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Abstract 

This study employs a novel physics-informed neural networks (PINN) approach, standard explicit 

finite difference method (EFDM) and Chen-Charpentier et al.’s finite difference method 

(CCFDM) to tackle the one-dimensional Sine-Gordon equation (SGE). Two test problems with 

known analytical solutions are investigated to demonstrate the effectiveness of these techniques. 

While the three employed approaches demonstrate strong agreement, our analysis reveals that the 

EFDM results are in the best agreement with the analytical solutions. Given the consistent 

agreement between the numerical results from the EFDM, CCFDM, PINN approach and the 

analytical solutions, all three methods are recommended as competitive options. The solution 

techniques employed in this study can be a valuable asset for present and future model developers 

engaged in various nonlinear physical wave phenomena, such as propagation of solitons in optical 

fibers. 
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1. Introduction 

Partial differential equations (PDEs) offer a robust framework for characterizing a broad 

spectrum of phenomena in engineering, mathematics, physics, biology, and chemistry. They are 

particularly adept at describing processes such as heat transfer, fluid dynamics, wave propagation 

in electronic circuits, relativistic field theory, mechanical transmission lines, and chemical 

reactions. A prominent example of a nonlinear hyperbolic PDE is the SGE, which traces its origins 

to the nineteenth century and initially emerged in studies of surfaces exhibiting constant negative 

curvature [1-2].  This equation finds widespread use in simulating and elucidating various physical 

phenomena spanning multiple scientific domains. In condensed matter physics, it serves to 

investigate phenomena like solitons (commonly referred to as "kink" and "antikink") and 

topological defects [3]. In nonlinear optics, the SGE models the propagation of optical pulses in 

nonlinear media, particularly within optical fibers [4]. Additionally, in superconductivity research, 

the SGE elucidates the behavior of Josephson junctions, crucial components in superconducting 

devices [5]. Moreover, the equation has applications in surface science, where it delineates the 

dynamics of atoms and molecules on surfaces, including the propagation of surface waves [6]. 

Furthermore, in biophysics, the SGE aids in modeling phenomena such as nerve impulse 

propagation and protein dynamics [7]. These instances illustrate merely a fraction of the extensive 

applications of the SGE across diverse scientific and engineering challenges. 

The features of the SGE have attracted considerable research interest, leading to investigations 

utilizing a variety of analytical and numerical techniques due to its broad applicability. Analytical 

methods such as the tan method, rational Exp-function method, sech method, extended tan method, 

and sine–cosine method have been applied to solve the double SGE [8]. The Daftardar-Gejji and 

Jafari method has been utilized to derive an approximate analytical solution for the SGE [9]. 
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Deresse [10] successfully integrated the double Sumudu transform with an iterative approach to 

approximate the solution for the one-dimensional coupled SGE. Azari et al. [11] employed a local 

radial basis function based on finite difference for numerical solutions of the SGE. Significant 

efforts have been devoted to developing reliable numerical techniques for handling the SGE in 

recent decades. Hong et al. [12] introduced novel classes of fully discrete energy-preserving 

numerical algorithms for the SGE under Neumann boundary conditions. Moghaderi et al. [13] 

proposed a multigrid compact FDM for solving the one-dimensional nonlinear SGE. Babu and 

Asharaf [14] utilized a differential quadrature technique based on a modified set of cubic B-splines 

to numerically solve both one and two-dimensional SGEs, as well as their coupled form. 

Shiralizadeh et al. [15] implemented the numerical method of the rational radial basis function to 

solve perturbed and unperturbed SGEs with Dirichlet or Neumann boundary conditions, 

particularly suited for cases with steep fronts or sharp gradients. Additionally, the authors 

investigated the two-dimensional stochastic time fractional SGE using the clique polynomial 

approach [16]. Novkoski et al. [17] utilized a procedure for computing the direct scattering 

transform of the periodic SGE. These recent advancements underscore the growing interest in 

addressing the challenges posed by the SGE, with researchers employing diverse numerical and 

analytical techniques to explore its solutions and properties. 

This paper aims to compare the numerical solutions of the SGE obtained through a novel deep 

learning-based approach called PINN as well as the standard EFDM and CCFDM [18]. The EFDM 

and CCFDM rely on a numerical technique known as FDM to approximate the derivatives of a 

function at discrete points within the domain. To compute function values, a grid of discrete points 

is established across the domain, and the approximate derivatives are calculated by evaluating the 

differences between function values at neighboring locations. The accuracy of FDM depends on 
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factors such as the grid step size and the order of approximation used for derivative calculations. 

On the other hand, PINN leverages machine learning to solve PDEs. Within PINN, a neural 

network is trained to grasp the underlying physics of a system and approximate the solution to a 

PDE. This enables PINNs to encapsulate the essential physics of the problem and deliver accurate 

solutions across the entire domain. The neural network is trained to minimize the residual of the 

PDE, measuring the discrepancy between the expected and actual solutions. A key advantage of 

PINN lies in its capacity to handle complex boundary conditions and geometries, which may pose 

challenges for traditional numerical techniques. However, it may entail significant computational 

costs and necessitate substantial amounts of training data. Additionally, the choice of 

hyperparameters, such as the number of layers and neurons in the neural network, can impact the 

performance of PINN.  

Since PINN is a new method for solving the PDEs, there is a lack of evidence whether PINN 

can provide a high accuracy of the solutions of different PFEs, when compared to more 

conventional numerical techniques like the finite difference method. In our previous work, we 

demonstrated that EFDM outperformed the numerical solutions computed using PINN [18] in 

solving the nonlinear parabolic differential equation of Burgers' type. In order to better examine 

the effectiveness and precision of the PINN in addressing various kinds of nonlinear PDEs, in our 

best knowledge for the first time, we compare in this work the accuracy of the EFDM, CCFDM 

and PINN approach for solving the SGE for two test problems with different initial and boundary 

conditions. This is in contrast to other works which reported numerical results obtained using only 

conventional numerical techniques (not PINN), for example, two classes of structure-preserving 

algorithms for Sine-Gordon equation, which are based on the projection approach and the 

supplementary variable method [12]. 
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The numerical results reported in this study can be a valuable resource for explanation a various 

nonlinear optical phenomena, including the propagation of solitons in optical fibers. 

 

2. The Sine-Gordon equation 

        We considered the SGE which is a nonlinear PDE of hyperbolic type given by:          

               
𝜕2𝑢(𝑥,𝑡)

𝜕𝑡2
= 𝐷

𝜕2𝑢(𝑥,𝑡)

𝜕𝑥2
− sin⁡(𝑢(𝑥, 𝑡)) + 𝐹(𝑥, 𝑡),⁡⁡⁡⁡⁡⁡𝑎 ≤ 𝑥 ≤ 𝑏,⁡⁡⁡0 ≤ 𝑡 ≤ 𝑇 ,                  (1) 

with boundary conditions:  

                                  𝑢(𝑥 = 𝑎, 𝑡) = 𝑔𝑎(𝑡),⁡⁡⁡⁡⁡𝑢(𝑥 = 𝑏, 𝑡) = 𝑔𝑏(𝑡),⁡⁡⁡⁡0 ≤ 𝑡 ≤ 𝑇⁡                           (2) 

and initial condition: 

                                        𝑢(𝑥, 𝑡 = 0) = ℎ(𝑥),⁡⁡⁡⁡⁡𝑎 ≤ 𝑥 ≤ 𝑏⁡⁡⁡                                                      (3) 

where t and x are the time and space variables, respectively.  

It is worth noting that equation (1) for F(x,t)=0, 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
|
𝑥=𝑎,𝑏

= 0, ℎ(𝑥) =

4 arctan (exp (
𝑥

√1−𝑐2
)), and  

𝜕𝑢(𝑥,𝑡=0)

𝜕𝑥
= −2

𝑐

√1−𝑐2
sech (

𝑥

√1−𝑐2
), describes kink solitons moving 

with velocity c, while for F(x,t)=0, 
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
|
𝑥=𝑎,𝑏

= 0, ℎ(𝑥) = 4 arctan (exp (−
𝑥

√1−𝑐2
)), and  

𝜕𝑢(𝑥,𝑡=0)

𝜕𝑥
= −2

𝑐

√1−𝑐2
sech (

𝑥

√1−𝑐2
), describes antikink solitons moving with velocity c. This 

special case of SGE is of high importance in examining nonlinear phenomena in optical fibers. 

 

3. Finite difference methods 

3.1 Explicit finite difference method 

Using the EFDM, where the central FD schemes are used to represent derivative terms 

𝜕2𝑢(𝑥, 𝑡)/𝜕𝑥2 = (𝑢𝑖+1
𝑗

− 2𝑢𝑖
𝑗
+ 𝑢𝑖−1

𝑗
)/(∆𝑥)2 and 𝜕2𝑢(𝑥, 𝑡)/𝜕𝑡2 = (𝑢𝑖

𝑗+1
− 2𝑢𝑖

𝑗
+ 𝑢𝑖

𝑗−1
)/
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(∆𝑡)2 , and assuming 𝐷 = 𝜋−2, and 𝐹(𝑥, 𝑡) = sin[cos(𝜋𝑥) cos⁡(𝑡)⁡], equation (1) is written in the 

following form: 

                               ⁡⁡⁡⁡⁡⁡⁡
𝑢𝑖
𝑗+1

−2𝑢𝑖
𝑗
+𝑢𝑖

𝑗−1

(∆𝑡)2
= 𝐷

𝑢𝑖+1
𝑗

−2𝑢𝑖
𝑗
⁡+𝑢𝑖−1

𝑗

(∆𝑥)2
− sin(𝑢𝑖

𝑗
) + 𝐹(𝑥𝑖, 𝑡𝑗)                          (4) 

where ),( ji
j

i txuu  , indexes i and j refer to the discrete step lengths  x and  t for the coordinate 

x and time t. The grid dimensions in x and t directions are xK  /1 and tTM  / , respectively. 

Using the FD scheme, the initial condition (2) and boundary conditions (3) are given as: 

             𝑢𝑖
1 = ℎ(𝑥𝑖),⁡⁡⁡⁡⁡𝑎 ≤ 𝑥𝑖 ≤ 𝑏,⁡⁡⁡𝑖 = 1,2, … , 𝐾⁡⁡⁡(𝑡 = 0)                                           (5)                               

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢1
𝑗
= 𝑔𝑎(𝑡𝑗),⁡⁡⁡⁡⁡𝑢𝐾

𝑗
= 𝑔𝑏(𝑡𝑗),⁡⁡⁡⁡⁡𝑗 = 1,2, … ,𝑀⁡⁡⁡(𝑥 = 𝑎⁡and⁡𝑥 = 𝑏)                           (6) 

Equation (4) represents a formula for 1j
iu  at the (i, j+1)th mesh point in terms of the known values 

along the jth time row. The truncation error for scheme (4) is 𝜖𝑇 =O(t2+x2), which can be 

reduced using small enough values of  t  and  x until the precision attained is within the error 

tolerance.  

 

3.2. Chen-Charpentier finite difference method 

Using the CCFDM, derivative terms are represented as 𝜕2𝑢(𝑥, 𝑡)/𝜕𝑥2 = (𝑢𝑖+1
𝑗

−

2𝑢𝑖
𝑗+1

+ 𝑢𝑖−1
𝑗

)/(∆𝑥)2 [19], and 𝜕2𝑢(𝑥, 𝑡)/𝜕𝑡2 = (𝑢𝑖
𝑗+1

− 2𝑢𝑖
𝑗
+ 𝑢𝑖

𝑗−1
)/(∆𝑡)2 , equation (1) is 

written in the following form: 

                            ⁡⁡⁡⁡⁡⁡⁡
𝑢𝑖
𝑗+1

−2𝑢𝑖
𝑗
+𝑢𝑖

𝑗−1

(∆𝑡)2
= 𝐷

𝑢𝑖+1
𝑗

−2𝑢𝑖
𝑗+1

⁡+𝑢𝑖−1
𝑗

(∆𝑥)2
− sin(𝑢𝑖

𝑗
) + 𝐹(𝑥𝑖 , 𝑡𝑗)                          (7) 

where ),( ji
j

i txuu  , indexes i and j refer to the discrete step lengths  x and  t for the coordinate 

x and time t. The grid dimensions in x and t directions are xK  /1 and tTM  / , respectively. 

Using the CCFD scheme (7), the initial condition is given in equation (5) and boundary conditions 

are given in equation (6). For scheme (7), the truncation error is 𝜖𝑇 = O(t2+x2), which can be 

decreased by choosing a small enough values of  t  and  x. 
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    4. Physics-informed neural networks  

    4.1 The basic concept of the physics-informed neural networks is solving PDEs 

The PINN offers a machine-learning approach for approximate solutions to PDEs. The 

general form of PDEs, along with their associated initial and boundary conditions, is as follows:    

                                     

 

],0[,),,(),(

),()0,(

],0[,,0
),(

Ttxtxgtxu

xxhtxu

Ttxu(x,t)Ν
t

txu

g 








                                           (8)  

Here, N is a differential operator, dRx   and Rt  represent spatial and temporal 

dimensions respectively, dR  is a computational domain, g  is a computational 

domain of the exposed boundary conditions, ),( txu  is the solution of the PDEs with initial 

condition )(xh  and boundary conditions ),( txg . 

    The approximator network and the residual network are the two subnets that make up PINN in 

its original construction [20]. The approximator network receives input ),( tx ,
 
undergoes the 

training process, and provides an approximate solution ),( txu


 as an output. The approximator 

network utilized for training employs a grid of points, known as collocation points, sampled either 

randomly or regularly from the simulation domain. To update the weights and biases of the 

approximator network during training, a composite loss function of the following structure was 

minimized:                 

                                                                 br LLLL  0                                                                         (9) 

where: 

       

2

1

)],([),(
1




rN

i

iiii

r
r txuNtxu

N
L          
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2

10
0

0

)]),(
1





N

i

iii htxu
N

L                                                     (10) 

                                                      

2

1

)]),(
1




bN

i

iii
b gtxu

Nb
L  

Here, rL , 0L , and bL  represent residuals of governing equations, initial and boundary conditions, 

respectively. rN , 0N , and N are the numbers of mentioned collocation points of the 

computational domain, initial and boundary conditions, respectively. The residual network, an 

integral but non-trainable component within the PINN model, computes these residuals. To 

calculate the residual rL in PINN, derivatives of the outputs concerning the inputs x and t are 

required. Automated differentiation is employed for this purpose, as it enables the aggregation of 

derivatives from individual constituent operations to compute the derivative of the entire 

composition. This methodology distinguishes PINNs from earlier endeavors in the early 1990s, 

which relied on manually deriving back-propagation rules. This approach stands as a pivotal 

facilitator for the development of PINNs. Presently, most deep learning frameworks, including 

TensorFlow and PyTorch, possess robust automatic differentiation capabilities, eliminating the 

need for laborious derivations or numerical discretization when computing derivatives across all 

spatial and temporal orders. 
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Figure 1. The architecture of a PINN and its standard training procedure were developed 

to tackle a basic partial differential equation, with PDE and Cond denoting the governing 

equations, and R and I representing the residuals. Following training, the approximator 

network furnishes an estimated solution. The residual network, an intrinsic but non-

trainable element of PINN, is adept at computing derivatives of the approximator network 

outputs with respect to inputs and generating the composite loss function, symbolized by 

MSE.  

A schematic of the PINN is demonstrated in Figure 1 in which a simple partial differential 

equation uyfxf  //  is used as an example. The approximator network is used to 

approximate the solution ),( txu  which then goes to the residual network to calculate the residual 

loss rL , boundary condition loss bL , and initial condition loss 0L . The weights and biases of the 

approximator network are trained using a composite loss function consisting of residuals rL , 0L , 

and bL  through gradient-descent technique based on the back-propagation. 
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 4.2 Implementation of PINN in solving the Sine-Gordon equation 

      For the development of the PINN model to solve the SGE, we utilized the DeepXDE library 

[21]. Our PINN architecture comprises two inputs (x,t) and consists of 3 layers, each containing 

40 neurons with sigmoid activation. We initially determined the hyperparameter values using our 

evolutionary optimization framework proposed in [22], followed by additional manual fine-tuning. 

In a previous study [18], we employed the tanh activation function to solve the Burgers equation. 

However, in this study, the sigmoid activation function proved to deliver the best performance and 

accuracy. The set of collocation points is divided into three subsets. The largest subset, comprising 

8000 collocation points, corresponds to the general problem domain. The second and third subsets, 

containing 400 and 800 collocation points respectively, are utilized to enforce boundary and initial 

conditions. We experimented with varying weights for the initial and boundary conditions as well 

as different numbers of interior collocation points. When the boundary condition weights were too 

low, oscillations appeared near the domain edges. Additionally, models trained with 4000 and 

2000 interior collocation points exhibited increased relative error rates, rising from 2% (for 8000) 

to 9% and 11%, respectively. Further increasing the number of collocation points, however, 

showed no significant improvement in accuracy. These conditions remain consistent across all test 

cases. The PINN training process involves two stages. Initially, we employ the Adam algorithm to 

optimize weights and biases for 60000 epochs in the first phase, using a learning rate of 10-3. 

Subsequently, in the second phase, following completion of a "global" search, the Limited Memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm is employed to further approach the 

optimal solution according to [23]. The entire training procedure, executed on the nVidia Tesla T4 

GPU accelerator, takes approximately 248 seconds. It is conceivable that employing different 

hyper-parameters, such as alternative activation functions, training methods, and PINN topologies, 

may yield improved solutions in practice. However, we opted for hyper-parameter values 

commonly used in the SGE literature, acknowledging that identifying optimal hyper-parameters is 

a demanding and time-intensive task beyond the scope of our study. 

This paper compares the accuracy of numerical results obtained for two test problems of the 

SGE using EFD, CCFD and PINN methods against analytical solutions documented in the 

literature. 
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        5. Numerical results and discussion 

     To illustrate the accuracy of the EFDM, CCFDM and PINN approach, several numerical 

computations are carried out for two test problems. 

Test problem 1:  Consider the SGE (1) with the initial condition:                                  

                                    𝑢(𝑥, 𝑡 = 0) = cos(𝜋𝑥),   0< 𝑥 < 1                                                        (11) 

 and boundary conditions:       

                                 𝑢(𝑥 = 0, 𝑡) = cos(𝑡),     0≤ 𝑡 ≤ 2                                                            (12) 

                                 𝑢(𝑥 = 1, 𝑡) = − cos(𝑡),     0≤ 𝑡 ≤ 2                                                    

Assuming 𝐷 = 𝜋−2 and 𝐹(𝑥, 𝑡) = sin[cos(𝜋𝑥) cos⁡(𝑡)⁡] in SGE (1), its EFD solution can be 

written as: 

                     
𝑢𝑖
𝑗+1

−2𝑢𝑖
𝑗
+𝑢𝑖

𝑗−1

(∆𝑡)2
=

1

𝜋2

𝑢𝑖+1
𝑗

−2𝑢𝑖
𝑗
⁡+𝑢𝑖−1

𝑗

(∆𝑥)2
− sin(𝑢𝑖

𝑗
) + sin⁡[cos(𝜋𝑥𝑖) cos⁡(𝑡𝑗)⁡]               (13) 

𝑢𝑖
𝑗+1

= 𝑟𝑢𝑖−1
𝑗

+ 2(1 − 𝑟)𝑢𝑖
𝑗
+ 𝑟𝑢𝑖+1

𝑗
− 𝑢𝑖

𝑗−1
−(∆𝑡)2sin(𝑢𝑖

𝑗
) + (∆𝑡)2sin⁡[cos(𝜋𝑥𝑖) cos⁡(𝑡𝑗)⁡] 

where = (∆𝑡)2/(𝜋∆𝑥)2 . 

CCFD solution of SGE (1) can be written as: 

                     
𝑢𝑖
𝑗+1

−2𝑢𝑖
𝑗
+𝑢𝑖

𝑗−1

(∆𝑡)2
=

1

𝜋2

𝑢𝑖+1
𝑗

−2𝑢𝑖
𝑗+1

⁡+𝑢𝑖−1
𝑗

(∆𝑥)2
− sin(𝑢𝑖

𝑗
) + sin⁡[cos(𝜋𝑥𝑖) cos⁡(𝑡𝑗)⁡]               (14) 

𝑢𝑖
𝑗+1

= {𝑟𝑢𝑖−1
𝑗

+ 2𝑢𝑖
𝑗
+ 𝑟𝑢𝑖+1

𝑗
− 𝑢𝑖

𝑗−1
−(∆𝑡)2sin(𝑢𝑖

𝑗
) + (∆𝑡)2 sin[cos(𝜋𝑥𝑖) cos(𝑡𝑗)]} /(1 + 2𝑟) 

where = (∆𝑡)2/(𝜋∆𝑥)2 . The analytical solution of the problem is given as [24]:           

                                                   𝑢(𝑥, 𝑡) = cos(𝜋𝑥) cos⁡(𝑡)⁡                                                       (15) 

Equations (13) and (14) represent the EFD and CCFD solutions of this test problem, respectively. 

The initial condition (11) in terms of finite differences becomes:  

              ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢𝑖
1 = cos(𝜋𝑥𝑖) ,⁡⁡⁡⁡⁡0 < 𝑥𝑖 < 1,⁡⁡⁡𝑖 = 1,2, … , 𝐾⁡⁡⁡(𝑡 = 0)                               (16)                                           

and boundary conditions (12) are given as: 
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  ⁡⁡⁡⁡⁡𝑢1
𝑗
= cos(𝑡𝑗),⁡⁡⁡⁡⁡𝑢𝐾

𝑗
= −cos(𝑡𝑗) ,⁡⁡⁡⁡⁡𝑗 = 1,2, … ,𝑀⁡⁡⁡(𝑥 = 0⁡and⁡𝑥 = 1)                (17)                 

Figure 2 shows our numerical solution of the SGE (1) obtained using EFD scheme (step lengths 

are x=0.05 and t=0.0001), CCFD scheme (step lengths are x=0.05 and t=0.0001) and PINN 

in 3-dimensions. Since Figure 2 does not permit a precise comparison of the three numerical 

methods, we calculated the root mean square error, which is represented by:  

                                      



K

i

analit
i

method
i uu

N
Error

1

21
                                                     (18) 

where K is the total number of observed points along x axis. Equation (18) was selected as the 

error function to assess the method's accuracy. A lower error value indicates that the method 

provides a better distribution of u(x,t) over a given time interval. Table 1 (for T=0.1), Table 2 (for 

T=1.0), and Table 3 (for T=2.0) show the comparison of the numerical solutions of Test Problem 

1 produced using the EFDM, CCFDM and PINN approach with the analytical solutions. The 

accuracy and computational time of the EFDM, CCFDM and PINN approach in solving Test 

problem 1 at different times T is shown in Tables 4 and 5. Since PINN training does not carry out 

classical time stepping scheme, all times in Table 5 are identical and equal to training time. The 

EFDM offers the best match with the analytical solution and the shortest computational time, it 

should be highlighted.  
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(a)                                                                  (b) 

 

                                   (c) 

Figure 2. (a) EFD, (b) CCFD and (c) PINN solutions of Test problem 1 

in 3-dim at different times.  

Table 1. Comparison of numerical and analytical solutions of the Test problem 1 for T=0.1. 

x EFDM solution CCFDM solution PINN solution Analytical 

solution 

0.1 0.946216 0.948641 0.944360 0.946258 

0.2 0.805308 0.804981 0.802940 0.804935 

0.3 0.584988 0.584852 0.584184 0.584819 



14 
 

0.4 0.307206 0.307475 0.309658 0.307458 

0.5 0.000000 0.000000 0.000000 0.000000 

0.6 -0.307206 -0.307475 -0.302658 -0.307458 

0.7 -0.584988 -0.584852 -0.582750 -0.584820 

0.8 -0.805308 -0.804981 -0.805884 -0.804935 

0.9 -0.946217 -0.948641 -0.947661 -0.946258 

1.0 -0.994954 -0.994994 -0.995012 -0.994954 

 

Table 2. Comparison of numerical and analytical solutions of the Test problem 1 for T=1.0. 

x EFDM solution CCFDM solution PINN solution Analytical 

solution 

0.1 0.516640 0.522306 0.514519 0.513443 

0.2 0.443820 0.446852 0.440810 0.436761 

0.3 0.323080 0.330305 0.325625 0.317325 

0.4 0.170390 0.169535 0.178679 0.166828 

0.5 0.000000 0.000000 0.000000 0.000000 

0.6 -0.170390 -0.169535 -0.152560 -0.166828 

0.7 -0.323080 -0.330305 -0.30311 -0.317325 

0.8 -0.443820 -0.446852 -0.42431 -0.436761 

0.9 -0.516640 -0.522306 -0.50597 -0.513443 

1.0 -0.539870 -0.540302 -0.54016 -0.539866 
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Table 3. Comparison of numerical and analytical solutions of the Test problem 1 for T=2.0. 

x EFDM solution CCFDM solution PINN solution Analytical 

solution 

0.1 -0.395283 -0.399106 -0.389806 -0.396165 

0.2 -0.335927 -0.337419 -0.328859 -0.336998 

0.3 -0.241973 -0.246279 -0.237416 -0.244843 

0.4 -0.127501 -0.128838 -0.122575 -0.128722 

0.5 0.000000 0.000000 0.000000 0.000000 

0.6 0.127500 0.128838 0.131383 0.128722 

0.7 0.241976 0.246279 0.244583 0.244844 

0.8 0.335927 0.337419 0.333709 0.336998 

0.9 0.395283 0.399106 0.392060 0.396165 

1.0 0.416553 0.416146 0.418024 0.416553 

 

      The accuracy of the EFDM, CCFDM and PINN approach in solving Test problem 1 at different 

times is shown in Table 4. The EFDM offers the best match with the analytical solution, it should 

be highlighted.  

    Table 4. The accuracy of EFDM, CCFDM and PINN approach of the Test problem 1 at different 

times T. 

T Error (EFDM) Error (CCFDM) Error (PINN) 

0.1 2.0710-4 3.9410-3 4.5110-3 

1.0 4.6510-4 8.4210-3 9.9810-3 
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2.0 1.5210-3 3.6610-3 4.7610-3 

 

Table 5. Computational time of EFDM, CCFDM and PINN approach of the Test problem 1 at 

different times T. 

T Computational time (s) 

EFDM 

Computational time (s) 

CCFDM 

Computational time (s) 

PINN 

0.1 1.5 2.0 248.0 

1.0 20.5  21.5 248.0 

2.0 38.5 41.0 248.0 

 

Test problem 2:  Consider the SGE (1) with the initial condition:                                  

                                    𝑢(𝑥, 𝑡 = 0) = sin(𝜋𝑥),   0< 𝑥 < 1                                                        (19) 

 and boundary conditions:       

                                          𝑢(𝑥 = 0, 𝑡) = 0,     0≤ 𝑡 ≤ 2                                                            (20) 

                                           𝑢(𝑥 = 1, 𝑡) = 0,     0≤ 𝑡 ≤ 2                                                    

Assuming 𝐷 = 1 and 𝐹(𝑥, 𝑡) = 0 in SGE (1), its EFD solution of SGE (1) can be written as: 

                                𝑢𝑖
𝑗+1

= 𝑠𝑢𝑖−1
𝑗

+ 2(1 − 𝑠)𝑢𝑖
𝑗
+ 𝑠𝑢𝑖+1

𝑗
− 𝑢𝑖

𝑗−1
−(∆𝑡)2sin(𝑢𝑖

𝑗
)                   (21) 

where 𝑠 = (∆𝑡)2/(∆𝑥)2.  

CCFD solution of SGE (1) can be written as: 

                               𝑢𝑖
𝑗+1

= {𝑠𝑢𝑖−1
𝑗

+ 2𝑢𝑖
𝑗
+ 𝑠𝑢𝑖+1

𝑗
− 𝑢𝑖

𝑗−1
−(∆𝑡)2sin(𝑢𝑖

𝑗
)}/(1 + 2𝑠)               (22) 

The analytical solution of the problem is given as [25]:           

                                  𝑢(𝑥, 𝑡) =
1

2
⁡[sin(𝜋(𝑥 + 𝑡)) + sin(𝜋(𝑥 − 𝑡))] ⁡                                    (23) 
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Equations (21) and (22) represent the EFD and CCFD solutions of this test problem, the initial 

condition (19) in terms of finite differences becomes:  

                ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑢𝑖
1 = sin(𝜋𝑥𝑖) ,⁡⁡⁡⁡⁡0 < 𝑥𝑖 < 1,⁡⁡⁡𝑖 = 1,2, … , 𝐾⁡⁡⁡(𝑡 = 0)                               (24)                                           

and boundary conditions (20) are given as: 

                 ⁡⁡⁡⁡⁡𝑢1
𝑗
= 0,⁡⁡⁡⁡⁡𝑢𝐾

𝑗
= 0,⁡⁡⁡⁡⁡𝑗 = 1,2, … ,𝑀⁡⁡⁡(𝑥 = 0⁡and⁡𝑥 = 1)                          (25)                 

Figure 3 depicts our numerical solution of the SGE (1) obtained using EFD scheme (step lengths 

are x=0.05 and t=0.0001), CCFD scheme (step lengths are x=0.05 and t=0.0001) and PINN 

approach in 3-dimensions.  

 

(a)                                                                  (b) 

 

                                      (c) 
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Figure 3. (a) EFD, (b) CCFD and (c) PINN solutions of Test problem 2 

in 3-dim at different times.  

The comparison of the numerical solutions of the Test problem 2 obtained using the EFDM, 

CCFDM and PINN approach with analytical solution is displayed in Table 6 (for T=0.01), Table 

7 (for T=0.1) and Table 8 (for T=1.0). The accuracy and computational times of the EFDM, 

CCFDM and PINN approach in solving Test problem 2 at different times T is shown in Tables 9 

and 10. The EFDM offers the best match with the analytical solution, it should be highlighted.  

 

Table 6. Comparison of numerical and analytical solutions of the Test problem 2 for T=0.01. 

x EFDM solution CCFDM solution PINN solution Analytical 

solution 

0.1 0.308860 0. 308851 0.311214 0.308858 

0.2 0.587472 0. 587471 0.590860 0.587484 

0.3 0.808704 0. 808586 0.813018 0.808602 

0.4 0.950430 0. 950552 0.955571 0.950568 

0.5 0.999374 0. 999470 1.003996 0.999487 

0.6 0.950430 0. 950552 0.953803 0.950568 

0.7 0.808704 0. 808586 0.810964 0.808601 

0.8 0.587472 0. 587471 0.590098 0.587483 

0.9 0.308860 0. 308851 0.311204 0.308858 

1.0 0.000000 0.000000 0.000000 0.000000 
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Table 7. Comparison of numerical and analytical solutions of the Test problem 2 for T=0.1. 

x EFDM solution CCFDM solution PINN solution Analytical 

solution 

0.1 0.292114 0.292499 0.309108 0.293742 

0.2 0.556125 0.556473 0.589712 0.558731 

0.3 0.765498 0. 766098 0.811483 0.769027 

0.4 0.900292 0.900768 0.951017 0.904046 

0.5 0.946313 0.947189 0.994443 0.950570 

0.6 0.900291 0.900768 0.939432 0.904046 

0.7 0.765497 0.766098 0.794477 0.769027 

0.8 0.556124 0.556473 0.576097 0.558731 

0.9 0.292114 0.292499 0.305305 0.293742 

1.0 0.000000 0.000000 0.000000 0.000000 

 

Table 8. Comparison of numerical and analytical solutions of the Test problem 2 for T=1.0. 

x EFDM solution CCFDM solution PINN solution Analytical 

solution 

0.1 -0.305795 -0.294496 -0.311997 -0.309017 

0.2 -0.582285 -0.560186 -0.590231 -0.587784 

0.3 -0.801375 -0.771066 -0.812557 -0.809016 

0.4 -0.942320 -0.906476 -0.957621 -0.951055 

0.5 -0.990102 -0.953139 -1.010339 -0.999999 

0.6 -0.942334 -0.906476 -0.963884 -0.951055 
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0.7 -0.801407 -0.771066 -0.821299 -0.809016 

0.8 -0.582327 -0.560186 -0.596018 -0.587784 

0.9 -0.305873 -0.294496 -0.310942 -0.309016 

1.0 0.000000 0.0000000 0.000000 0.000000 

 

Table 9. The accuracy of EFDM, CCFDM and PINN approach of the Test problem 2 at different 

times T. 

T Error (EFDM) Error (CCFDM) Error (PINN) 

0.01 8.8010-5 9.8710-5 3.3210-3 

0.1 3.0910-3 3.1910-3 9.9810-3 

1.0 6.8210-3 6.9910-3 7.4510-3 

 

Table 10. Computational time of EFDM, CCFDM and PINN approach of the Test problem 2 at 

different times T. 

T Computational time (s) 

EFDM 

Computational time (s) 

CCFDM 

Computational time (s) 

PINN 

0.01 0.2 0.3 248.0 

0.1 1.1  1.8 248.0 

1.0 19.0 21.0 248.0 

  

     Finally, to the best of our knowledge, we compare the accuracy of the EFD, CCFDM and PINN 

approach in solving the SGE for the first time in this study. We found that the EFDM, with 

appropriately small step lengths  x and  t, demonstrates the best accuracy compared to the 
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numerical solutions generated using the CCFDM and PINN approach. The solution methodologies 

employed in this study can be a valuable resource for current and future model developers tackling 

a range of nonlinear physical wave phenomena, including the propagation of solitons in optical 

fibers. 

 

5. Conclusion 

       We compared our numerical results for solving the nonlinear hyperbolic partial differential 

SGE, obtained using EFDM, CCFDM and a novel PINN approach, with the analytical solutions 

reported in the literature. We demonstrated that while all three employed methods show good 

agreement with the analytical solutions, while the EFDM exhibits superior accuracy compared to 

the numerical solutions generated using the CCFDM and PINN approach. Since the numerical 

results from all three methods closely match the analytical solutions, these approaches are 

competitive and worthy of endorsement. The solution techniques used in this study can be applied 

to developing numerical models for other nonlinear PDEs in the future.  

 

Abbreviations: 

CCFDM: Chen-Charpentier finite difference method 

EFDM: Explicit finite difference method 

L-BFGS: Limited memory Broyden-Fletcher-Goldfarb-Shanno  

PDE: Partial differential equation 

PINN: Physics informed neural networks 

SGE: Sine-Gordon equation 
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