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Abstract

In 2018, Arizmendi introduced the concept of energy of a vertex
of a graph, EG(v), i.e., the distribution of graph energy E(G) over
the vertices of the underlying graph G. We now show how EG(v)
should actually be calculated.

1 Introduction

The energy of a graph G, introduced in the 1970s and defined as

E(G) =

n∑
i=1

|λi| (1)

is a much studied spectrum-based graph invariant [8] with noteworthy

connections to chemistry [6, 7]. Relatively recently, Octavio Arizmendi

with various coauthors [1–4] made a significant extension of the theory of

graph energy by inventing the concept of energy of a vertex of a graph,

defined as

EG(vi) = |A(G)|i,i (2)
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which, of course, satisfies the relation

E(G) =

n∑
i=1

EG(vi)

and thus implies a distribution of graph energy among the vertices of the

underlying graph.

Until now, to this authors’ best knowledge, no numerical calculation of

vertex energy was reported, see for instance [5,9–11]. The main reason for

this may lie in the fact that for calculating EG(v) one needs to know not

only the graph eigenvalues, but also the graph eigenvectors. The present

tutorial is aimed at assisting such calculations in the future.

Throughout this paper, G denotes a simple graph of order n, whose

vertices are labeled by v1, v2, . . . , vn. The adjacency matrix of G, denoted

byA(G), is the n×nmatrix, whose (i, j)-element is equal to 1 if the vertices

vi and vj are adjacent, and equal to zero otherwise. The eigenvalues

of A(G) are λ1, λ2, . . . , λn, forming the spectrum of G and used in the

definition of graph energy, Eq. (1).

The exact meaning of the matrix |A(G)| in Eq. (2) will be explained

later, see Eq. (6).

2 Reminders from linear algebra

If λ1, λ2, . . . , λn are the eigenvalues of the adjacency matrix A(G), then

for i = 1, 2, . . . , n, the following relations holds:

Ci A(G) = λi Ci (3)

where Ci is an n-tuple of (real or complex) numbers

Ci = (Ci,1, Ci,2, . . . , Ci,n)

which can be viewed as an n-dimensional vector or a (1× n)-matrix. The

vectors Ci , i = 1, 2, . . . , n, are the eigenvectors of the adjacency matrix

and thus the eigenvectors of the underlying graph G. They can be chosen
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so as to be normalized, i.e.,

C2
i,1 + C2

i,2 + · · ·+ C2
i,n = 1 for all i = 1, 2, . . . , n

and mutually orthogonal, i.e.,

Ci,1 Cj,1 + Ci,2 Cj,2 + · · ·+ Ci,n Cj,n = 0 for all 1 ≤ i < j ≤ n.

Then one speaks of orthonormal eigenvectors.

Eqs. (3) for i = 1, 2, . . . , n, can be combined into


C1

C2

...

Cn

A(G) =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

...

0 0 · · · λn



C1

C2

...

Cn


or, simpler as

CA(G) =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

...

0 0 · · · λn

C (4)

where C is the (n× n) matrix


C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

...
...

Cn,1 Cn,2 · · · Cn,n

 .

If the eigenvectors are orthonormal, then the matrixC has the property

CCt = Ct C = In

where In is the unit matrix of order n, whereas Ct is the transpose (or, if

some matrix elements are complex, the conjugate transpose) of C. This

means that (Ct)i,j = Cj,i .
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Bearing this in mind, by multiplying Eq. (4) from left-hand side by

Ct, we arrive at

A(G) = Ct


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

...

0 0 · · · λn

C .

Let f(x) be any function of the variable x, such that f(λi) , i = 1, 2, . . . , n,

are well defined quantities. Then the matrix function f(A(G)) is defined

as

f(A(G)) = Ct


f(λ1) 0 · · · 0

0 f(λ2) · · · 0
...

...
...

...

0 0 · · · f(λn)

C . (5)

Now, |A(G)| is the special case of Eq. (5), when f(x) = |x|, i.e.,

|A(G)| = Ct


|λ1| 0 · · · 0

0 |λ2| · · · 0
...

...
...

...

0 0 · · · |λn|

C . (6)

3 Calculating vertex energy

From Eq. (6), |A(G)|i,i can be directly calculated. First note that the

(k, h)-element of the matrix


|λ1| 0 · · · 0

0 |λ2| · · · 0
...

...
...

...

0 0 · · · |λn|


is equal to |λk| if k = h, and is equal to zero otherwise.
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Now, using the laws of matrix multiplication, we get:

|A(G)|i,i =

Ct


|λ1| 0 · · · 0

0 |λ2| · · · 0
...

...
...

...

0 0 · · · |λn|

C


i,i

=

n∑
k=1

n∑
h=1

(Ct)i,k


|λ1| 0 · · · 0

0 |λ2| · · · 0
...

...
...

...

0 0 · · · |λn|


k,h

Ch,i

=

n∑
k=1

(Ct)i,k |λk|Ck,i =

n∑
k−1

Ck,i |λk|Ck,i

which finally yields [1]

|A(G)|i,i =
n∑

k=1

|λk|C2
k,i

and

EG(vi) =
n∑

k=1

|λk|C2
k,i . (7)

Remark. In the exceptional case when Ck,i is complex-valued, namely

when Ck,i = ak,i+ i bk,i, then the term C2
k,i in Eq. (7) and elsewhere needs

to be replaced by a2k,i + b2k,i.

4 Concluding note

In order to calculate the fraction of the energy of the graph G, associated

with the vertex vi, that is EG(vi), one has to determine the eigenvalues

and the orthonormal eigenvectors of this graph, and then apply Eq. (7).
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Fig. 1. Energies of vertices of trees of order six.
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Graph eigenvalues and eigenvectors should be straightforwardly obtain-

able by using standard computational software. Therefore, calculations of

numerical values of vertex energies, their analysis and possible applica-

tions, may follow soon.

In Figure 1 we display the vertex energies of a few trees. These exam-

ples may be found useful by those who intend to perform calculations of

EG(vi), enabling them to verify the correctness of the results obtained.
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