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Design of LQ regulators with
prescribed degree of stability
for dual-rate systems based on
reinforcement learning

Vojislav Filipović1, Milan Matijević2 and Saša Ćuković3

Abstract
This paper considers dual-rate systems, where the output is measured at a relatively slow rate while the control signal is
adjusted at a faster rate. The output sampling time is an integer multiple of the input sampling time. The paper examines
dual-rate inferential control systems, which consist of a fast model, a slow model, and a switch. Missing output samples
are estimated using the fast single-rate model. The single-rate control algorithm is then implemented at the fast-sampling
rate. The fast-sampling discrete-time model is derived from the plant’s continuous-time model using the first-order hold
(FOH) element. A discrete LQ regulator is proposed for this plant model, with a prescribed degree of stability (all
closed-loop eigenvalues are within the range 0 \ l \ 1 in magnitude). The matrix gain is calculated offline, and an
online method for calculating the regulator gain is provided. The regulator gain is calculated using policy iteration, specifi-
cally Hewer’s algorithm. Finally, it is demonstrated that the presented inferential control system remains effective in the
presence of multiplicative unmodeled dynamics. The main contributions of the paper are: (i) Designing the LQ regulator
with a prescribed degree of stability using reinforcement learning (RL) (generalized policy iteration); and (ii) Considering
the robust stability of the inferential control system in the presence of multiplicative unmodeled dynamics using the lifting
technique.
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Introduction

There are industrial processes that use digital control
with sampled input and output values at different sam-
ple time intervals.1,2 These are known as multi-rate sys-
tems. Standard control techniques cannot be used in
these circumstances, leading to significant interest in
these systems.3,4

Kranc proposed the switch decomposition method
for controlling multi-rate systems. This method
involves transforming multi-rate systems (specifically
dual-rate systems) into single-rate systems. The method
has been further developed under the name ‘‘lifting
technique,’’5–7 which is now a standard tool for
transforming periodically time-varying systems into
time-invariant ones. This technique is particularly
important for state-space models.

Additionally, a dual-rate model that uses all available
data (fast input and slow output data) can be derived
using the polynomial transformation technique.8

When stochastic disturbances have a non-Gaussian dis-
tribution, this method is used for the recursive

identification of stochastic systems with unmodeled
dynamics.9 However, these transformation strategies
require identifying more parameters. This issue was
addressed by employing an accelerated stochastic
approximation approach and the Bayesian information
criteria, which allowed for identifying a fast model with
fewer parameters.10

In chemical processes, dual-rate systems are often
used11,12 and dual-rate techniques have recently been
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introduced in filtering theory.13 Inferential control is an
effective method for controlling dual-rate systems.14,15

This method first estimates the missing output samples
using a fast single-rate model. Then, it applies a single-
rate regulator at the same fast sampling rate.

The paper assumes that the plant has a known
continuous-time state-space model. The plant’s fast
discrete-time model is derived using the first order hold
(FOH) element.16 A linear quadratic (LQ) regulator
can be designed for this model.17 The paper18 proposes
designing an LQ regulator, in the continuous time, to
ensure that all poles of the closed-loop system lie in the
left half-plane, Re{s} \ 2a, with a . 0 chosen by the
designer. This approach provides greater tolerance for
time delays and nonlinearities.

In this paper, we address the design of an LQ regula-
tor with a specified degree of stability for discrete-time
systems. The criterion ensures all closed-loop eigenva-
lues have magnitudes less than l2 (0,1]. The design pro-
cedure is typically completed offline.

We propose an online method for designing LQ
regulators with a specified stability level, building on
current active research19 and documented in relevant
monographs.20–24 This iterative procedure solves the
algebraic Riccati equation, forming the basis for
LQ regulator gains, using generalized policy iteration
derived from control theory principles.25,26 Generalized
policy iteration optimizes control laws iteratively until
converging to optimal solutions for various dynamical
systems and cost functions. Recursive feasibility, robust
stability, and near-optimality properties are explored
using policy iteration.27 Recent advancements in online
policy iteration algorithms for optimal control in
continuous-time systems with input constraints are dis-
cussed in.28 The intersection of reinforcement learning
with adaptive control is explored in.29 Research refer-
ences30,31 address LQ regulator design under unknown
linear system dynamics.

Reinforcement Learning (RL) is a broad area.
Reference32 explores RL based on differential games.
Optimal control applications in industries using RL are
discussed in Reference.33 Reference34 examines RL’s
impact on decision-making under uncertainty.
Reference35 describes a multi-agent system based on RL.
Stochastic approximation algorithms and algorithms
such as temporal-difference learning and Q-learning are
detailed in Reference.36 Further developments in RL are
also discussed.36,37

The problem considered in this paper falls under
model-based RL algorithms using adaptive dynamic
programing. To the best of the authors’ knowledge,
this problem has not been addressed in the literature.

The paper examines the robust stability of a closed-
loop system controlled by the proposed LQ regulator,
considering the presence of unmodeled dynamics in the
form of multiplicative uncertainty. Through the use of

the lifting technique,38 it demonstrates that dual-rate
systems exhibit superior performance compared to fast-
rate systems.

The main contributions of the paper are: (i) design
of LQ regulators with the prescribed degree of stability
for linear discrete-time fast rate model based on FOH
and the design of reinforcement learning LQ regulators
based on generalized policy iteration; (ii) consideration
of robust stability of inferential systems in the presence
multiplicative unmodeled dynamics using lifting
techniques.

Problem formulation

Consider a single-input, single-output, single-rate sys-
tem shown in Figure 1.

In Figure 1. Pc represents a continuous linear time
invariant (LTI) plant, Hh represents a zero-order hold
(ZOH) and Sh is an ideal sampler. Both, Hh and Sh,
operate with the sampling period h. Here, we introduce
equivalent discrete time model for Pc

P=ShPcHh ð1Þ

The standard discrete time control system is then shown
in Figure 2.

In Figure 2, K represents a controller. In practical
scenarios, sampling the output as fast as the input is
often impossible due to physical sensor constraints.
Therefore, in Figure 1, Sh is replaced with a slower sam-
pler Shp, where p5 2 is an integer. The following figure
illustrate this situation.
The input-output data are:

(i) {u(kh): k=0, 1, 2, ..} at a fast rate,
(ii) {y(khp): k=0, 1, 2, ...} at a slow rate.

As a result, the intermediate output samples y(khp + j),
for j=1, 2, 3, ., p2 1, are not available. The dual-rate
measurement is represented by the pair {u(kh), y(khp)}.
The control system in this scenario is structured as
shown in the figure below.

In Figure 4, P̂ represents a model for the fast single-
rate system P. The K is a fast single-rate regulator, and
S denotes a switch. The fast output signal yf(kh) com-
prises the slow-sampled output y(khp) taken every ph
periods, along with the estimated output ŷ(kh) from the
model P̂.

It’s important to note that Shp is equivalent to Sh fol-
lowed by periodic switch S. Therefore, Figure 3 can be
modified accordingly in the following figure.

The signal ŷ(kh) replaces the missing samples in
y(khp). The feedback signal yf (kh) is defined by the fol-
lowing relation:
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yf(kh)=
y jphð Þ, kh= jph, j=0,1,2,3, . . .

ŷ jp+ ið Þhð Þ, kh= jph+hi, i=0,1,2,3, :::,p�1

(
ð2Þ

Finally, inferential control in Figure 4 consists of a
fast-rate plant model, a fast single-rate regulator, and a
periodic switch S.

From Figure 5, without unmodeled dynamics, it fol-
lows that P̂=P. This means the dual-rate system is
equivalent to the single-rate system in Figure 2.
Therefore, the LQ regulator design is based only on the
fast-rate model. The presence of unmodeled dynamics
will be considered later.

Fast model of the plant based on FOH
method

Suppose the continuous time model of the plant Pc in
state-space form is:

_x tð Þ=Acx tð Þ+Bcu tð Þ ð3Þ

In the next section, we will derive the discrete-time
model bP using the first-order hold (FOH) method.
This method provides a more accurate discrete approx-
imation of the continuous-time model by linearly extra-
polating from current and previous input sequence
elements.

u tð Þ= u khð Þ+ u khð Þ � u k� 1ð Þhð Þ
h

t� khð Þ,

kh4t4 k+1ð Þh
ð4Þ

By using instantaneous sampling, the sampler generates
a discrete-time sequence:

zu = z(kh) ð5Þ

Figure 4. The sampled-data inferential control system.

Figure 1. The single-rate system.

Figure 2. The discrete time single-rate control system.

Figure 3. The dual-rate systems.

Figure 5. Modified dual-rate system.
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The FOH dynamic is presented in the Figure 6.
The fast model PF = P̂, based on the FOH approach,
has the following form16

x( k+1ð Þh)
u(kh)

� �
=

A B1

0 0

� �
x(kh)

u( k� 1ð Þh)

� �
+

B2

I

� �
u khð Þ

=
A B1

0 0

� �
xp(kh)+

B2

I

� �
u khð Þ

ð6Þ

where

A= eAch

B1 =

ðh
0

h

h
� 1

� �
eAchBcdh

B2 =

ðh
0

2� h

h

� �
eAchBcdh

Finally, we can obtain the next block diagram for the
FOH and system (6)

LQ with prescribed degree of stability for
fast discrete time model

Now, we introduce a criterion for regulator design with
constraints in equation (7). This criterion ensures that
all closed-loop eigenvalues have magnitudes less than
l2 (0,1], known as the closed-loop pole constraint. For
system (6), the performance index is:

x k+1ð Þhð Þ
u khð Þ

� �
=

A B1

0 0

� �
x khð Þ

u k� 1ð Þhð Þ

� �
+

B2

I

� �
u khð Þ

V
x khð Þ

u k� 1ð Þhð Þ

� �� �
=

X‘

k= k0

l�zkh
x(kh)

u( k� 1ð Þh)

� �T
Q

x khð Þ
u k� 1ð Þhð Þ

� �
+ uT khð ÞRu(kh)

ð7Þ

The following theorem is now developed.

Theorem 1. Let us suppose that for system (6) and cri-
terion (7) is fulfilled.

1)
A B1

0 0

� �
,

B2

I

� �� �
is completely controllable.

2) Let H be any matrix so that Q=HHT. The pair

A B1

0 0

� �
,H

� �
is completely observable.

3) Q=QT50.
4) R=RT . 0.
5) Degree of stability for system (6) is l2 (0,1].

Then,

u khð Þ=2K
x khð Þ

u k� 1ð Þhð Þ

� �

where:

K= l�2h R+ l�2h
B2

I

� �T
P

B2

I

� � !�1
B2

I

� �T
P

A B1

0 0

� �

and matrix P is a solution of the next algebraic Riccati
equation:

l�h
A B1

0 0

� �
�l�h

B2

I

� �
K

� �T

P l�h
A B1

0 0

� �
�l�h

B2

I

� �
K

� �
�P+Q+KTRK=0

Proof: Let us introduce

l�kh
x khð Þ

u k� 1ð Þhð Þ

� �
=

x̂ khð Þ
l�hû k� 1ð Þhð Þ

� �
ð8Þ

û khð Þ= l�khu khð Þ ð9Þ

From relations (7)–(9) follows that:

V̂
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �� �
=

X‘

k= k0

l�2kh
x̂(kh)

l�hû( k� 1ð Þh)

� �T
Q

x̂ khð Þ
l�hû k� 1ð Þhð Þ

� �
+ ûT khð ÞRû(kh)

ð10Þ

Figure 6. Impulse response of FOH.
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From equations (6), (8), and (9) we have:

x̂ (k+1)hð Þ
û khð Þ

� �
= l�h

A B1

0 0

� �
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �
+ l�h

B2

I

� �
û khð Þ

ð11Þ

owing the fact:

l�(k+1)h x (k+1)hð Þ
u khð Þ

� �
=

x̂ (k+1)hð Þ
l�hû khð Þ

� �
ð12Þ

The optimal performance index has a form:

V̂ �ð Þ= x̂ khð Þ
l�hû (k� 1)hð Þ

� �T
P

x̂ khð Þ
l�hû (k� 1)hð Þ

� �
ð13Þ

where P is symmetric matrix.
The Bellman equation for our case is:

x̂ khð Þ
l�hû (k�1)hð Þ

� �T
P

x̂ khð Þ
l�hû (k�1)hð Þ

� �
=

x̂ khð Þ
l�hû (k�1)hð Þ

� �T
Q

x̂ khð Þ
l�hû (k�1)hð Þ

� �
+ûT khð ÞRû khð Þ+

x̂ (k+1)hð Þ
l�hû khð Þ

� �T
P

x̂ (k+1)hð Þ
l�hû khð Þ

� �
ð14Þ

For last term in relation (14), by using relation (11), one
can get:

l�h
A B1

0 0

� �
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �
+ l�h

B2

I

� �
û khð Þ

� �T

P l�h
A B1

0 0

� �
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �
+ l�h

B2

I

� �
û khð Þ

� �
= l�2h

x̂ khð Þ
l�hu k� 1ð Þhð Þ

� �T A B1

0 0

� �T
P

A B1

0 0

� �
x̂ khð Þ

l�hu k� 1ð Þhð Þ

� �
+ l�2h

x̂ khð Þ
l�hu k� 1ð Þhð Þ

� �T A B1

0 0

� �T
P

B2

I

� �
û khð Þ+ l�2hûT khð Þ

B2

I

� �T
P

B2

I

� �
û khð Þ

ð15Þ

According to (13) we have:

V̂
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �� �
=

x̂(kh)

l�hû( k� 1ð Þh)

� �T
P

x̂ khð Þ
l�hû k� 1ð Þhð Þ

� � ð16Þ

From (14), (15) and (16) it follows that from:

∂V̂
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �� �
∂û khð Þ =0 ð17Þ

we have:

û khð Þ=2l�2h R+ l�2h
B2

I

� �T
P

B2

I

� � !�1
B2

I

� �T
P

A B1

0 0

� �
x̂ khð Þ

l�hû k� 1ð Þhð Þ

� �
=2K

x̂ khð Þ
l�hû k� 1ð Þhð Þ

� �
ð18Þ

where:

K= l�2h R+ l�2h
B2

I

� �T
P

B2

I

� � !�1
B2

I

� �T
P

A B1

0 0

� �
ð19Þ

By using (14) and (18) one can get equality:

x̂(kh)
l�hû( k� 1ð Þh)

� �T
T

x̂ khð Þ
l�hû k� 1ð Þhð Þ

� �
=0 ð20Þ

Since this must hold for all state the matrix:

T=0 ð21Þ

In our case, matrix T has a form:

l�h
A B1

0 0

� �
�l�h

B2

I

� �
K

� �T

P l�h
A B1

0 0

� �
�l�h

B2

I

� �
K

� �
�P+Q+KTRK=0

ð22Þ

If we put (19) into (22) after arranging the formula one
can get:

l�2h
A B1

0 0

� �T
P

A B1

0 0

� �
� P+Q� l�4h

A B1

0 0

� �T
P

B2

I

� �
� R+ l�2h

B2

I

� �T
P

 !�1
B2

I

� �T
P

A B1

0 0

� �
=0

ð23Þ

Based on relations (8), (9), (18) and (23) it follows the
proof of the theorem.

LQ regulator design is described by Algorithm 1.

Algorithm 1

1. Choose the matrices Q=QT50, R=RT . 0, l,
and h.

2. For P, solve algebraic Riccati equation (23).
3. Determine the regulator’s gain K (relation (19)).

Filipović et al. 5



It is possible to see that the procedure for regulator
design is off-line.

Robust stability of dual-rate systems

In this section, we consider robust stability of the dual-
rate system. It is supposed that Assumption 1 is not
valid. We treat P̂ as a nominal model and consider mul-
tiplicative uncertainty. The uncertainty class is given
by39:

PD zð Þ= P̂(z) I+W1 zð ÞD(z)W2 zð Þð Þ ð24Þ

where D(z) is a perturbation and W1 zð Þ and W2 zð Þ are
fixed frequency weighting filters. Let us note that
sampling period for input signal is h and for state signal
is ph.

The standard technique for analysis and design of
multi-rate systems is lifting.38 The lifting technique
transforms periodically time-varying systems into time-
invariant systems. Let u(kh) be a discrete-time signal
defined on the set {0, 1, 2, .}.

u khð Þ= u 0ð Þ, u hð Þ, u 2hð Þ, . . . :, u khð Þ, . . .f g

The lifting operator L is the map from u khð Þ to
u khð Þ

L: u khð Þ ! u khð Þ ð25Þ

where:

u khð Þ=
u(0)

u(h)

..

.

u(ph�1)

266664
377775,

u(ph)

u(ph+1)

..

.

u(2ph�1)

266664
377775, ...

u(khp)

u(khp+1)

..

.

u(khp+ph�1)

266664
377775, ...

8>>>><>>>>:

9>>>>=>>>>;
ð26Þ

We now can formulate theorem for lifted systems.

Theorem 2. Consider the system (6). Suppose the
following:
1) T1 = h is the sampling period for input u(�)f g.
2) T2 = ph, p. 1 is the sampling period for state xp

� 	
.

Then,

A. Lifted system for system (6) is:

xp k+1ð Þphð Þ=Axp kphð Þ+B u(kph)

where:

xp k+1ð Þphð Þ=
x( k+1ð Þph)

u(kph)

� �
, u kphð Þ

=

u(kph)

u(kph+ h)

..

.

u(kph+ ph� 1)

266664
377775

A=Ap
F, B= Ap�1

F BF,A
p�2
F BF, ...:BF

h i
, AF =

A B1

0 0

� �
,

BF =
B2

I

� �

B. The lifted regulator has a gain:

K= l�2ph R+ l�2phBT P B

 ��1

BT P A

Proof: It is possible to rewrite relation (6) in the next
form:

xp k+1ð Þhð Þ=AFxp khð Þ+BFu(kh) ð26Þ

Let us replace k with kp. We have:

xp kph+hð Þ=AFxp kphð Þ+BFu(kph)

xp kph+2hð Þ=AFxp kph+hð Þ+BFu kph+hð Þ=
=AF(AFxp kphð Þ+BFu kphð Þ)+Bu kph+hð Þ=
=A2

Fxp kphð Þ+AFBFu kphð Þ+BFu kph+hð Þ
xp kph+3hð Þ=AFxp kph+2hð Þ+BFu kph+2hð Þ= ...=

=A3
Fxp kphð Þ+A2

FBFu kphð Þ+BFu kph+2hð Þ

..

.

xp kph+phð Þ=Ap
Fxp kphð Þ+Ap�1

F BFu kphð Þ
+Ap�2

F BFu kph+hð Þ+ ...+BFu kph+ph�1ð Þ
ð27Þ

This equation we can rewrite in the next form:

xp kph+phð Þ=A
p
Fxp kphð Þ+A

p�1
F BF A

p�2
F BF ... BF

u kphð Þ
u kph+hð Þ

..

.

u kph+ph�1ð Þ

266664
377775=Axp kphð Þ+Bu(kph)

ð28Þ

The statement A) is proven. The results of statement B)
follows from the solution of Riccati equation when we
replace matrices A and B with matrices A and B. For
the criterion for LQ regulator design, we use:
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l�khp
x(kph)

u( k� 1ð Þph)

� �
=

x̂(kph)
l�phû( k� 1ð Þph)

� �
ð29Þ

û kphð Þ= l�kphu(kph) ð30Þ

Theorem is proved. According to Reference,38 we have
the next lifted systems:

W1 zð Þ=LW1(z)L
�1,W2 zð Þ=LW2(z)L

�1,D zð Þ=LD zð ÞL�1

ð31Þ

Lastly, we shall determine the lifted transfer function
P̂ zð Þ,

Xp zð Þ= P̂ zð ÞU(z) ð32Þ

From relations (28) and (32), it follows:

P̂ zð Þ= zI� Að Þ�1B ð33Þ

Now we present the model for switch S in Figure 7.
According to Reference,15 we have the situation as
shown in the next figure:

The R1 and R2 are static systems with the following
matrix form:

R1 =

1 0 � � � 0
0 0 � � � 0

..

.

0

..

.

0

. .
.

� � �
..
.

0

26664
37775
p3p

ð34Þ

R2 =

0 0 � � � 0
0 1 � � � 0

..

.

0

..

.

0

. .
.

� � �
..
.

1

26664
37775
p3p

ð35Þ

The feedback signal xF(�) is defined as:

xF �ð Þ=R1xp �ð Þ+R2x̂p �ð Þ ð36Þ

Let us notice that:

R1 +R2 = J ð37Þ

According to Assumption 1, along with relations (24),
(34)–(37) and Figures 1 and 8, the following figure can
be derived:

Our main goal is to study the robust stability of
dual-rate system in Figure 9. To apply the small gain
theorem,39 we will convert system from Figure 9 to
M� D form39 as shown in Figure 10.

Now let’s determine the matrix M. This is formu-
lated as a theorem.

Theorem 3. Let us consider the system presented in
Figure 9. Suppose the following assumptions hold:

1) The perturbation D(z) is a stable and linear time-
invariant system with norm D(z)‘ \ 1

2) W1 zð Þ and W2 zð Þ are fixed frequency weighting
filters that are stable and linear-time invariant
systems.

Then, the matrix M(z) takes the form:

M zð Þ=2W2 zð Þ I+KP̂ zð Þ

 ��1

KR1W1 zð ÞP̂ zð Þ

Proof: From Figure 9 we derive the expression as
follows:

UD(z)=W2 zð ÞU(z) ð38Þ

U zð Þ=2KXF(z) ð39Þ

It is also noted that:

X̂p zð Þ=2P̂(z)U(z) ð40Þ

X̂p zð Þ=W1 zð ÞP̂ zð ÞXpD(z) ð41Þ

Using relation (37), we obtain for the feedback signal
XF(z):

XF zð Þ=R1X̂p zð Þ+ R1 +R2ð ÞP̂ zð ÞU zð Þ
=R1W1 zð ÞP̂ zð ÞXpD zð Þ+ P̂ zð ÞU zð Þ

ð42Þ

Based on relation (39), it follows that:

U zð Þ=2KR1W1 zð ÞP̂ zð ÞXpD zð Þ � KP̂ zð ÞU zð Þ ð43Þ

Figure 7. The sampled-data inferential system, HF,h is FOH DA converter, P̂ = PF is fast plant model.
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Then we have:

U zð Þ=2 I+KP̂ zð Þ

 ��1

KR1W1 zð ÞP̂ zð ÞXpD zð Þ ð44Þ

By using relation (39) and (43), it follows that:

UD(z)=2W2 zð Þ I+KP̂ zð Þ

 ��1

KR1W1 zð ÞP̂ zð ÞXpD zð Þ
ð45Þ

The theorem is thus proved. Finally, we formulate a
theorem for robust stability for the dual-rate system.

Theorem 4. Suppose that the assumptions of Theorem
3 are satisfied, along with the following assumption:

1) System is nominally stable (K stabilizes P̂ zð Þ).

Then,

A. For the dual-rate system to be stable for all admis-
sible perturbation D , it is sufficient that:

W2 zð Þ I+KP̂ zð Þ

 ��1

KR1W1 zð ÞP̂ zð Þ
��� ���

‘
\ 1

B. The fast single-rate control is no more robust than
the dual-rate inferential system.

Proof: The proof is based on small gain theorem and
manipulation with matrix norms, similar to
Proposition 2 and Corollary 1 in Reference.15

Model-based policy iteration algorithm for
LQ regulator design

In this section, we discuss an online approach for
designing regulators, using Hewer’s algorithm to solve
the discrete-time Riccati equation.25 This method is
rooted in reinforcement learning. We show that
Hewer’s algorithm converges under stability and
detectability assumptions.

Reinforcement learning suggests generalized policy
iteration,19 where the algorithm involves iterating l
steps to solve the matrix equation in each iteration j.
When l=1, it corresponds to value iteration, and for
l=‘, it represents policy iteration. The algorithm,
based on equations (19) and (22), is summarized in the
table below.

Algorithm 2

1. Select matrices Q=QT50, R=RT50, K0 (not
necessarily stabilizing),

Po =I, e . 0, l, h. 0, j=0, i=0, 1, 2, . . . l� 1:

2. P0
j =Pj

Pj+1 =Pl
j

Pi+1
j = l�h

A B1

0 0

� �
� l�h

B2

I

� �
Kj

� �T

Pi
j l�h

A B1

0 0

� �
� l�h

B2

I

� �
Kj

� �
+Q+KT

j RKj

3. Kj+1=l�2h R+l�2h
B2

I

� �T
Pj+1

B2

I

� � !�1
B2

I

� �T
Pj+1

AB1

0 0

� �
.

4. Stop if kKj+1 � Kjk\ e,

Figure 8. The model of the switch in the sampled data
inferential system.

Figure 9. The lifted inferential control system with
multiplicative uncertainty.

Figure 10. The M� D structure for system in Figure 9.
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Otherwise set j= j+1 and return to step 2.

Remark 1. Theorem 1 explains how to design an LQ
regulator for fast-rate models using the FOH element.
This forms the basis for designing a reinforcement
learning LQ regulator. Theorem 2 addresses the design
of lifted systems, a common technique for multirate
systems. The main outcome of Theorem 3 is the estab-
lishment of the M-D structure, which is crucial in
robust control theory. Lastly, Theorem 4 deals with
robust stability, demonstrating that fast-rate control
systems are not more robust than dual-rate systems.

Remark 2. The matrices Q and R are weighting
matrices where Q is semi-positive definite (Q5 0) and
R is positive definite (R. 0). These matrices are typi-
cally chosen through a trial-and-error process. When
aiming for smaller squared errors, larger values are
assigned to the corresponding diagonal elements in
matrix Q.

In practical applications, choosing a smaller R speeds
up the closed-loop response, while a larger R slows it
down. More formal methods for choosing these
matrices are detailed in Reference [17, Ch. 6].

The sampling rate must be high relative to the rate of
changes in the signal being considered. A common rule
of thumb is to ensure the sampling rate is 5–10 times
the bandwidth of the system. It’s also common practice
to use an analog filter before the sampling process. The
sampling rate is equal to the sampling period of fast-
rate systems.

The parameter l2 (0,1] is crucial; a smaller l leads
to a higher speed of convergence of states.

Remark 3. This paper explores multirate (dual-rate)
discrete-time systems using the FOH element for hold-
ing. The designed D/A converter achieves higher accu-
racy compared to ZOH. Multirate systems are
important both theoretically and practically in discrete-
time systems.

The first key finding, without unmodeled dynamics,
shows that a dual-rate inferential system is equivalent
to a single-rate (fast-rate) system. A corresponding LQ
regulator with prescribed degree of stability ensures
that all closed-loop poles lie within the l-circle in the
complex plane where l41. The regulator design pro-
cess is offline and uses dynamic programing. For single-
rate systems without unmodeled dynamics, a reinforce-
ment learning (RL) LQ regulator is proposed, based on
adaptive dynamic programing, with an online design
process. The ultimate aim is to develop a model-free
RL LQ controller.

The second key result addresses robust stability in
the presence of unmodeled dynamics for LQ controllers.

This involves transforming the dual-rate system into a
single-rate system (lifted model) and establishing the
M� D model crucial in robust control theory. It
demonstrates system stability for all allowable perturba-
tions D, ensuring kMk‘ \ 1. A significant finding is that
a fast single-rate system is no more robust than dual-
rate inferential systems. This result can be extended to
RL LQ control regulators, leveraging Hewer’s findings
and Theorem 4.

Remark 4. The issue of complexity in prescribed perfor-
mance is discussed in.40 The application of adaptive
dynamic programing for sliding-mode systems is pre-
sented in.41

Illustrative example

The selected illustrative example is a dynamic system
involving the translational movement of two elastically
coupled masses shown in Figure 11. The system con-
sists of two rigid bodies with masses m1 and m2, which
are connected by a spring with an elasticity coefficient
k. The bodies move without friction along a fixed hori-
zontal surface. A force, or control signal u, acts on the
left body. This subsystem is very common in various
mechatronic systems.

Let x1 and v1 be the position and velocity of the left
rigid body, and x2 and v2 be the position and velocity
of the right body. The state vector of the dynamic sys-
tem is x= x1x2v1v2½ �T, and the continuous model of the
dynamic system is described by the state-space model.

_x=Ax+Bu,A=

0 0

0 0

1 0

0 1

� k

m1

k

m1

k

m2
� k

m2

0 0

0 0

266666664

377777775,

B=

0

0
1

m1

0

266664
377775

ð46Þ

In this illustrative example, we will adopt the following
parameter values k1 = k2 =m1 =m2 =1, which will
not reduce the generality of our explanations.

Sampling (46) with a sampling time h and using a
FOH gives the discrete-time model:

x( k+1ð Þh)
u(kh)

� �
=

A B1

0 0

� �
x(kh)

u( k� 1ð Þh)

� �
+

B2

I

� �
u(kh)

where:
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A= eAch

B1 =

ðh
0

h

h
� 1

� �
eAchBcdh

B2 =

ðh
0

2� h

h

� �
eAchBcdh

For l=0.30, h=1, e=0:0005, P0=I, Q=[1 0 0 0 0;
0 1 0 0 0; 0 0 10 0 0; 0 0 0 10 0; 0 0 0 0 10], R=0.8,

K0=[0.397 0.82 0.27 0.63 0.29], the Algorithm 2 gives
K=[0.98671 20.054444 1.1925 0.89862 20.26683], in

u khð Þ=2K
x khð Þ

u k� 1ð Þhð Þ

� �
ð47Þ

That is,

u khð Þ=0:99x1 khð Þ � 0:05x2 khð Þ+1:19x3 khð Þ
+0:9x4 khð Þ � 0:27u kh� hð Þ

The convergence efficiency of Algorithm 2 is illustrated
in Figures 12 and 13.

From the above figures it is possible to see that for
smaller degree of stability the convergence of state of
dynamic system is faster.

Conclusions

This paper discusses the design of a reinforcement
learning LQ regulator with a focus on two key aspects:

i Many real-world systems inherently operate at mul-
tiple rates, offering benefits such as improved stabi-
lity margins, simultaneous stabilization,42 and
decentralized control43

ii The regulator aims to minimize quadratic losses
while ensuring that closed-loop poles reside within
the specified region of the z-plane (0, 1]. This
approach exhibits lower sensitivity to uncertainties
in plant parameters compared to conventional
methods, although the gain margin may vary.

The study employs a sampled-data model using FOH
and introduces an LQ reinforcement learning regulator.
It also addresses robustness using lifting techniques.
Future research could focus on developing regulator
designs that do not require knowledge of the system
model, and explore aspects related to the frequency
domain.44 Also, interesting directions are the design
RL LQ regulators for multivariable and continuous
systems.

Figure 11. A mechatronic subsystem as an illustrative example
of a controlled plant Pc.

Figure 12. Convergence of a vector K for different l values.
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Figure 13. Motion of the autonomous dynamic system (47 and 48), for initial conditions (x1, x2, x3, x4) = (21, 1, 1, 21) and u = 0:
Less l (0.30) provides a faster transient process, whereby the control signal has larger amplitude changes.
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