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ABSTRACT: This paper discusses the design of a preview LQ controller. We assume a linear time-invariant 
continuous model of controlled mechatronics subsystem. The model is discretized using a generalized hold function 
(GHF), which is defined by its impulse response. This approach can improve the closed loop gain margin, among 
other benefits. The plant model is then expanded to include the preview part of the system, and the LQ controller 
design methodology is applied. An incremental control signal is introduced in the criterion, which adds integral action 
to the controller. The digital controller is obtained offline as a solution to the Riccati equation. This solution provides 
both the feedback and feedforward controllers. Finally, using adaptive dynamic programming, we convert the offline 
procedure into an online procedure, resulting in an intelligent controller. The analysis is supported by an illustrative 
example involving a general mechatronic subsystem. The results highlight the potential of designed digital controller 
to significantly enhance the performance of manufacturing systems. The obtained controller can be related to the ILC 
(Iterative Learning Control) family of control algorithms, which are typically used in manufacturing systems. 
 
KEYWORDS: Manufacturing systems, Preview control, LQ, Reinforcement learning, Mechatronics systems 

INTRODUCTION 

Preview control is used to solve tracking or rejection problems under the assumption that the signals to be tracked 
or rejected are available a priori by a certain amount of time [2]. The first consideration of preview control in the form 
of examples is presented in [14]. Preview control for state space models was first proposed in [15]. In reference [13], 
a vehicle suspension problem is considered as a disturbance rejection problem. In [12,18], it is shown that the tracking 
problem in autonomous vehicles can be addressed as a preview control problem or as model predictive control using 
the preview-follower theory algorithm. An overview of digital tracking control in the field of preview control is presented 
in [16]. Applications include robot control [17], control of linear direct current motors [3], process control [9], and many 
other areas. 
 
In this paper, we assume a known continuous-time model of the system. The implementation of the controller is 
digital, and therefore, the conversion of the continuous-time model to a discrete-time model is important. In this 
context, the form of the hold element is very important. In this paper, we consider the generalized hold function 
(GHF), which can be characterized by its impulse response when a unitary discrete-time impulse is used as input. 
The GHF is the subject of many papers and books [8, 6, 19, 20]. Among other benefits, the GHF can improve gain 
margin and robustness of the closed loop [19]. It is important to note that zero-order hold (ZOH) and first-order hold 
(FOH) are special cases of GHF. 
 
The main topic of this paper is the design of a reinforcement learning LQ controller for the tracking problem. The first 
step is to design standard LQ controllers [1] for the tracking problem, where possible, using future information 
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(segment of the desired trajectory profile). This can improve tracking accuracy. Such problems are considered in 
references [4] and [9]. In this paper, we introduce the constraint that all closed-loop eigenvalues have magnitudes 
less lÎ(0, 1]) (specified degree of stability). The value of l	may be chosen by the designer [1]. This approach provides 
a fast response time for the system and greater tolerance to nonlinearity. 
 
The main step in the design of the digital preview controller is to convert the tracking problem into a regulator problem. 
For that purpose, an augmented system is introduced (a model of the considered system extended with the model 
of the reference). The result is based on dynamic programming and consists of a two-degree-of-freedom regulator 
(feedback regulator and feedforward regulator). The observation is that the design of the regulator is based on the 
off-line solution of the algebraic Riccati equation. 
 
The last part of the paper is devoted to converting the off-line solution of the Riccati equation to an on-line solution. 
This is accomplished with adaptive dynamic programming, which is the main topic in reinforcement learning [11, 7]. 
 
The main contribution of this paper is the design of an intelligent regulator based on the GHF and the concept of the 
degree of stability of the system. 

DISCRETE-TIME MODEL OF CONTINUOUS SYSTEM 

The sampling process is important for representing continuous-time systems with discrete-time models. Figure 1 
shows a single-input single-output (SISO) system. 
 

 
 

Figure 1 SISO discrete-time system 
 
In Fig. 1 Pc represents a continuous linear time-invariant (LTI) plant, Hh represents hold element and Sh is the ideal 
sampler. Both Hh and Sh operate with the sampling period h. The mathematical description of discrete-time systems 
is 

𝑃 = 𝑆!𝑃"𝐻! (1) 
 
The hold element Hh is very important. In this paper, we consider the Generalized Hold Function (GHF). As pointed 
out in many references, the application of GHF has several benefits. According to [19], it can significantly increase 
the gain margin and robustness of the closed-loop system, and it makes a significant contribution to the field of 
multivariable systems [8]. In this paper, the Generalized Hold Function (GHF) is characterized by its impulse 
response. Fig. 2 illustrates the impulse response GHF during the first sampling time. It is shown that the impulse 
response during the first sampling time can be a nonlinear function of time. The Zero-Order Hold (ZOH) and First-
Order Hold (FOH) are special cases of GHF. 
 

 
 

Figure 2 Principle of GHF 
 

In the Fig. 2 input is 
𝑢(𝑘) = 𝛿#(𝑘) = *1					𝑘 = 0

0					𝑘 ≠ 0	 
 

(2) 

and output of the GHF is the impulse response 𝒉𝒈(𝒕) during the first sampling time. The continuous-time signal 𝒖(𝒕) 
is 

𝑢(𝑡) = 3 ℎ%(𝑡 − 𝑘ℎ)𝑢(𝑘)
&

#'(&

 (3) 

 
Let us suppose that the continuous-time model of the plant Pc in state-space form for a SISO system is given 
 

𝑥̇(𝑡) = 𝐴"𝑥(𝑡) + 𝑏"𝑢(𝑡)	 (4) 



 

𝑦(𝑡) = 𝑐	𝑥(𝑡) 
 
If the GHF is used to generate the input 𝒖(𝒕), the equivalent discrete-time model is given by [20] 
 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑏𝑢(𝑘)	 
𝑦(𝑘) = 𝑐	𝑥(𝑘) (5) 

where 

𝐴 = 𝑒)!!, 𝑏 = ?𝑒)!(!(+)𝑏"ℎ%(𝜏)𝑑𝜏
!

-

 (6) 

 
Remark 1. An example of a GHF is a piecewise impulse response 
 

 
 

Figure 3 Impulse response of a picewise GHF for N=4 during one sample time 
 
Designing the GHF as an N-piecewise GHF (illustrated in Fig. 3) affects the form of the discrete model (6) of the 
controlled plant Pc  in the following way 
 

ℎ%(𝑡) =

⎩
⎪
⎨

⎪
⎧𝑔.																								0 ≤ 𝑡 <

ℎ
𝑁

⋮																																														

𝑔/ 										
(𝑁 − 1)ℎ

𝑁 ≤ 𝑡 < ℎ

			=> 		𝑏 =3𝑔0

/

0'.

? 𝑒)!(!(+)𝑏"𝑑𝜏

0!
/

(0(.)!
/

 (7) 

 

DIGITAL REVIEW REGULATOR 

In this control strategy, future information about the reference trajectory is incorporated into the controller design to 
improve tracking accuracy. This is combined with a linear quadratic (LQ) regulator. For this case, an appropriate 
performance index is used, and an augmented state-space model includes the available future demands as part of 
the state vector. We assume that, at each time, the reference trajectory includes 	𝑁1 future values 
𝑟(𝑘 + 1),… , 𝑟N𝑘 + 𝑁1O. 
 

We now introduce the following assumption: 
 

Assumption: Future values of the reference trajectory beyond time 𝑘 + 𝑁1 are approximated by 𝑟(𝑘 + 𝑖) = 𝑟(𝑘 + 𝑁1) 
for 𝑖 = 𝑁1 + 1,𝑁1 + 2,…. 
 

For system (5), we use the following criterion: 
 

𝐽 =3𝜆(2#(𝑞3𝑒2(𝑘) + Δ𝑥4(𝑘)𝑄5Δ𝑥(𝑘) + 𝑟6Δ𝑢2(𝑘))
&

#'-

 (8) 

 

where 𝑞- ≥ 0, 𝑟6 > 0, Δ𝑥(𝑘) = 𝑥(𝑘) − 𝑥(𝑘 − 1), Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1), and 𝜆 represents degree of stability of 
closed loop system. Now we will transform system (5) 
 

𝑥Y(𝑘) = 𝜆(#𝑥(𝑘),			𝑢Y(𝑘) = 𝜆(#𝑢(𝑘) (9) 
 

For system (5), we have 
 

𝜆((#7.)𝑥(𝑘 + 1) = 𝜆(.𝐴N𝜆(#𝑥(𝑘)O + 𝜆(.𝑏N𝜆(#𝑢(𝑘)O = 𝜆(.𝐴𝑥Y(𝑘) + 𝜆(.𝑏𝑢Y(𝑘) (10) 
 

The transformed system has the form 
 
 



 

𝑥Y(𝑘 + 1) = 𝜆(.𝐴𝑥Y(𝑘) + 𝜆(.𝑏𝑢Y(𝑘)	 
𝑦Y(𝑘) = 𝑐	𝑥Y(𝑘) (11) 

 

After system transformation, criterion (8) takes the form 
 

𝐽 = 3N𝑞3𝑒̂2(𝑘) + Δ𝑥Y4(𝑘)𝑄5Δ𝑥Y(𝑘) + 𝑟6Δ𝑢Y2(𝑘)O
&

#'-

 (12) 

 

Criterion (12) includes the incremental form of the state vector. As known, this form of criterion provides an integral 
term in the regulator. Now we find the incremental form of system (11). Let us note that 
 

Δ𝑥Y(𝑘 + 1) = 𝑥Y(𝑘 + 1) − 𝑥Y(𝑘),			Δ𝑢Y(𝑘 + 1) = 𝑢Y(𝑘 + 1) − 𝑢Y(𝑘) (13) 
 

From equations (11) and (13), it follows that 
 

Δ𝑥Y(𝑘 + 1) = 𝑥Y(𝑘 + 1) − 𝑥Y(𝑘) = 𝜆(.𝐴𝑥Y(𝑘) + 𝜆(.𝑏𝑢Y(𝑘) − 𝜆(.𝐴𝑥Y(𝑘 − 1) − 𝜆(.𝑏𝑢Y(𝑘 − 1)
= 𝜆(.𝐴N𝑥Y(𝑘) − 𝑥Y(𝑘 − 1)O + 𝜆(.𝑏N𝑢Y(𝑘) − 𝑢Y(𝑘 − 1)O = 𝜆(.𝐴Δ𝑥Y(𝑘) + 𝜆(.𝑏Δ𝑢Y(𝑘) (14) 

 

The incremental form of system (11) is 
 

Δ𝑥Y(𝑘 + 1) = 𝜆(.𝐴	Δ𝑥Y(𝑘) + 𝜆(.𝑏	Δ𝑢Y(𝑘)			 
Δy(𝑘) = 𝑐	Δ𝑥Y(𝑘)	 (15) 

 
 
Remarks 2. The incremental system description equation (15) allows us to consider the following system: 
 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝑏𝑢(𝑘) + 𝑤(𝑘)	 
𝑦(𝑘) = 𝑐	𝑥(𝑘) (16) 

 
where 𝑤(𝑘) is a constant disturbance. The error signal is 
 

Δ𝑒̂(𝑘 + 1) = Δ𝑟(𝑘 + 1) − Δ𝑦(𝑘 + 1) = Δ𝑟(𝑘 + 1) − 𝑐	Δ𝑥Y(𝑘 + 1)
= Δ𝑟(𝑘 + 1) − 𝑐N𝜆(.𝐴	Δ𝑥Y(𝑘) + 𝜆(.𝑏	Δ𝑢Y(𝑘)O
= Δ𝑟(𝑘 + 1) − 𝜆(.𝑐𝐴	Δ𝑥Y(𝑘) − 𝜆(.𝑐𝑏	Δ𝑢Y(𝑘) 

(17) 

 
From the last equation, it follows that 
 

𝑒̂(𝑘 + 1) = 𝑒̂(𝑘) + Δ𝑟(𝑘 + 1) − 𝜆(.𝑐𝐴	Δ𝑥Y(𝑘) − 𝜆(.𝑐𝑏	Δ𝑢Y(𝑘) (18) 
 
Using relations (15) and (18), it follows that 
 

] 𝑒̂(𝑘 + 1)Δ𝑥Y(𝑘 + 1)^ = _1 −𝜆(.𝑐𝐴
0 𝜆(.𝐴

` ] 𝑒̂(𝑘)Δ𝑥Y(𝑘)^ + _
−𝜆(.𝑐𝑏
𝜆(.𝑏

` 	Δ𝑢Y(𝑘) + _01` Δ𝑟(𝑘 + 1) (19) 

 
Now we will design a command generator system that models the preview part of the system and has the following 
form: 

𝑥8(𝑘 + 1) = 𝐴8𝑥8(𝑘)	 
𝑦8(𝑘) = 𝑐8𝑥8(𝑘) 

(20) 

where  

𝐴𝑟 =

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
0

		

1
0
⋮
0
0

		

0
1
⋮
0
0

		

…
…
⋱…
…

		

0
0
⋮
1
0⎦
⎥
⎥
⎥
⎤
 

 
The matrix 𝐴8 implements a shift register operation. The state of the command generator 𝑥8(𝑘) is composed of the 
sampled values of the reference signal over the preview horizon of length Np. The form of the vector 𝑥8(𝑘) is 
 

𝑥8(𝑘) =

⎣
⎢
⎢
⎡ Δ𝑟

(𝑘 + 1)
Δ𝑟(𝑘 + 2)

⋮
Δ𝑟N𝑘 + 𝑁1O⎦

⎥
⎥
⎤
	,			𝑥Y8(𝑘 + 1) = 𝜆(.𝐴8𝑥Y8(𝑘), 			𝑥Y8(𝑘) = 𝜆(#𝑥8(𝑘)	 (21) 

 
Now define the augmented state vector 
 

𝑥Y.(𝑘) = [𝑒̂(𝑘) Δ𝑥Y4(𝑘) 𝑥Y84(𝑘)]4,					𝑥.(𝑘) = [𝑒(𝑘) Δ𝑥4(𝑘) 𝑥84(𝑘)]4 (22) 



 

 
 
From equations (8) and (20), it follows that 
 

𝑥Y.(𝑘 + 1) = 	 j
1 −𝜆(.𝑐𝐴
0 𝜆(.𝐴

1 0 … 0
0 0 … 0

0 𝜆(.𝐴8
k 𝑥Y.(𝑘) + j

−𝜆(.𝑐𝑏
𝜆(.𝑏
0

k Δ𝑢Y(𝑘) = 𝐴.𝑥Y.(𝑘) + 𝑏.Δ𝑢Y(𝑘) (23) 

 
The performance index (12) now takes the following form: 
 

𝐽8 =3l𝑥Y.4(𝑘)𝑄.𝑥Y.(𝑘) + 𝑟6Δ𝑢Y2(𝑘)m
&

#'-

 (24) 

where 

𝑄" = $
𝑞# ⬚ 0
⬚ 𝑄$ ⬚
0 ⬚ 0

( 

 
The optimization problem is standard, involving the minimization of criterion (24) subject to constraint (23). According 
to [13] and relations (23) and (24), the optimal regulator has the following structure: 
 

Δ𝑢Y-(𝑘) = −(𝑟6 + 𝑏.4𝑃.𝑏.)(.𝑏.4𝑃.𝑏.𝑥Y.(𝑘) (25) 
 
where 𝑃. is a symmetric matrix that is the solution to the following algebraic matrix Riccati equation:  
 

𝑃. = 𝐴.4𝑃.𝐴. − 𝐴.4𝑃.𝑏.(𝑟6 + 𝑏.4𝑃.𝑏.)(.𝑏.4𝑃.𝐴. + 𝑄. (26) 
 
From relation (26) and the structure of the regulation we have 
 

Δ𝑢Y-(𝑘) = −[𝑘3 𝑘5 𝑘8]𝑥Y.(𝑘) (27) 
 
Now we explicitly find gains K of the regulator. To do this, we define 
 

𝑏2 = _−𝜆
(.𝑐𝑏
𝜆(.𝑏

` , 𝐹2 = _𝜆
(.𝑐𝐴
𝜆(.𝐴

` , 𝑄2 = ]𝑞3 0
0 𝑄5

^ , 𝐼2 = _10` , 𝐴2 = [𝐼2 𝐹2]	 (28) 

 
Now we will adapt the results from [16] to our case. The optimal incremental control is given by 

Δ𝑢Y-(𝑘) = −𝑘9𝑒̂(𝑘) − 𝑘5Δ𝑥(𝑘) − 𝜆(#3N𝑘8(𝑙)Δ𝑟(𝑘 + 𝑙)O

/"

0'.

  

From which it follows that 

Δ𝑢-(𝑘) = −𝑘9𝑒(𝑘) − 𝑘5Δ𝑥(𝑘) −3𝑘8(𝑙)Δ𝑟(𝑘 + 𝑙)

/"

0'.

 (29) 

 
𝑘9 = −(𝑟6 + 𝑏24𝑃2𝑏2)(.𝑏24𝑃2𝐼2 (30) 

 
𝑘5 = −(𝑟6 + 𝑏24𝑃2𝑏2)(.𝑏24𝑃2𝐹2 (31) 

 

𝑘8(𝑙) =

⎩
⎪
⎨

⎪
⎧
𝑘8(1) = −𝑘9 																																																																							

⎩
⎪
⎨

⎪
⎧𝑘8(𝑙) = (𝑟6 + 𝑏24𝑃2𝑏2)(.𝑏24𝑥(𝑙 − 1),				𝑙 = 2,… ,𝑁1	
𝑥(𝑙) = 𝐴2"𝑥(𝑙 − 1),			𝑙 = 2,… ,𝑁1																																	
𝑥(1) = −𝐴2"𝑃2𝐼2																																																															
𝐴2- = 𝐴2 − 𝑏2(𝑟6 + 𝑏24𝑃2𝑏2)(.𝑏24𝑃2𝐴2																							

 (32) 

 
where the matrix  𝑃2 is the non-negative definite solution of the following algebraic Riccati equation 
   

𝑃2 = 𝐴24𝑃2𝐴2 − 𝐴24𝑃2𝑏2(𝑟6 + 𝑏24𝑃2𝑏2)(.𝑏24𝑃2𝐴2 + 𝑄2 (33) 
 
From equation (29), we will now find the position (or whole value) form of the optimal control. Let us note that 
 



 

𝑒(𝑘) =3𝑒(𝑖)
#

9'-

−3𝑒(𝑖)
#(.

9'-

 (34) 

Algorithm (29) takes the following form: 
 
𝑢-(𝑘) − 𝑢-(𝑘 − 1)

= −𝑘9 q3𝑒(𝑖)
#

9'-

−3𝑒(𝑖)
#(.

9'-

r − 𝑘5N𝑥(𝑘) − 𝑥(𝑘 − 1)O

−3𝑘8(𝑙)(𝑟(𝑘 + 𝑙) − 𝑟(𝑘 + 𝑙 − 1)) 	= s−𝑘93𝑒(𝑖)
#

9'-

− 𝑘5𝑥(𝑘) −3𝑘8(𝑙)𝑟(𝑘 + 𝑙)

/"

0'.

t

/"

0'.

+ s𝑘93𝑒(𝑖)
#(.

9'-

+ 𝑘5𝑥(𝑘 − 1) +3𝑘8(𝑙)𝑟(𝑘 + 𝑙 − 1)

/"

0'.

t 

(35) 

 
From the last relation, one can derive the position format algorithm: 
 

𝑢-(𝑘) = −𝑘93𝑒(𝑖)
#

9'-

− 𝑘5𝑥(𝑘) −3𝑘8(𝑙)Δ𝑟(𝑘 + 𝑙)

/"

0'.

 (36) 

 
Now we will present the algorithm for designing the optimal preview regulator. 

Algorithm for optimal preview regulator 
1. Given the continuous-time system (4) 
2. Design of discrete-time system (5) using the GHF (with relations (4)-(7)) for chosen sampling time h. 
3. Choose parameters 𝑞3 ≥ 0, 𝑟6 > 0,𝑄5 ≥ 0, 𝜆𝜖(0,1]. 
4. Solve the Riccati equation (33) to determine the matrix 𝑃2 
5. Determine the regulator’s gains 𝑘9 , 𝑘5 , 𝑘8  using relations (30) – (32). 

Remark 3. It is possible to establish a connection between optimal preview and iterative learning control (ILC) as 
showed in [21]. 

Remark 4. The relation between the considered optimal preview regulator and predictive regulators is presented in 
[5]. 

MODEL-BASED INTELLIGENT PREVIEW REGULATOR 

In the previous section, the design of the digital preview regulator was based on the off-line solution of the Riccati 
equation. Here, we convert the off-line solution with on-line solution of the Riccati equation, as discussed in [10]. This 
methodology falls under reinforcement learning, which suggests generalized policy iteration [10]. 
 
We will now reconsider the system: 
 

𝑥Y.(𝑘 + 1) = 𝐴.𝑥Y.(𝑘) + 𝑏.Δ𝑢Y(𝑘) (37) 
 

𝐽8(𝑥Y.(𝑘)) =3l𝑥Y.4(𝑘)𝑄.𝑥Y.(𝑘) + 𝑟6Δ𝑢Y2(𝑘)m
&

#'-

 (38) 

 
The objective to find the minimum of 𝐽(∙). It is a well-known fact that the optimal value for the LQ regulator [1] is 
 

min 𝐽8(𝑥Y.(𝑘)) = 𝑥Y.4(𝑘)𝑃:𝑥Y.(𝑘) 
𝑥"!(𝑘)																																																																	                                             

(39) 
 
for some symmetric matrix 𝑃:, which is determined by the solution of the algebraic Riccati equation.  
 

Let us introduce the Bellman equation for the LQ regulator [10], using the facts that  𝑢Y(𝑘) = 𝜆(#𝑢(𝑘), 𝑥Y.(𝑘) = 𝜆(#𝑥(𝑘)	) 
 

𝑥Y.4(𝑘)𝑃:𝑥Y.(𝑘) = 𝑥Y.4(𝑘)𝑄.𝑥Y.(𝑘) + 𝑟6Δ𝑢Y2(𝑘) + 𝑥Y.4(𝑘 + 1)𝑃:𝑥Y.(𝑘 + 1) (40) 
 



 

The feedback is defined as 
Δ𝑢Y(𝑘) = −𝑘6𝑥Y.(𝑘),					𝑘6 = [𝑘3 𝑘5 𝑘8]4	 (41) 

 
We further have 
 

𝑥Y.4(𝑘 + 1)𝑃:𝑥Y.(𝑘 + 1) = N𝐴.𝑥Y.(𝑘) − 𝑏.𝑘6𝑥Y.(𝑘)O
4N𝐴.𝑥Y.(𝑘) − 𝑏.𝑘6𝑥Y.(𝑘)O =

= 𝑥Y.4(𝑘)(𝐴. − 𝑏.𝑘6)4𝑃:(𝐴. − 𝑏.𝑘6)𝑥Y.(𝑘) 
(42) 

 
𝑥Y.4(𝑘)𝑄.𝑥Y.(𝑘) + 𝑟6Δ𝑢Y2(𝑘) = 𝑥Y.4(𝑘)𝑄.𝑥Y.(𝑘) + 𝑟6N−𝑘6𝑥Y.(𝑘)O

4N−𝑘6𝑥Y.(𝑘)O = 𝑥Y.(𝑘)(𝑄. + 𝑟6𝑘6;𝑘6)𝑥Y.(𝑘) (43) 
 
Based on equations (40) – (43), it follows that 
 

(𝐴. − 𝑏.𝑘6)4𝑃:(𝐴. − 𝑏.𝑘6) − 𝑃: + 𝑄. + 𝑟6𝑘6;𝑘6 = 0 (44) 
 

Let us write the Bellman equation in the following form 
 

𝑥Y.4(𝑘)𝑃:𝑥Y.(𝑘) = 𝑥Y.4(𝑘)𝑄.𝑥Y.(𝑘) + 𝑟6Δ𝑢Y2(𝑘) + N𝐴.𝑥Y.(𝑘) + 𝑏.Δ𝑢Y(𝑘)O
4𝑃:N𝐴.𝑥Y.(𝑘) + 𝑏.Δ𝑢Y(𝑘)O (45) 

 
If we differentiate of relation (45) with respect to Δ𝑢Y(𝑘), we obtain 
 

Δ𝑢Y(𝑘) + 𝑏.4𝑃:N𝐴.𝑥z1(𝑘) + 𝑏.Δ𝑢Y(𝑘)O = 0 
from which it follows that 
 

Δ𝑢Y-(𝑘) = −(𝑟6 + 𝑏.4𝑃:𝑏.)(.𝑏.4𝑃:𝐴.𝑥Y.(𝑘) (46) 
 
We will now present the algorithm for the intelligent regulator using relations (44) and (46). 

Algorithm for intelligent regulator 
1. Given discrete-time system (23) with sampling time h 
2. Choose 𝑞3 ≥ 0, 𝑟6 > 0,𝑄5 ≥ 0, 𝜆𝜖(0,1], 𝑃- = 𝐼, 𝜀 > 0, 𝑗 = 0, 𝑖 = 1, 2, … , 𝑛 − 1; 𝑛 > 0, 𝑛𝜖𝑁; as well as initial 

regulator 	𝑘- (not necessarily stabilizing) 
3. Set: 

	(𝑃:)<- = (𝑃:)<; 
 (𝑃:)<7. = (𝑃:)<=; 

4. Solve the matrix equation 
(𝑃:)<97. = l𝐴. − 𝑏.𝑘6,<m

4
(𝑃:)<9 l𝐴. − 𝑏.𝑘6,<m + 𝑄. + 𝑟6𝑘6,<

; 𝑘6,< 
5. Calculate the regulator gain 

𝑘6,<7. = N𝑟6 + 𝑏.4(𝑃:)<7.𝑏.O
(.𝑏.4(𝑃:)<7.𝐴. 

6. Apply incremental control 
NΔ𝑢-(𝑘)O

<7.
= −𝑘6,<7.𝑥.(𝑘) 

7. Stop if �𝑘6,<7. − 𝑘6,<� < 𝜀 
Otherwise, set j=j+1 and return to step 3. 

CONCLUSIONS 

In this paper, we address the tracking problem under the assumption that the signal to be tracked is known a priori 
over a bounded interval of time. We first derive the discrete-time model from the continuous-time model using the 
Generalized Hold Function (GHF), determine the degree of stability, and incorporate the incremental structure of the 
model and preview formulation. This converts the tracking problem into a regulation problem.  
 
Second, we solve the LQ regulator problem for the given model, using explicit expressions for the regulator gains 
(𝑘3 𝑘5 𝑘8). We consider two forms of algorithms: incremental and position, that have the structure of a PI regulator. 
 
Third, we design an intelligent regulator based on reinforcement learning for the same model. Further investigations 
will focus on multivariable systems and continuous time systems. 
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