architecture search (MoNASP) in convolutional neural net-
works (CNNs). The complex multi-objective NAS task can be simplified by
transforming it into a classification problem, where a classifier is trained to
predict the dominance relationships between candidate and reference archi-
tectures [25]. In the latest research, the Single-Domain Generalized Predic-
tor (SDGP) [26] is trained on a single source search space while effectively
performing in unseen target search spaces by utilizing a feature extractor
to learn domain-invariant features and a neural predictor to map architec-
tures to their accuracy in the target domain, supplemented by a multi-head
attention-driven regularizer for improved generalization.
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Much of the research has also been devoted to devising techniques for
creating ensemble models that can be categorized into averaging, bagging,
boosting, and stacking. By taking a set of models and simply averaging the
outputs of all models, the ensemble can produce more accurate predictions
than any specific model in the set [27, 28, 29]. Bagging [27] is a method
for training models on different subsets taken from the base training set.
The stacking [30, 28] method defines different weights for each model in the
ensemble model. Boosting [31] can potentially produce a more diverse set
of models in the ensemble than the bagging method. By determining the
weights of the parts of the training set, the boosting forces new models to be
trained on the parts of the training set that are harder to predict.

RandomMachines (RM) and Regression RandomMachines (RRM) meth-
ods do not belong to the group of traditional ensemble learning methods.
These methods can be interpreted as a mixing of bagging and boosting fo-
cused on support vector models [32, 14]. Regularized Boosting (RBOOST)
introduces a novel approach to stacking ensembles, utilizing boosting as its
meta-learner and integrating a non-parametric stopping criterion specifically
designed for HPO [33]. EvoBagging employs GA to select diverse set of bags
for its base learners. This method evolves the contents of each bag across gen-
erations, prioritizing bags that enhance the performance of the base models
created within them [34]. The forward selection method for adding models to
an ensemble is fast and efficient but can lead to overfitting. Forward selection
has worse performance than selection with replacement, Sorted Ensemble Ini-
tialization, and Bagged Ensemble Selection [35]. Increasing the size of the
training set has a significant effect on improving the quality of the ensemble
model. On the other hand, the increasing number of hidden layers in ANN
base learners does not guarantee improvements in the ensemble model [36].
Considering the conflicting nature between the accuracy and diversity of base
learners, researchers used the multi-objective optimization approach to evolve
ANNs in an ensemble [37, 38], but base ANN learners had a fixed architec-
ture. Classic Star [13] is the state-of-the-art algorithm for ANN ensembles
with a fixed architecture. In the first step, weights of the constituent blocks
(ANNs) are fine-tuned independently. Following this, in the second step, a
new block is introduced, establishing connections among all blocks through
a convex layer. This iterative process systematically explores all potential
simplices, optimizing the weights of the added block, along with the convex
weights. The NEAS [39] pipeline efficiently searches for lightweight ensemble
models based on one-shot NAS, employing a novel diversity score to optimize
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the search space and a layer-sharing strategy to reduce model complexity.
The authors also introduce a new search dimension, called the split point, to
manage the trade-off between diversity and complexity constraints. Soares
et al. [40] proposed GA and simulated annealing-based methods (GA-NNE
and SA-NNE) to select a subset of ANN models that exhibit a high degree
of diversity. This was achieved by employing various weight initialization
methods, distinct training datasets, and models featuring different learning
parameters and architectures. Sun et al. introduced the two-step BOP-
Stacking [41] ensemble, incorporating K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), and Decision Tree (DT) algorithms as base learners,
and Random Forest (RF) as the second-level learner. They used Bayesian
optimization to enhance prediction accuracy by independently optimizing
the hyperparameters of these models.

More recently, with a focus on classification problems, the authors of [42]
proposed a stacked ensemble model that integrates multiple classic machine
learning classifiers and deep learning algorithms, including SVM, LR, CNN,
BiLSTM, and BiGRU. Based on the probability values generated by each
model, an ANN meta-classifier determines the extent to which each model
contributes to the final result. Ren et al. in [43] proposed a Multi-objective
Iterative Model Selection (MoItMS) strategy to simultaneously maximize the
ensemble model diversity and the accuracy of meta-learners resulting the op-
timized stacking-based ensemble created of three distinct types of learners
KNN, SVM, and ANN, as its basic learners. The Addemup-GA algorithm
[44] uses GA to optimize the choices of ANN models that make up an en-
semble model. The usage of GA yields better results than bagging, Ada-
boosting, and the simulated annealing versions of Addemup. In contrast
to our approach, the MoItMS uses Bayesian optimization for hyperparam-
eter search adding limitations in ANN base learners: choice between only
three fixed architectures, identical activation in each hidden layer, and not
considering the dropout rate; while the Addemup does not search for the
optimal training algorithms for ANNs constituting an ensemble. Authors of
[45] present the results of combining networks produced by the NAS method
called Multi-node Evolutionary Neural Networks for Deep Learning (MEN-
NDL) [3, 46] which produces a variety of convolutional neural networks that
perform well on the given dataset. The ensemble is created using the subset
of best networks that were produced by MENNDL. The quality assessment
of individual networks is performed independently of the ensemble quality
assessment, and thereby the performance of the ensemble does not affect the
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search for the optimal architecture of the individual networks. Zhou et al
[47] introduce the GASEN approach for creating a neural network ensemble
by training several individual networks, assigning them random weights, and
using GA to evolve those weights to produce the optimal ensemble. NAS and
hyperparameters’ search were not employed, and, in contrast to our solution,
the architectures of the individual networks are not optimized with respect
to the performance of the ensemble.

The Tree-based pipeline optimization tool (TPOT) [15] is an automated
machine learning tool for optimizing machine learning pipelines. TPOT uses
the GA for the hyperparameters optimization. By stacking and optimiz-
ing feature selection, pre-processing, and construction with diverse types of
base learners it produces an optimized machine-learning pipeline. Mohand
and Badra in [17] presented the optimized versions of SuperLearner (SL).
They applied Bayesian optimization (AutoSL-BO) and genetic algorithms
(AutoSL-GA) for hyperparameter optimizations of base learners, showing
the superiority of AutoSL-GA over other methods. SL consists of six types of
base learners: ANN, SVM, Elastic Net Regularization (ENR), Kernel Ridge
Regression (KRR), LightGBM Regressor (LGB), and CatBoost Regressor
(CBR), allowing significant diversity in base learners’ predictions. In con-
trast to our approach, TPOT and AutoSL-GA utilize more distinct types of
base learners, resulting in significantly larger hyperparameters search space.
It is also fair to say that, at the present state, AutoSL-GA does not consider
any parallelization strategy. Since TPOT and AutoSL-GA are both based
on genetic algorithms, we benchmark GeNNsem against these methods. In
our study, we also conducted a comparative analysis involving GeNNsem and
the RPS-AMS. The RPS-AMS method improves the warm-start procedure of
AutoML by creating an integration of evolutionary algorithms and a feature-
based driven model selection strategy. Initially, the training data undergoes
transformation into a meta-features dataset. Subsequently, the pretrained
XGBoost regression model, utilizing these meta-features, is employed to es-
timate the potential performance of the twelve distinct types of candidate
models in the surrogate model. Finally, the surrogate model is constructed
by assigning specific weights to each of the top four models in a Sequential
Least Squares Quadratic Programming (SLSQP) minimization process.

To summarize, none of the previous solutions for dealing with the evoluti-
onary-based creation of NNEs proposes an ensemble performance-driven NAS
and HPO implemented in a software framework that enables a fully auto-
mated distributed process of constructing an optimal NNE.
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3. Evolving the ensemble model

In this section, we first introduce the chromosome encoding scheme, which
represents each ANN within the ensemble. The structure of the chromosome
is shown in Fig. 1. Following this, we provide a detailed description of each
step of the algorithm.

Fig. 1: The structure of the chromosome

The encoding scheme. Chromosome encoding in GAs is commonly per-
formed using real, integer, or binary encoding. In GeNNsem, some genes
are encoded with integer values, while others must be considered as a group
consisting of both integer and real encodings. To solve this problem, we
defined a complex chromosome with different types of genes, which led to
the creation of specialized GA operators. The gene named optimizer rep-
resents an algorithm that will be used for training an ANN encoded in the
chromosome. The optimizer takes a value from the set {RMSprop, Adagrad,
Adadelta, Adam, Adamax, Nadam}. The number of hidden layers is encoded
in layerCount gene, where the restriction 1 ≤ layerCount ≤ H applies.
Each hidden layer i is encoded in a block of three genes: neuronCounti,
activationi and dropouti where neuronCounti represents the number of neu-
rons, activationi is one of the activation functions from the set {elu, selu,
softplus, softsign, relu, tanh, sigmoid, hard sigmoid, linear} and dropouti is
a dropout rate. Since all chromosomes must have the same fixed length, the
genes for a prescribed maximum number of hidden layers are allocated. If the
particular network has fewer hidden layers than the maximum allowed, only
the first layerCount layers will be used, while the rest are ignored. The very
last gene (activationoutput) represents the activation function of the output
layer. It uses the same activation function set as hidden layers. All genes
are encoded as integers, except for the dropouti genes, which are encoded as
real numbers.
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The process of evolving an ensemble model using the proposed approach
and GeNNsem framework is outlined in Fig. 2. GA is utilized to search
for the best architectures and training-related hyperparameters of individual
networks and the best networks to constitute an ensemble according to their
training accuracy and diversity. The following subsections will provide a
more detailed explanation of each enumerated step presented in Fig. 2.

3.2 Train each ANN from
the initial population

generation < MAX

3.4 Applying GA operators

3.5 Train each ANN from
the current population

3.3 GeNNsem-evaluation

Calculate population
error

Build the ensemble
model

Calculate the population
diversity

Calculate ensemble's
generalization error

Updating diversity
impact

Calculate fitness for
each individual

3.1 Generate the initial
population

Mutation

Crossover

Selection

GeNNsem
model

true

false

Fig. 2: Algorithm for evolving an ensemble model
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3.1. Generate the initial population

As Fig. 2 depicts, the process starts by generating the initial population
of ANNs. Each ANN is encoded in a single chromosome with the structure
shown in Fig. 1.

The number of hidden layers is set to 1 for all individuals in the initial
population. This approach ensures that search favors simpler over complex
networks [20, 21]. Simpler networks require less training time, which speeds
up the algorithm convergence. The proposed chromosome structure is based
on the NAS work of Vidnerová and Neruda [20], with the difference that
they encode hidden layers to a variable-length chromosome, and do not use
the optimizer gene since their algorithm searches only for the best neural
architecture. The values of genes optimizer, neuronCount1, activation1,
dropout1, and activationoutput are chosen randomly for each ANN model
within the defined gene ranges.

3.2. Training the initial population

After the initial population is generated, each ANN in the population is
trained. Firstly, based on the data about the architecture, activation func-
tions, and dropout rate extracted from the chromosome, an individual ANN
model is built using the Sequential model from Keras library [48]. Model
training is performed according to the algorithm indicated in the optimizer
gene. The dataset is divided into a training and validation set. The early
Stopping algorithm is applied to prevent a model from overfitting. The in-
dividuals that belong to the initial population use a Mean Squared Error
(MSE) as a cost function.

3.3. GeNNsem evaluation phase

The next step in the optimization process described at Fig. 2, is the
GeNNsem evaluation phase. It starts as soon as all the models in the popu-
lation have been trained.
Calculating population error. The first step of the evaluation phase is
the calculation of the population error Ē (equation (1)) which represents a
weighted average of individual ANN errors:

Ē =
k∑

i=1

wiEi, (1)
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where k is a number of networks in an ensemble, and Ei is the average
of squared errors (equation (2)) over input data distribution of i-th model,
i = 1..k. The squared error ϵi of i-th base model for input x can be obtained
as:

ϵi(x) ≡ [oi(x)− f(x)]2, (2)

where oi(x) represents the i-th ANN model output for the input x, and f(x)
represents the expected output value for the input x. A weight assigned to
each network based on its error on the validation set wi is defined by the
equation (3).

wi =
1− Ei∑k

j=1(1− Ej)
(3)

Build the ensemble model. Next, an ensemble model is built as depicted
in Fig. 3. The ensemble input is conveyed to each ANN in the ensemble
and the outputs of the individual ANNs are combined to form the unique
ensemble output. Combining the individual ANN model outputs into a single
output is performed by summing the weighted outputs of ANN models. In
equation (4) we define ô(x) as the ensemble output model for the input x:

ô(x) =
k∑
i

wioi(x), (4)

where oi(x) represents the output of the i-th ANN model for the input x.
Calculating population diversity. Optimization of the ensemble model
implies optimization of the individual networks that compose the ensemble.
The individual networks should be as precise as possible, but their predictions
should significantly differ from each other to obtain a more general model
[5, 43, 44]. The disagreement of individual ANN predictions is represented
by their diversity which is calculated in the next step of GeNNsem evaluation
phase. The diversity di of i-th model for input x is defined by the equation
(5):

di(x) ≡ [oi(x)− ô(x)]2, (5)

where oi(x) and ô(x) represent the outputs i-th model and the ensemble
model for the input x respectively.
Calculating ensemble’s generalization error. After calculating the di-
versity of the base models, GeNNsem proceeds to calculate the ensemble
generalization error. The ensemble generalization error Ê can be expressed

11



...Input

Ensemble 
output

Combine
network
outputs

Fig. 3: GeNNsem ensemble model scheme

by the average errors of the individual models and the diversity as in equation
(6):

Ê = Ē − D̄. (6)

Here, Ē =
∑

i wiEi represents a weighted average of individual ANN errors,
and D̄ =

∑
iwiDi represents a weighted average of the diversity among

ANN models, where Ei and Di are the average values of ϵi(x) and di(x)
over input data distribution, respectively. The equation (6) implies that an
optimal ensemble model consists of networks with low errors, but that their
predictions are as diverse as possible.
Updating diversity impact and calculating fitness. Fitness (equation
(7)) is defined as a combination of model accuracy and diversity over other
networks:

Fitnessi = Accuracyi + λDiversityi

= (1− Ei) + λDi.
(7)

The variable parameter λ defines the diversity impact on the fitness of an
individual network. To ensure that Ei and Di have a proportional impact on
fitness, their values are normalized to a range [0− 1]. Since there is no strict
rule for choosing λ, we apply heuristics that automatically adjust λ value
during the optimization process in the “updating diversity impact” step of
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the evaluation phase. When the ensemble error of the model Ei decreases,
the value of λ remains unchanged. In contrast, if the population error Ē
does not increase and the diversity D̄ decreases, the impact of diversity is
insufficient, and we increase λ; if Ē increases and D̄ stays approximately
constant, the impact of diversity is too high, and we decrease λ. The variation
of λ remains within 10% of its current value. The initial value in all our
numerical experiments was set to 0.1.

3.4. Applying GA operators

Following the determination of fitness values for all individuals in the
population, as outlined in Section 3.3, the subsequent generation is created
by applying a sequence of GA operators. As illustrated in Fig. 2, we apply
operators in the following order: selection, crossover, and mutation.
Selection. Binary tournament selection applies. Two random individuals
are selected to participate in the tournament. The winner of the tournament
is the individual with a higher fitness value [49].
Crossover. Crossover is a binary operator, that combines genes from par-
ents and creates two children individuals as shown in Fig. 4. This operator
applies only when the participating individuals have at least two hidden lay-
ers. The intersection happens at the point positioned between two adjacent
hidden layers, dividing the chromosome into head and tail. The lengths of
the parents’ tails may vary, so it is also necessary to cross the layerCount
gene to determine the number of hidden layers.
Mutation. The mutation is a unary operator which randomly changes a
chromosome. The mutation can be carried out in one of the following forms:

• Optimizer mutation - the current optimizer in a chromosome is replaced
by a randomly selected optimizer

• Hidden layer mutation - the mutation is applied to a randomly chosen
hidden layer. One of the following is performed:

– The number of neurons in the hidden layer is replaced with a
randomly selected number of neurons from a given range.

– The activation function is replaced with a randomly selected func-
tion from an activation function set.

– The dropout rate is set to a randomly selected value within pre-
defined limits.
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...
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optimizer1

layerCount2

layer11

layer12

layer23

...

layer2H

activationoutput2

Child 2

optimizer2
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layer1H

activationoutput1

head

tail
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Fig. 4: Crossover operation in GeNNsem

• Adding a hidden layer - the number of hidden layers is increased and a
new block with randomly generated values is inserted. This mutation
can be applied only if the number of hidden layers is less than the
maximum allowed number of hidden layers, H.

• Removing a hidden layer - a hidden layer is randomly selected and
removed. There should be at least two hidden layers for this mutation
to be applicable.

3.5. Training current population

The prediction of the ensemble model generated in one generation influ-
ences the training of ANNs in the next generation. The goal of an ANN
within the ensemble model is to minimize errors across most samples, while
allowing for larger errors only on those samples for which other models in the
ensemble exhibit strong predictive performance. This is achieved by utilizing
the cost function as in equation (8):

Cost =
∑
x∈D

∣∣∣∣f(x)− ô(x)

Ê

∣∣∣∣ λ
λ+1

[f(x)− o(x)]2, (8)

which introduces the additional expression that multiplies the standard error
function. Here, f(x) is the output value for input x from the dataset D,
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ô(x) is the prediction of the ensemble from the previous generation for input
x, Ê is the ensemble generalization error, λ is the diversity impact, and
o(x) is ANN model output for input x. The values of ô(x) and Ê do not
depend on the model being trained, but on the ensemble from the previous
generation. These values do not change during the model training. We
normalize the difference f(x)− ô(x) by the value Ê which keeps an average
value of approximately 1. This is especially important when it comes to high-
quality models in the population. The difference f(x)− ô(x) will be close to
0 for most samples and the model will be trained on only a few samples. If λ
is near zero, then the diversity is not significant, and the network is trained
with the usual loss function. In contrast, when λ is large, the diversity is
significant and there is a significant impact on the loss function.

After training all the ANNs in the current population, the algorithm
proceeds with the GeNNsem evaluation phase and repeats the selection,
crossover, mutation, training, and evaluation of individual networks and the
comprising ensemble through generations, until it reaches the stopping cri-
terion defined by the maximum number of generations.

4. GeNNsem framework architecture

The proposed optimization process is highly computationally intensive
since it requires multiple training of all individual ANN models and the
subsequent construction of the ensemble of those models.

To create an ensemble model in an acceptable time frame, we employed a
modified WoBinGO framework [6, 7, 8] (Fig. 5). The job distribution com-
ponent of WoBinGO remained unchanged, while the main optimization loop
was completely altered by introducing a new component named GeNNsem
evaluation service which builds an ensemble model from pre-trained neu-
ral networks and determines the fitness values of individual ANNs in each
generation as was previously described.

JARE optimization service [6, 7, 8] executes the main loop of the ge-
netic algorithm. In each generation, JARE submits parallel batch jobs to
the Kubernetes cluster, one for each individual in the population. Each job
is responsible for training one individual ANN model. Kubernetes cluster is
made up of multiple nodes, and the Kubernetes scheduler finds the node with
sufficient resources to assign a job to it. By specifying the appropriate re-
source requirements for individuals’ training, it is possible to achieve optimal
CPU and memory utilization of the entire cluster. With sufficient resources
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available, the training of individual ANNs can be fully parallelized and the
training time of all ANN models in the generation becomes the training time
of the most complex model in that generation. However, if the number of
ANNs is greater than the number of available CPUs, certain training jobs
stay in a queue for some time waiting for the resources. Just after an ANN
model completes the training, the resources become available for the next
job.

Train ANN modelTrain ANN modelTrain ANN model

Kubernetes cluster

Train ANN 
models

 Evaluate population

JARE service

GeNNsem 
evaluation service

Current 
ensemble
model

Fitness for each individual

Trained ANN
models

Get current
ensemble 
model

Fig. 5: GeNNsem optimization framework architecture

The number of Kubernetes nodes can also be scalable and should be
determined by considering the number of individuals in the GA population.
That way, by utilizing Kubernetes-based cloud offers, like Amazon EKS [50]
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with auto-scaling capabilities, the scaling process could be fully automated,
resulting in even higher resource utilization.

After the batch job completes ANN training, JARE gathers the trained
ANN model from the batch job output. JARE waits for all batch jobs in
generation to finish, and then sends all ANN models to GeNNsem evaluation
service. The GeNNsem evaluation service is a stateful Python API service
whose main responsibility is to create a GeNNsem ensemble model from a
group of pre-trained ANNs. The GeNNsem evaluation service loads all the
ANNs received from JARE and calculates the population error (equation 1).
The next step is building the GeNNsem ensemble model. Then, based on
predictions of ANN models and the GeNNsem model, the service determines
diversity among the ANNs and calculates the ensemble’s generalization error
(equation (6)). GeNNsem evaluation service monitors how the ensemble’s
generalization error changes through generations and updates the influence of
diversity λ. The service determines the fitness value (equation (7)) for every
individual in the population based on ANN models’ accuracy and diversity.

ANN model training uses a custom training function that requires predic-
tions of the GeNNsem model from a previous generation. At the beginning
of each batch job, the GeNNsem model from the previous generation is em-
bedded in the cost function.

The described processes repeat until the optimization reaches the maxi-
mum number of generations. The result is the optimized GeNNsem ensemble
model.

5. Experimental study

This section presents the evaluation of the proposed approach for the
automated evolution of neural network ensemble. A thorough investigation
was conducted to assess the performance of the proposed solution. Firstly,
we compared the proposed solution with individual ANNs optimized using
various techniques. Secondly, we put it against various ensemble approaches,
including averaging, bagging, boosting and Classic Star. Finally, we com-
pared the GeNNsem performance with some of the most recent AutoML
techniques. We evaluated the proposed solution on three regression prob-
lems: the Friedman #1 synthetic benchmark problem, the Boston housing
dataset, and the real-world use case from the field of hydro-informatics.
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5.1. The Experimental Setup

We compared the GeNNsem ensemble against several models which can
be organized into the following groups (Table 1):

I Individual ANN models.

II Simple averaging ensemble of ANNs takes average predictions from
the set of individual ANN models. These models were obtained by tak-
ing a single network with optimized architecture and hyperparameters
(using random search or GA) and training it 50 times with different
initial weights.

III Bagging ensemble of ANNs applies the bootstrapping, training ANN
models on diverse subsets of the training set, and averaging prediction
results. All ANNs in the ensemble have the same, optimal architecture
and hyperparameters obtained through the random search or GA.

IV Boosting ensemble is an iterative technique for combining weak learn-
ers into strong learner.

V Classic Star ensemble method involves training multiple ANNs with
identical hyperparameters independently. Subsequently, an additional
ANN is incorporated, connecting all outputs to a convex layer. This
process optimizes the weights of the latest ANN and the convex weights
simultaneously. We are using optimal architecture and hyperparameters
obtained through the random search or GA. Additional benchmarks
with the proposed architecture by the authors of [13] are provided in
Appendix A.2.

VI AutoML powered ensembles group presents a compilation of con-
temporary ensemble approaches, encompassing a diverse array of meth-
ods beyond those confined solely to ANN ensembles.

Three different regression problems were used: the synthetic Friedman #1
dataset, the Boston housing dataset, and the real-world problem of modeling
the radial displacement of a point inside the dam structure.

Friedman #1 synthetic dataset contains five continuous features and one
target variable determined by the equation (9):

y = 10 sin (πx1x2)+20 · (x3− 0.5)2+10x4+5x5+N(0, 1) xi ∼ U(0, 1), (9)

where N(0, 1) represents random values with the standard normal distribu-
tion and U(0, 1) represents random values with the uniform distribution over
the interval (0, 1). The dataset consists of 1000 instances generated by the
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Table 1: The list of models used for comparison with the GeNNsem model.

Estimator type Method Description

I Individual ANN (DNN) a) Manual Search
Manually built ANN models are created by
the authors, with the hyperparameters set
based on their own experience.

b) Random Search
Random-search optimized ANN uses a
random-search algorithm for finding the right
combination of model hyperparameters.

c) GA optimized
GA optimized ANN models are created con-
sidering the methodology introduced in [20].

II Simple averaging ensemble of ANNs a) Ensemble of Random Search models

We repeated training of ANNs optimized
through a random-search 1.b. for 50 times
and cratered ensemble by averaging their pre-
dictions.

b) Ensemble of GA optimized models
We conducted 50 training of ANNs optimized
through GA 1.c. and formed an ensemble by
averaging their predictions.

III Bagging ensemble of ANNs a) Ensemble of Random Search models

We trained multiple ANNs on diverse training
subsets using hyperparameters from random-
search optimized ANNs 1.b and averaged their
predictions.

b) Ensemble of GA optimized models
Ensemble model was created applying bagging
strategy with a group of 50 GA optimized
ANNs from 1.c.

IV Boosting ensemble a) XGB Regressor

Extreme Gradient Boosting (XGB) is a widely
recognized boosting technique based on deci-
sion trees. It combines weak learners to obtain
a more general model.

V Classic Star ensemble a) Ensemble of Random Search models

We applied the Classic Star [13] methodology
to randomly-search-optimized ANNs from 1.b.
We adopted Classic Star parameters listed in
Table A.1 based on original authors’ recom-
mendations.

b) Ensemble of GA optimized models

Classic Star ensemble [13] was created from
ANNs optimized through GA in section 1.c.
Again, we used the recommended parameters
listed in Table A.1.

VI AutoML powered ensembles a) RRM

Regression Random Machines [14] use the
benefits of both bagging and boosting tech-
niques. The specific parameters for the pro-
posed RRM can be found in Table B.1.

b) TPOT

Tree-based pipeline optimization tool [15] uti-
lizes GA to generate optimal ML pipelines.
For detailed information on the parameters
employed in TPOT, please refer to Table B.2.

c) RPS-AMS

Ranking Prediction Strategy assisted Auto-
matic Model Selection [16] is using a proposed
ranking predictor to estimate the modeling ac-
curacy by analyzing the meta-features before
formal modeling.

d) AutoSL-GA

A SuperLearner optimized by GA [17],
AutoSL-GA employs the hyperparameter
search space outlined in Table B.3 and it
adopts the GA parameters as presented in Ta-
ble B.4, consistent with the original authors’
recommendations.
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equation (9). Randomly chosen 80% of the data were used for training, while
the remaining 20% were left for model testing.

The Boston housing dataset (available at StatLib Archive Repository [51])
shows the median house price in Boston’s suburbs determined by the house
condition, but also economic and social factors. The dataset comprises 506
instances, with 12 continuous features and 1 binary feature. The data were
divided into two sets; the training set, which contained 404 observations, and
the test set, which contained 102 observations.

The last problem was the real-world use case from the field of hydro-
informatics. Managing water resources is a crucial task, especially in the
context of dam safety. The case study relates to the Grancarevo dam at
Trebisnjica River in Bosnia and Herzegovina. Our task was to predict the
displacement of a point inside the dam structure, more specifically, to model
the radial displacements of point P1 at the dam crest, block 17, as explained
in [12]. There were four independent numeric features relevant to modeling
radial displacement. The first was head-water (water level)H which is a mea-
sure of the hydro-static pressure inducing dam displacement. The thermal
effect was considered using the average daily air temperature. The thermal
effects have a strong influence on the deformation pattern during the year,
so we considered variable d as the number of days elapsed from the begin-
ning of the year. Because the dam has a phase offset regarding temperature
changes, we introduced a dummy variable d50 = d + 50. Since the dam was
built in 1967, aging has been an important factor. It shows the degradation
of material properties during the years, and it is defined as the number of
days elapsed from the dam construction divided by 1000. The data is a time
series, obtained by the measurements of the dam sensors. We considered the
period from January 1984 to the end of August 2011. We used only half
of the available data, selecting every second row in that period. The final
dataset consisted of 5042 instances.

We used four performance metrics for assessing the prediction error of
the regression models. Mean Absolute Error (MAE) defined by the equation
(10) evaluates the absolute average distance between the real values and the
predicted values:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (10)

where n is the number of observations in the test set, the ŷi is the predicted
value for i-th instance of the test set and the yi is the real output value for the
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corresponding input. Since this metric is insufficiently sensitive to outliers,
we also used Root Mean Squared Error (RMSE) (equation (11)):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (11)

Additionally, we calculated Percent Root Mean Squared Error – PRMSE
(equation (12)) as the relative RMSE value to the range of real values:

PRMSE =
RMSE

ymax − ymin

· 100%, (12)

where ymax and ymin are the maximum and the minimum target value in the
test set. The fourth metric we used is the coefficient of determination, R-
squared (R2). R2 represents the proportion of the variance in the dependent
variable explained by the independent variables in the model. The equation
(13) defines R2:

R2 = 1− SSres

SStot

, (13)

where SSres is the residual sum of squares defined as SSres =
∑n

i=1(yi− ŷi)
2,

and SStot is the total sum of squares, SStot =
∑n

i=1(yi − ȳ)2, and ȳ is the
mean of the observed data, ȳ = 1

n

∑n
i=1 yi. An R2 score of 1 indicates a

perfect fit, while an R2 score of 0 denotes that the model predicts the mean
of the target variable for any given input. All metrics values in this paper
were obtained from the test sets.

We used identical testing configurations for all our experiments. The
ensemble models were built upon 50 individual neural networks. Datasets
were split into training, validation, and test sets. First, we set aside 20% of a
dataset for model testing, and then from the rest of the dataset we randomly
selected 80% for the model training and 20% for model validation. The search
ranges for NAS and HPO are listed in Table 2. The maximum number of
hidden layers was 15, with a maximum of 20 neurons per layer. For each layer,
an activation function used by all neurons in that layer was chosen from the
following set: SoftMax, Elu, Selu, SoftPlus, SoftSign, ReLU, TanH, Sigmoid,
HardSigmoid, or Linear activation function. For each individual network,
the optimal training algorithm was searched among the SGD, RMSprop,
Adagrad, Adadelta, Adam, Adamax, and Nadam algorithm. The dropout
rate varied from 0 to 0.25. The batch size was set to 32 based on the model
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Table 2: The ranges of the decision variables.

Parameter Range
Number of hidden layers [1-15]
Number of neurons in a layer [1-20]
Dropout rate [0-0.25]
Training algorithm SGD, RMSprop, Adagrad, Adadelta,

Adam, Adamax, Nadam
Activation SoftMax, Elu, Selu, SoftPlus, SoftSign,

ReLU, TanH, Sigmoid, HardSigmoid
Linear

performance, size of datasets, and computational costs. GA optimization
was performed in 30 generations with 50 individuals in the population. The
crossover probability was 0.9 and the mutation probability was set to 0.2.

To execute all experiments, we employed an on-premise Kubernetes 1.22
cluster consisting of 7 physical nodes. Each node is equipped with dual Intel
Xeon E5-2683 v4 @ 2.1GHz CPU (32 physical cores), 128GB memory, and
10Gbps interconnection, totalling 224 cores and 896GB of RAM. The base
OS platform is CentOS 7.7 x86 64.

5.2. Results and discussion

This section presents the results obtained from the previously described
experiments. In the first part of the section, we discuss the quality of the
GeNNsem ensembles in terms of errors exhibited through generations over the
test sets. In the second part of this section, we compare the GeNNsem model
performance on Friedman #1 problem, Boston housing, and the Grancarevo
dam problem with the performances of other models. A deeper analysis com-
paring the performance of the AutoSL-GA model with our proposed approach
is presented in the third part of this section. In the final part of this section,
we discuss the total time needed for the creation of the GeNNsem model and
the advantage of parallel training of all ANN models in one generation.

5.2.1. GeNNsem performance across the generations

To visualize the results in Fig. 6 , we selected the three top-performing
models on each problem, evaluated using the RMSE metric on the test set.
For the GeNNsem model, performance was recorded after each generation,
while for the other models, only their final scores are indicated with horizontal
lines. Our model is consistently highlighted in red across all diagrams for ease
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of identification. It is important to note that this figure is not intended to
show how the algorithm converges but rather to highlight how effective the
optimization process is in improving model performance. This distinction is
crucial because the data presented are from the test set, which was not used
during the optimization process.
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Fig. 6: Test set errors by GeNNsem generations for 3 benchmark problems. Horizontal
lines represent errors of 2 other top-performing models.

As we can see from Fig. 6, in all our test problems, there was an apparent
trend of lowering errors as the GA process progressed. Ensemble models
created in the first few generations did not show sufficient generality on the
test dataset. As the GA process was advancing, more precise and more
general models were built. If we consider Friedman #1, we notice that the
model from the 29th generation had the lowest error value on the test set.
Despite that, we adopted the ensemble model from the last, 30th generation,
because results must be independent of the test set performance. We applied
the same rule to the other two benchmarks.
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5.2.2. Comparative performance of the GeNNsem model

The performance comparison of fourteen models listed in Table 1 and the
GeNNsem ensemble model are shown in Table 3 and visualized in Fig. 7.

It is evident that in most test cases the optimized ensemble model ob-
tained by GeNNsem produced significantly lower errors than all other ap-
proaches. In Friedman #1 benchmark, using the optimized ensemble model,
we obtained an RMSE of just 0.09, which is a significant improvement over
both individual and other ensemble models. Among the models evaluated
on the Boston housing dataset, GeNNsem stood out as generalizing the best,
exhibiting substantially lower error rates than other benchmark models. This
result shows the importance of respecting both accuracy and diversity among
the models. It can also be noticed that building ensembles based on a single
ANN model with optimized architecture and hyperparameters (as in com-
parative models II a, II b, III a and III b) can produce ensembles with lower
performance than the single model itself. This is a consequence of the non-
reproducibility of model training, the small diversity between the models,
and the equal weighting of all models within the ensemble. Extreme Gradi-
ent Boosting Regressor is made of diverse models where each model has a
specific weight. This results in its better performance on real-world problems
when compared to averaging and bagging. Classic Star defines different in-
fluences of base models in the ensemble while simultaneously fine-tuning the
weights of the additional ANN model. As a result, it creates more general
predictions than other ANN-based methods, but the GeNNsem method still
outperforms them all.

The AutoSL-GA outperforms all other models when solving our real-
world problem. However, GeNNsem remains the closest contender to the
best-performing model achieving better results than all other AutoML meth-
ods. To gain deeper insights, we conducted further investigations into this
matter.

5.2.3. Grancarevo dam: In-depth analysis of AutoSL-GA and GeNNsem

It shows that AutoSL-GA in the SLSQP minimization process completely
rejects ANN, SVM, ENR, and KRR models from the ensemble by setting
their weights to zero. Instead, it favored LGB, assigning it a significant
weight of 0.983, while CBR had a minor influence with a weight of only 0.017.
To assess the quality of discarded models, we created additional experiments
by repeating the SLSQP minimization process while excluding one tree-based
method at a time. Models with only one tree-based base learner also reject
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Table 3: Comparison of models’ performance on the test sets.

Friedman #1
Estimator type Method MAE RMSE PRMSE R2

I Individual ANN (DNN) a) Manual Search 2.02 2.88 12.42% 0.6912
b) Random Search 0.18 0.24 1.05% 0.9978
c) GA Optimized 0.20 0.31 1.32% 0.9965

II Simple averaging ensemble of ANNs a) Ensemble of Random Search models 2.05 2.85 12.27% 0.6987
b) Ensemble of GA optimized models 0.57 0.97 4.20% 0.9647

III Bagging ensemble of ANNs a) Ensemble of Random Search models 2.04 2.84 12.25% 0.6994
b) Ensemble of GA optimized models 0.73 1.21 5.23% 0.9453

IV Boosting ensemble a) XGB Regressor 1.06 1.36 5.84% 0.9317
V Classic star a) Ensemble of Random Search models 0.10 0.13 0.57% 0.9993

b) Ensemble of GA optimized models 0.21 0.29 1.26% 0.9968
VI AutoML powered ensembles a) RRM 0.52 0.81 3.47% 0.9759

b) TPOT 0.35 0.49 2.11% 0.9911
c) RPS-AMS 0.66 0.90 3.89% 0.9697
d) AutoSL-GA 0.14 0.20 0.84% 0.9986

VII GA optimized ensemble of ANNs GeNNsem 0.07 0.09 0.40% 0.9997
Boston Housing

Estimator type Method MAE RMSE PRMSE R2

I Individual ANN (DNN) a) Manual Search 2.31 3.31 7,57% 0.8892
b) Random Search 2.18 2.88 6.60% 0.9159
c) GA Optimized 2.10 2.74 6.27% 0.9241

II Simple averaging ensemble of ANNs a) Ensemble of Random Search models 2.38 3.49 7.99% 0.8765
b) Ensemble of GA optimized models 2.58 3.91 8.94% 0.8454

III Bagging ensemble of ANNs a) Ensemble of Random Search models 2.49 3.68 8.41% 0.8633
b) Ensemble of GA optimized models 2.47 3.81 8.71% 0.8534

IV Boosting ensemble a) XGB Regressor 2.27 3.02 6.92% 0.9075
V Classic star a) Ensemble of Random Search models 1.96 2.53 5.80% 0.9351

b) Ensemble of GA optimized models 2.14 2.71 6.21% 0.9254
VI AutoML powered ensembles a) RRM 2.55 3.68 8.43% 0.8627

b) TPOT 2.58 3.40 7.78% 0.8831
c) RPS-AMS 2.13 2.74 6.27% 0.9240
d) AutoSL-GA 2.37 3.21 7.34% 0.8960

VII GA optimized ensemble of ANNs GeNNsem 1.84 2.40 5.49% 0.9418
Grancarevo dam

Estimator type Method MAE RMSE PRMSE R2

I Individual ANN (DNN) a) Manual Search 1.79 2.80 5.63% 0.9455
b) Random Search 1.61 2.61 5.24% 0.9527
c) GA Optimized 1.59 2.53 5.08% 0.9556

II Simple averaging ensemble of ANNs a) Ensemble of Random Search models 1.70 2.65 5.32% 0.9512
b) Ensemble of GA optimized models 1.57 2.54 5.10% 0.9551

III Bagging ensemble of ANNs a) Ensemble of Random Search models 1.58 2.55 5.12% 0.9548
b) Ensemble of GA optimized models 1.56 2.54 5.10% 0.9552

IV Boosting ensemble a) XGB Regressor 0.75 1.01 2.02% 0.9929
V Classic star a) Ensemble of Random Search models 0.89 1.15 2.30% 0.9909

b) Ensemble of GA optimized models 1.53 2.30 4.62% 0.9632
VI AutoML powered ensembles a) RRM 1.08 1.60 3.12% 0.8626

b) TPOT 1.42 2.17 4.36% 0.9673
c) RPS-AMS 0.65 0.88 1.77% 0.9946
d) AutoSL-GA 0.52 0.68 1.36% 0.9968

VII GA optimized ensemble of ANNs GeNNsem 0.59 0.77 1.55% 0.9959
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Fig. 7: Comparison of models’ relative errors on benchmark test sets
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Table 4: Additional experiments on the Grancarevo dam problem - Comparison of models’
performance on the test set

Method Base learners MAE RMSE PRMSE R2

AutoSL-GA ANN, SVM, ENR, KRR, LGB, CBR 0.52 0.68 1.36% 0.9968
ANN, SVM, ENR, KRR, LGB 0.52 0.68 1.36% 0.9968
ANN, SVM, ENR, KRR, CBR 0.57 0.74 1.48% 0.9962
ANN, SVM, ENR, KRR 1.01 1.42 2.85% 0.9860

GeNNsem ANN 0.59 0.77 1.55% 0.9959

other types of base learners by setting their weights to 0, while model per-
formance remains stable. The resultant model, comprising only ANN, SVM,
ENR, and KRR, exhibits a significant degradation in performance, increasing
RMSE to 1.42. An in-depth comparison of models AutoSL-GA, AutoSL-GA
without tree-based methods, and GeNNsem across all employed metrics on
the Grancarevo dam problem is presented in Table 4. Based on these findings,
we concluded that tree-based methods are more suitable for this particular
problem, although it’s worth noting that the GeNNsem model also shows
good potential. As Fig. 6 shows, the GeNNsem optimization stopped by
reaching the stopping criterion - 30 generations, despite an ongoing trend of
error reduction.

5.2.4. Efficiency of GeNNsem parallelization

An additional point worth noting is that although AutoSL-GA does not
include a parallelization strategy, it requires training a significantly larger
number of models than GeNNsem. The time complexity of developing the
AutoSL-GA model posed challenges, as we had to train 15000 models, in-
cluding 2500 ANNs for each benchmark problem, and explore a significantly
larger hyperparameters’ search space than with GeNNsem. GeNNsem creates
a comparable model by training 1500 ANNs for each benchmark problem.
Additionally, GeNNsem’s ANNs on average, less complex due to the regular-
ization method (Section 3), suggesting clear efficiency advantages in terms
of training time. To compare the execution speed, we ran the Friedman #1
problem with AutoSL-GA on a single CPU, setting a timeout equal to the
total execution time of our algorithm, including the time used for building
ensemble models. The results show that AutoSL-GA could evaluate only 107
ANN models within the given time, while the evaluation of the remaining
model types had not even started.

In addition to more efficient single-CPU execution, with the proposed par-
allelization approach, GeNNsem achieved speeding up of the model training
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process just above 40 times per generation.
The in-depth analysis of the GeNNsem performance is shown in Fig.

8. The blue dashed line represents the total time required for evaluating
all individuals in each generation, while the green dashed line shows the
obtained speed-up in each generation. The distribution of training times for
ANNs in each generation is represented using a box plot. Based on Fig. 8,
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Fig. 8: The evaluation times through generations for Friedman #1. The blue dashed line
represents the total time required for evaluating all individuals in each generation. The
green dashed line shows the speed-up in each generation. The ideal speed-up corresponds
to the number of individuals, in this case 50.

four important conclusions can be drawn:

1. The evaluation of a generation takes just a little more time than the
training of the most complex ANN model in the population.

2. ANNs’ training times do not have any upper outliers, meaning that the
parallelization is sufficiently efficient.

3. As the optimization searches for a more accurate and diverse GeNNsem
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model, the ANNs in the population become more and more complex
resulting in increased training times.

4. As a consequence of the previous point, thanks to Amdahl’s effect [52],
the speed-up slightly increases through generations. In simple words,
the more complex ANNs, the more benefit from the parallelization.

The maximum achievable speed-up in this configuration is constrained
by the population size, set at 50 in our scenario. Achieving a consistent
speed-up exceeding 40 represents a remarkable outcome.

6. Conclusion

This paper introduces the GeNNsem framework for the automated GA-
based construction of neural network ensembles for regression tasks. The
framework efficiently identifies the optimal architectures and hyperparam-
eters of individual ANNs and creates an ensemble based on their training
accuracy and diversity. The search process is guided not only by individ-
ual network performance, but also by the performance of the ensemble as a
whole.

The proposed approach introduces a novel chromosome encoding and cus-
tomized crossover and mutation operators to simultaneously optimize multi-
ple aspects of neural network architecture and training-related parameters.
The ensemble model’s predictive performance improves over generations of
the genetic algorithm, driven by the fitness of individual networks. By mod-
ifying the cost function to incorporate ensemble influence from the previous
generation, subsequent models enhance prediction accuracy on samples with
previously low precision.

GeNNsem outperformed all other approaches on the Friedman #1 and
Boston housing problems. For the real-world use case, GeNNsem emerged
as the most competitive model, closely approaching the best-performing so-
lution, with the notable observation that the problem itself is better suited
for tree-based methods. Additionally, GeNNsem improves training efficiency
by requiring fewer and less complex models, which enables transparent par-
allel training of ANNs and results in a training speed improvement of over
40 times. In contrast to other ensemble-building strategies proposed in the
literature, GeNNsem provides a fully automated framework, enabling users
across various domains to create high-quality ensemble models without need-
ing expertise in ML model optimization.
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The next step in improving the GeNNsem approach would be completing
the whole AutoML pipeline by adding data preparation and feature engi-
neering phases. Applying data preparation and especially feature engineer-
ing should lead to more accurate predictions, which will hopefully result in
even better and more efficient ensembles.
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chines: An ensemble support vector regression model with free ker-
nel choice, Expert Systems with Applications 202 (2022) 117107.
doi:https://doi.org/10.1016/j.eswa.2022.117107.

[15] T. T. Le, W. Fu, J. H. Moore, Scaling tree-based automated machine
learning to biomedical big data with a feature set selector, Bioinformat-
ics 36 (1) (2020) 250–256.

[16] J. Li, H. Wang, H. Luo, X. Jiang, E. Li, A ranking prediction strategy as-
sisted automatic model selection method, Advanced Engineering Infor-
matics 57 (2023) 102068. doi:https://doi.org/10.1016/j.aei.2023.102068.

[17] B. Mohan, J. Badra, A novel automated superlearner us-
ing a genetic algorithm-based hyperparameter optimiza-
tion, Advances in Engineering Software 175 (2023) 103358.
doi:https://doi.org/10.1016/j.advengsoft.2022.103358.

31



[18] M. Zhang, H. Li, S. Pan, J. Lyu, S. Ling, S. Su, Convolu-
tional neural networks-based lung nodule classification: A surrogate-
assisted evolutionary algorithm for hyperparameter optimization, IEEE
Transactions on Evolutionary Computation 25 (5) (2021) 869–882.
doi:10.1109/TEVC.2021.3060833.

[19] M. Milivojevic, Methods for creating and adaptations regression models
based on genetic algorithms, Ph.D. thesis, Faculty of Science, University
of Kragujevac (2016).
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Appendix A. Parameters and Benchmark Analysis of Classic Star

This section presents the selected parameters for the Classic Star algo-
rithm, informed by recommendations and guidelines from the authors. It
includes additional benchmark tests that compare the algorithm’s perfor-
mance with proposed architectures and other models’ hyperparameters.

Table A.1: Classic Star Ensemble parameters used in benchmarks.

Parameter Value
Number of models (d) 5
Epochs 200
Loss MSELoss
Learning rate (lr) 0.01

Table A.2: Comparison of Classic Star Ensemble models’ performance with different ANN
architectures on the test sets.

Benchmark problem Classic Star Ensemble MAE RMSE PRMSE R2

Friedman #1 Random Search models (1.b) 0.10 0.13 0.57% 0.9993
GA optimized models (1.c) 0.21 0.29 1.26% 0.9968
Proposed ANN architecture (128-64-32-16) 0.48 0.63 2.70% 0.9851

Boston Housing Random Search models (1.b) 1.96 2.53 5.80% 0.9351
GA optimized models (1.c) 2.14 2.71 6.21% 0.9254
Proposed ANN architecture (128-64-32-16) 2.00 2.78 6.37% 0.9214

Grancarevo dam Random Search models (1.b) 0.89 1.15 2.30% 0.9909
GA optimized models (1.c) 1.53 2.30 4.62% 0.9632
Proposed ANN architecture (128-64-32-16) 1.61 2.26 4.55% 0.9643
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Appendix B. AutoML powered ensembles - selected parameters

In this section, we present the parameters of AutoML methods used in
our benchmark problems based on the proposed instructions of their authors.

Table B.1: Random Regression Machines (RRM) parameters used in benchmarks.

Parameter Value
Epsilon (ϵ) 0.1
The cost (C) 1
The number of bootstrap samples (B) 25
The degree of polynomial kernel (d) 2
Gamma (γ) of Gaussian kernel function 1
Gamma (γ) of Laplacian kernel function 1
Beta (β) 2
Automatic tuning True

Table B.2: Parameters of Tree-based pipeline optimization tool (TPOT) used in bench-
marks.

Parameter Value
Generations 25
Population size 100
Offspring 100
Mutation rate 0.9
Crossover rate 0.05
Random state 42
Number of folds in CV 5
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Table B.3: Hyperparameters search space in AutoSL-GA optimization.

Model Hyperparameters Minimum value Maximum value
ANN No. of neurons in hidden layers 10 250

Alpha 1e-6 1.0
Tol 1e-6 1e-4
Max iterations 200 2000

SVM C 1e-6 100
Degree 1 10
Kernel poly, rbf, sigmoid

ENR Alpha 1e-6 100
L1 ratio 1e-6 1.0
Fit intercept True, False
Normalize True, False
Max iterations 1e3 1e6
Tol 1e-8 1e-2

KRR Alpha 1e-6 1.0
Gamma 1e-4 1.0

LGB Boosting type gbdt, dart, goss
No. of leaves 20 100
No. of estimators 100 1e4
Learning rate 1e-6 1.0

CBR Depth 5 10
Bagging temperature 1 10
Learning rate 1e-6 1.0
Iterations 30 1e3

Table B.4: Genetic algorithm parameters used in AutoSL-GA optimization in benchmarks.

Parameter Value
Population size 100
Generations 25
Elite percentage 0.1
Crossover probability 0.5
Mutation probability 0.1
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