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Abstract: This article delivers a new Preisach model representing the correlation between the elasto-
plastic behavior of structural mild steel under axial monotonic and cyclic loading with damage. The
newly formed model is based on the experimentally defined correlation between axial monotonic and
cyclic behavior of structural mild steel. To examine the monotonic and cyclic behavior of structural
mild steel and find fitting material properties for the model, monotonic and cyclic axial tensile tests
are performed. Tests are executed on coupons of the commonly used European structural steel
5275. The model represents a mathematical description of modified single-crystal material behavior
under monotonic loading. Two different approaches were used to describe damage in the multilinear
mechanical model. The excellent agreement with experimental results is achieved by infinitely linking
many single-crystal elements in parallel, forming the polycrystalline model. This model provides a
good solution for everyday engineering practice due to its geometric representation in the form of the
Preisach triangle and the lower costs of monotonic tests used to define material properties compared
to cyclic tests.

Keywords: monotonic axial strain; cyclic loading; Preisach model; hysteresis loop; hysteresis skeleton
curve

MSC: 74C15

1. Introduction

Elasto-plastic behavior of structural mild steel members is very important in structural
design. Under cyclic loading, the working stress level exceeds the elastic limit and becomes
much higher than under monotonic loading [1]. A typical representative of cyclic loading
is seismic loading, characterized by repeated inelastic strains. Earthquakes are natural
disasters that can cause significant damage to buildings, infrastructure, and human life [2].
When an earthquake occurs, the mild steel structural members may experience small num-
bers of large displacement cycles, where the material is working well within the inelastic
range. The performance of structural steel members to seismic loading is affected by their
geometrical characteristics and by the hysteretic response of the structural steel material [3].
The cyclic response of structural steel material under large inelastic strains, counting the
Bauschinger effect, cyclic softening or hardening, and damage accumulation, is much
different from its monotonic response [4]. Structural mild steels have a characteristic yield
plateau in their stress—strain monotonic response, which vanishes under cyclic loading.
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An accurate description of material behavior is essential for precise and reliable
response prediction of the member or structure under monotonic or cyclic loading.

While there is a significant amount of experimental data available on cyclic plasticity
of structural steel, there are a limited number of published papers on cyclic deformation at
large strain ranges due to limitations in test setups and issues with specimen buckling [5-7].
This paper presents an experimental investigation on the stress—strain characteristics of
structural mild steel subjected to large repeated cyclic plastic deformations. The experimen-
tal program aimed to compare the material behavior under monotonic and cyclic loading
and to establish a correlation between them. Additionally, the study examined the effects
of loading history on the cyclic response of structural mild steel.

The cyclic behavior of mild structural steel has been studied experimentally by various
authors [8,9]. Their results reveal that the material’s cyclic characteristics are not accurately
portrayed by the monotonic hardening curve. However, for proportional loading, there is a
specific cyclic loading amplitude for which the stabilized stress amplitude will align with
the monotonic stress—strain curve [8]. When fully reversed cyclic amplitudes exceed this
value, cyclic hardening occurs, while for amplitudes smaller than this value, the stabilized
stress does not surpass the initial yield stress under monotonic loading. Regardless of
the loading amplitude, the stress—strain loops are smooth without any irregularities and
display a strong Bauschinger effect.

Currently, different constitutive models are widely used in the design of structural
elements. However, defining a precise constitutive model for cyclic loading requires
accurate knowledge of the material behavior and its properties. These values may be
estimated by cyclic tests. Due to the high cost of cyclic tests in comparison to monotonic
tests, the correlation of results must be achieved. In this paper, the correlation between
these two types of behavior is established through the linkage of the hysteresis skeleton
curve and monotonic loading curve.

2. Experimental Studies
2.1. Specimen Details

The structural steel type 5275 is considered in this study. Observations are conducted
on coupons produced from hot-rolled plates. The test specimens were cut in the rolling
direction. The hot-rolled plates are thick enough to machine into round coupons. In order to
prevent the coupons from buckling during compression, the test specimens were machined
into round coupons with a reduced section effective length, following the test method for
axial loading constant-amplitude low-cycle fatigue of metallic materials [10], as illustrated
in Figure 1.
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Figure 1. Cyclic round coupon.

The coupons had a section diameter of 10 mm and a reduced length of 30 mm, resulting
in a section length-to-diameter ratio of 3. The reduced area and transition zone were shaped
using numerically controlled equipment to detour any undercut. To guarantee consistency
across all tests, the surface finish was carefully polished using sandpaper. It is worth noting
that standards for tensile test procedures, such as the American Society for Testing and
Materials Standard [11] and Chinese Tensile Testing Standard [12], recommend large section
length-to-diameter ratios for round coupons, as compression buckling is not considered.
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Because of those recommendations, coupons used for only tensile tests are as shown in
Figure 2.
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Figure 2. Only tension round coupon.

To validate the results of the cyclic tension—compression tests, we compared the stress—
strain curves acquired from a uniaxial tension test using the cyclic coupon sample (Figure 1)
with those from a standard coupon specimen (Figure 2). The impact of the cyclic specimens’
head widening on the measured stress—strain responses is negligible.

2.2. Material Properties

Twenty monotonic tensile loading tests were conducted at room temperature in accor-
dance with [13]. The tests were carried out at a constant strain rate of 3 mm/min. Standard
coupon samples, as illustrated in Figure 2, were used in these monotonic tensile coupon
tests to establish the fundamental engineering stress—strain characteristics of the material.
The mean material properties obtained from the tensile coupon tests are summarized in
Table 1. This includes the initial Young’s modulus E, upper yield point oy, the lower yield
point Ty, Liiders strain ¢, maximum stress ¢, and strain ¢, under tension, and the stress
and strain under fracture (¢p, ep) established on a gauge length of 50 mm. The material
properties we obtained were used to help analyze the results of the cyclic tests. It is impor-
tant to note that we also conducted a monotonic tensile test on two cyclic coupon specimens,
as illustrated in Figure 1, to validate the results of the cyclic tension—-compression tests.

Table 1. Mean values and standard deviation of material characteristics obtained from direct tensile

tests.
Steel E[GPal o, [MPal o, [MPal e [%] oy [MPal  e,[%]  op[MPal  ep [%]
Grade uy ly L7 u ul70 D D [%
5275 218.202 344.0508 286.857 1.3857 452563 189855  297.564 42.837
Standard Deviation 6.327 21.45 20.08 0.082 27.86 1.126 20.934 2.927

2.3. Test Configuration and Loading Protocols

A total of six cyclic loading tests were conducted at room temperature following
European Standard ISO 12106 [10]. The cyclic tension—compression loading tests were
conducted on cyclic coupon specimens subjected to cyclic straining using a universal
tension—compression fatigue loading machine SHIMADZU Servo Pulser at a strain rate
of 0.1 Hz. This test’s rate minimizes the influence of temperature. Hydraulic grips were
employed to secure the coupons, allowing for both tensile and compressive loads, as
depicted in Figure 3.
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Figure 3. Test equipment configuration.

All of the tests were displacement controlled using the extensometer to eliminate the
effect of possible grip slippage or deformation outside of the effective length. The exten-
someter SHIMADZU SG 50-100, Shimadzu, Kyoto, Japan (Figure 4a) with a gauge length
of 50 mm was used for monotonic tests, while a SHOWA-SOKI TCK-1-IF extensometer
Showa Sokki, Tokyo, Japan (Figure 4b) with a gauge length of 25 mm is used for cyclic tests.

Figure 4. Extensometers used for (a) monotonic tests; (b) cyclic tests.

The cyclic ascend protocol was considered in this study, through three different load
histories (A, B, and C), as shown in Figure 5. Load histories are formed with an equal strain
increment of £0.5% after each five-cycle loading phase up to +3.0% but with different
starting cycle amplitudes. Each strain amplitude was repeated for five cycles to obtain a
fairly saturated response from the examined steel. The cyclic tests on two different coupons
are conducted for each of the three load histories. The load histories, including the number
of cycles for all samples tested under cyclic loading, are presented in Table 2. It is important
to note that after completing a series of cyclic loading, each sample is first unloaded and
then pulled until complete rupture under tension.

Table 2. Number of cycles for different load histories.

e[%] +0.5 +1 +1.5 +2 +2.5 +3 Load History

-3 5 5 5 5 5 5

A.
11-4 5 5 5 5 5 5
1I1-5 / 5 5 5 5 5

Number of cycles B.
I-6 / 5 5 5 5 5
1I1-7 / / / 5 5 5

C.
-8 / / / 5 5 5
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Figure 5. Load histories for cyclic ascend load regime according to Table 2: (a) Load history A for
coupons III-3 and I1I-4; (b) Load history B for coupons III-5 and III-6; (c) Load history A for coupons
IT1-7 and III-8.

The load, displacement, strain, and input stress were all measured using data acquisi-
tion equipment and logged using the SHIMADZU computer packages, TRAPEZIUMX-V.

2.4. Test Results

The failure modes observed in the monotonic tensile loading test samples and the
cyclic tension—compression loading test samples on structural mild steel are shown in
Figures 6 and 7, respectively. Necking occurred for all the specimens. It is important to
note that none of the test specimens exhibited buckling in compression.

S —— L W W L W

— TTTARLI T pebaaasiad

Figure 7. Failure modes for cyclic tension-compression test specimens.

Stress—strain responses during cyclic loading are depicted in Figures 8-10 for applied
load histories. In the following figures, the coupon and load history can be identified via
Table 2. The first index in the specimen label stands for the type of the test (I—monotonic
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tensile loading test; IIl—cyclic loading test), while the second index denotes an order

number of coupons in the test method.
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Figure 8. Test results for cyclic load history A.
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Figure 9. Test results for cyclic load history B.
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Figure 10. Test results for cyclic load history C.
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The experimental tests showed the formation of full, regular, and concentrated hys-

teresis loops, symmetrical to the origin.

After subjecting the specimens to repeated cycles of loading, they are first unloaded
and then stretched until complete fracture in tension occurs. The stress—strain curve of the
monotonic tensile test on the cyclic coupon is compared with the curve of the final pull-out

stage, depicted in Figure 11.
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Figure 11. The stress—strain curves obtained by monotonic tensile test, with and without previous
cyclic load regimes.

3. Results and Discussion

The previous study shows a divergence in the material behavior under cyclic and
monotonic loading. Local instability, materialized in the form of a yield plateau, disappears
with the first change in loading direction. The Liiders band phenomenon does not occur
under cyclic loading, so the Liiders strain is zero (¢;, = 0). This phenomenon occurs
even under strain amplitudes that do not exceed the strain value of a horizontal plateau.
Monotonic tensile tests after a cyclic test have shown a decreased ductility of steel under
cyclic loading.

The stress values under cyclic testing are slightly higher than values under monotonic
loading for the same values of strain. This phenomenon is a result of the cyclic hardening
of the material. The effect of cyclic hardening is a change in the shape of the hysteresis
loops, too. As a result, non-Massing material behavior occurs.

The experimental results of cyclic tests under the same load histories have shown
excellent concurrence (Figure 10).

Since load histories were formed from blocks of cycles with constant amplitudes,
arranged so that each subsequent block has a higher stress amplitude, each local extremum
of the load history (Figure 5) will represent the maximum strain at the observed time, max
£(t). The comparability of hysteresis loops of the exact amplitudes formed under different
loading histories is depicted in Figure 12.

o[MPa]

400

—I-3 —1-4 — 3 —Il4 -5 -6

Figure 12. Cont.



Mathematics 2024, 12, 3330

8of 17

o[MPa]

: e 1/ o0}

wn

500/ 500

—-3 —Il-4 -5 ——I-6 — 3 — -4 — U5 —lk6 —II7 -8

olMPa] o{MPa]

56

& / £1%] ‘ / ,
PN - : ,

-2.5/ -15 -05 05 z /2.5 e

—3 -4 -5 -6 — -7 —1L-8 —-3 — -4 —IU5 — k6 —Iik7 -8

&
P—
)
-
(=]
-
~
w

Figure 12. Comparison of hysteresis loops with the same amplitudes of the different samples.

The experiments have shown phenomenal concurrence of hysteresis loops with the
same strain amplitudes +e(t), regardless of the applied load history (A, B, or C). This
phenomenon is an outcome of the fact that the strain &(t) under which hysteresis loops were
formed represents the maximum strain in the observed load history up to the point in time
t. That shows that the material characteristics defining hysteresis loop shape under cyclic
loading depend only on the steel class and the maximum strain in the load history up to
the observed moment in time ¢ (previous load history). A line can be drawn through the
peaks of hysteresis loops (Figure 13). This trend line is called the skeleton curve.

500
= = -ft--1"" —0.5%<e<0.5%
200 ‘ ' ' ' ——-1%<e<1%
_ i —-15%<e<15%
<
E 100
= 2% <e<2%
©
2
s ——25%<£<25%
£ -100
-3%<e<3%
300 | / | 4 skeleton curve
- = = monotonic tensile
test after cyclic test
-500
3 2 E 0 1 2 3

Strain & [%]

Figure 13. Comparison of newly formed skeleton curve with monotonic and cyclic test results and its
verification as a trend line for peaks of hysteresis loop.

The skeleton curve is formed based on experimental results. This trend line connecting
peaks of hysteresis loops is characteristic of pure cyclic behavior. Meanwhile, it can be
modeled through a modified stress—strain curve obtained from the monotonic tensile test.
The modified monotonic stress—strain curve is formed by excluding the yield plateau and
adopting twice faster stress increase in the material hardening zone for the same dilatation
increase e(t).
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Structural mild steel behavior under cyclic loading is defined via material properties
obtained from monotonic tensile tests.

4. Constitutive Model

The phenomenon of hysteresis occurs in many areas such as mechanics [14], ferromag-
netism [15], seismology [16], engineering [17,18], economics [19], etc. Many phenomena
in these areas are defined by the Preisach model, initially developed in 1935 to define
hysteresis in ferromagnetism and is named after its author [20]. Its application in physics
defines phenomena such as ferromagnetism, plasticity, and filtration through porous media.
It has long been considered a physical operator, but M. Krasnoselski [21] separated this
model from its physical form and presented it as a purely mathematical model.

Preisach’s model maps the input data function into the output data function [22]. The
basis of this model is the elementary nonlinear hysteresis operator G, g (Figure 14a), which
is a discontinuous operator with local memory. Since the output can have only two values
(+1 and —1), these operators are also called relay operators. However, by superposing
these operators within the domain I (Figure 14b), the Preisach hysteresis operator 'u(t)
is formed as a continuous system of infinitely many elementary operators connected in
parallel (or in series):

f(#) =Tu(t) = [[ Gypu(t)u(e, p)dadp (1)

where p(«, B) represents the Preisach weight function, according to which the elementary
operators are arranged, and G, g is the elementary hysteresis operator.

(a) (b)

G,u #(ap)

+] e — d __Vf Gﬂ/} u ®
Hlofp)

G,u X

y uy |0 10

=/ - (o)

a b c Gu,a u ®

Figure 14. (a) Elementary hysteresis operator G, g; (b) Formation of the Preisach hysteresis model by
superposition of elementary hysteresis operators.

Take into account the following;:

- After reaching the yield limit Y;, the monotone curve and skeleton curve are very
different due to the effect of cyclic hardening;

- The skeleton curve does not possess a yield plateau (g;, = 0);

- Although they differ, both monotonic and skeleton curves asymptotically strives for
the same stress value o, [23].

Considering the above, it is possible to define the real behavior of mild steel under
cyclic loading by upgrading the existing model for monotonic loading [24].

This article will present a new type of Preisach model designed to analyze the response
of structural mild steel under constant cyclic ascending loading. Its basis is a model defining
the behavior of this steel type under monotonic loading [24].
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The main principle in modeling elastoplastic material behavior is based on defining an
analog mechanical model, determined by an appropriate set of algebraic and /or differential
equations. The mechanical model that describes the skeleton curve as the key indicator of
behavior under cyclic loading, up to max stress ¢, is shown in Figure 15a. The model is
compiled of three Hook’s spring elements and three Saint-Venant’s slip elements.

(a) (b)

o
4 (O'u, 811) . LO L o LI v ox L? v
54 + 3 - 1 11 11 1
3T "
1=2 hi h:
Yi+ 5 E Y
0 4
Y,
E €

Figure 15. (a) Quadruple linear working diagram and (b) mechanical model.

The concavity of the o-¢ skeleton curve in the hardening zone is achieved by its
approximation with three lines, which makes the working diagram quadruple linear
(Figure 15b).

The material properties of the mechanical model accomplished by connecting the
spring elements in parallel or regular are defined below (2):

ES¢ = EO(LO + Ll -+ Lz)/LO

EZC =E- El/(Eo + El)

Ey =h(Lo+ L+ L2)/Ly (2)
Ej =Eo-Ei-Ey/(Eo + E1 + E3)

Ey = hy(Lo+ Ly + L2)/La

As the experiments showed, material properties defining the mechanical model from
Figure 15b can be evaluated through mechanical properties obtained from monotonic
tensile tests [24]. By excluding the horizontal plateau formed after reaching the yield
strength Y7 (¢;, = 0) and adopting twice the strain increase in the hardening zone, the
material properties of the skeleton curve can be defined as follows:

ESC — Em
-, 0
&y =¢/¢

where ()" stands for monotonic material properties and ( )** stands for skeleton curve
material properties. The parameter { = 2 signifies the correlation coefficient between
characteristics defining monotonic and cyclic behavior. It represents a doubling of the
stress increase rate in the material hardening zone for the same increase in dilatation &(t)
during the formation of a modified monotonic stress—strain curve. This transformation
converts the modified monotonic stress—strain curve into a compelling trend line composed
of hysteresis loop peaks. With this procedure and the suggested value of , the proposed
skeleton curve model best fits the experimental data.
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It is possible to define a new hysteresis mechanical model based on the working
diagram shown in Figure 15a, which describes the cyclic skeleton curve of a structural mild
steel single crystal:

(1) = § Jf,2p0(0 — B)Gy pe(t)dud -+
B [fapd( — B —265°) Gy pe(t)dadp+

EfffE;C

2 ﬂaZﬁ Sa—p— 2£%C)Ga,ﬁ£(t)ducdﬁ—
5 Jfeop (2 — B —265) Gy ge(t)dadp

where § stands for Dirac delta function.

Parallel connection of infinitely many mechanical models, shown in Figure 15b, pro-
vides the polycrystalline material model according to Iwan [25], where a parallel connection
is the consequence of a strain as an input. Real material behavior was achieved by using
different material characteristics for each element.

For a system of infinitely many parallel-connected units, with different yield limits
Y <y < Y expression for the total stress is as follows:

ymax
i

ymin
i

() = Z p(Yi)o*(Y;, t)dY;, ®)
where (Y], t) is the stress corresponding to the individual unit of the yield limit Y}, and
p(Y;) is the distribution function of the yield limit. The material model, formed of units with
equal Young’s modulus E* and hardening moduli E,;* and Ej*° but various yield limits Y;
(i=3,4), is determined. The precise description of the skeleton curve of the structural mild
steel under cyclic axial load is defined by presuming that the yield limits Y; =Y, are the
same in all parallel-connected elementary units.

Defining that the distribution functions of other Y; values are uniform, as in papers [26-29]:

p(Y;) = _ = const (6)

- ymax _ ymin
i i

the total stress for skeleton curve, due to strain as input (Figure 16a), becomes:

u u E;’;C u
() = 5[, Guae(B)da— [, Gua-2ee(D)dn+ T [3 . Gonsepe(t)de]

EZC (Eff*Egc) EZC 2 (7)
+==—>p(Y3) [[z Gape(t)dadp — “—p(Ya) [[5 Ga pe(t)dadp
The Preisach’s function for skeleton curve is defined as follows:
u(a B) = G- {o(a— ) — o — p—261) + Fed(n — p—262) |
+7E;C(EZ;7E’S’C) p(Ys) {H(zx -p- 28%””) — H((X -p- 28/;“”” 8)
Ej

) [Ha - p—2ep) — H(a— p-2e")],

where § stands for the Dirac delta function and H for the Heaviside function.

The integration domains in Equation (7) represent the areas of the bands between the
corresponding lines in a bounded triangle (Figure 16b) because the Preisach function exists
only in these domains and otherwise is zero.
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Figure 16. (a) Skeleton curve; (b) Preisach triangle defining skeleton curve.
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Domain A represents the area between the lines « — g = 265" and a — g = 2¢57"",

while domain B represents the area between the lines « — f = 2£ff’f “anda— g = 2esemt,

5. Damage Modeling

Damage in steel elements may occur during forming processes [30] or under exploita-
tive monotonic or cyclic loading. Defining damage under cyclic loading is a very complex
problem. The material rupture limit op at cyclic stress depends on the amount of energy
accumulated in the material. The accumulation of deformation energy has material fatigue
as a consequence. In the domain of elasticity for a large number of load cycles, fatigue is
also noticeable. Damage under a small cycle number and large plastic deformations can be
considered regardless of fatigue.

The drop in the stress—strain curve is modeled by two different Preisach models,
regardless of the previous load history.

The problem of a large number of cycles may be resolved by applying cycle-counting
methods. Verification of a model is conducted through comparison with the experimental
results of monotonic tests. This approach is acceptable due to the equivalent shape of the
stress—strain curve under monotonic and cyclic loading in the damage zone (Figure 11).
The mechanical models defining damage under monotonic or cyclic loading are obtained
by adaptation of the appropriate mechanical model (monotonic or cyclic).

In this paper, two different Preisach models for defining damage are presented. Both
use different approaches. PMDI1 uses a spring with negative stiffness for defining drop
in the stress—strain curve, while PMD2 uses a damage element with a rupture limit Yp
(Figure 17b).

PMD1 is described and verified through monotonic axial test loading [24], while the
basic principles of PMD?2 are defined in [28]. In both mechanical models, the last slip
element Y (Figure 15a and [24]) is altered by a set of three distinct elements. The modified
delay element, in both models, allows damage to the material under tension only.

The additional material characteristics are defined as follows:

Yy = oy
Q.
ED - E0'El 'EZ'ES/(EO+E1+E2+EB) for PMD1 (9)
Es = h3(Lo+ L1+ Lo + L3) /L3
Yp =Yy +dY, for PMD2

where h; is the negative stiffness of the last spring in PMD1, ¢; defines the length of
the horizontal plateau after exceeding the yield strength Yy, and Yp is the rupture limit
in PMD2.
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Figure 17. Preisach model for defining damage: (a) with negative stiffness spring (PMD1); (b) with a
damage element with rupture limit (PMD2).

The Yp must have an infinitesimal greater value than Y} to allow the formation of a
plateau of length ¢; on the stress—strain diagram.

The parallel connection of infinitely many mechanical models, shown in Figure 17a,
delivers the polycrystalline material model PMD1. Using elements with different yield
limits Y;"" < Y; < Y{"* and with different delay dilatations ;" < &/; < ¢;,(fll the
expression for the total stress with damage (Figure 18a) is as follows:

Q)
ol )D(t) = ¢l )(t) + TDP(EE)) jjc Gy pe(t)dadp, (10)

where p(g;) represents the uniform distribution functions of delay dilatation g0

O _ 1 .
P(Ed ) = Ol (it const. (11)
€, —¢

The appropriate Preisach’s function is defined by (12).

40P (4, 8) = 1O (a, B) + # [H(oc—ﬁ—zsg)'i"”) B H(zx _ﬁ_zgg),full)]_
£0)

£y [H(a 8 _2£g>,mit) B H(‘x B _zgé),full>} Hat p), (12)

where the last part of expression (12) denotes additional limit of domain of integration

(Figure 18b). Domain C (C) represents the area between the lines « — f = 28(5 £ ull,

n—p= Zsé )’lmt, anda+ 8 =0.

The polycrystalline material model PMD?2 is created by connecting infinitely many
mechanical models in parallel, as shown in Figure 17b. Mechanical models have different
elastic yield strengths under fraction (Yé )it <Y; < Ytg £ ””). Due to the horizontal seg-
ment of the o-¢ diagram preceding the fracture, material crystals possess different fracture
dilatations (eig” <ep < s{ju”), but constant stress under fracture Yp. This phenomenon is
achieved by varying the displacement length of the “delay” element ¢; in the mechanical
model from Figure 17b.
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Figure 18. (a) Stress-strain diagram of PMD1; (b) Preisach triangle defining PMD1.

The expression for the stress—strain curve with damage defined by PMD?2 (Figure 19a)
is as follows:

ol )D(t):(ﬂ)(t)_z( ()ﬂfl; v th) ﬂ Ga pe(t)dadp (13)

The integration domain D defines the damage in the material and represents the area

of the strip between the lines & — § — 2Yt§ Vinit JE() = 0and & — p— ZYd( full /() — 0. The
D domain area of integration decreases with increasing deformation due to the translation
of the lower limit. The horizontal line of the triangle also limits domain D. The vertical
boundary in the triangle has no effect since damage occurs only under tension. The Preisach
triangle defining the integration domain D is shown Figure 19b.
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Figure 19. (a) Stress—strain diagram of PMD2; (b) Preisach triangle defining PMD2.

The scalar value of damage d, previously defined in [28], represents the ratio of the
number of eliminated elements n and the total number of elements N in the material,
determined by the following expression:

i . Y; ),full/E( ) "
= ),full/E( )y _ Yﬁg ),init/E( ) ( )
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The value of d varies in limits 0 < d < 1, where the line « — § — 2Yt§ ) init JEO) =0

represents the initiation of damage (4 = 0) and the line o — 8 — 2Y{§ )ofull /E() = 0 denotes
complete damage to the material (d = 1).

This section of the paper proposes damage modeling approaches for monotonic
and cyclic loading based on existing models for monotonic loading. Verification of the
presented Preisach models is conducted by comparing them with the experimental results
of monotonic tests. The lack of experimental data for large-strain cyclic tests is due to issues
with test samples buckling. As a result, models PMD1 and PMD2 can only be compared
with test data from monotonic tensile tests in the damage zone (22-43%) (Figure 20).
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Figure 20. Comparison of analytical and test results in sample damage zone.

Preisach models PMD1 and PMD2 showed remarkable resemblance in results. Also,
models exhibited excellent agreement with the results of the monotonic tensile test in the
damage zone.

For evaluating the quality of the presented models, we have employed the Root
Mean Squared Error (RMSE). It represents the average difference between the predicted
values and the actual values, helping to assess how accurately the model predicts the
target variable.

Based on the conducted analysis, the RMSE for the first model PMD1 is 3.2516, and
for the second model PMD?2, it is 3.2651.

A lower RMSE indicates better predictive accuracy of the model, so we can conclude
that the model PMD1 slightly better fits experimental data.

The damage modeling using PMD2 is more effortless because it requires fewer el-
ements to describe the model for this type of steel. However, model PMD1 still pro-
vides a good solution for common engineering practice due to its more suitable geometri-
cal representation.

6. Conclusions

The present paper focuses on an experimental investigation of the structural mild steel
stress—strain characteristics under cyclic loading. The experimental program examined
the correlation between the material monotonic and cyclic behavior, taking into account
the effects of loading history. It is shown that the high cost of cyclic tests due to test
setup limitations and specimen buckling issues may be overcome through the correlated
performance of monotonic and cyclic test results.

In this paper, the correlation between these two types of behavior is established
through the linkage of the hysteresis skeleton curve and monotonic loading curve. It is
shown that a Liiders band phenomenon, the main characteristic of monotonic axial behavior,
does not occur under cyclic loading. The trend line is formed using peak values of complete
hysteresis loops obtained through cyclic testing. This curve based on experimental results is
called the skeleton curve. It characterizes mild steel cyclic behavior and is modeled through
a modified monotonic stress—strain curve. The monotonic stress—strain curve modification
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was achieved by excluding the yield plateau and adopting a faster stress increase in the
material hardening zone for the same dilatation increase.

The new Preisach model defining the realistic behavior of mild steel under cyclic
loading is developed using experimentally obtained correlations. The model is formed
by upgrading the existing model for monotonic loading. The skeleton curve, as the main
indicator of mild steel cyclic behavior, is described completely by the hysteresis model with
material parameters obtained only through monotonic axial tests.

At the end of the paper, damage under a small number of cycles and large plastic
deformations are modeled regardless of fatigue. Two different Preisach models’ extensions
for defining damage are presented (PMD1 and PMD?2). Both models” extensions can be
used to describe damage both under monotonic and cyclic loading.

The first model uses a spring with negative stiffness to define a drop in the stress—strain
curve. Verification of a model is conducted through comparison with experimental results
of monotonic tests. The second model using a damage element with a rupture limit Yp, is
now verified through comparison with experimental and PMD1 data.

A comparison with experimental results of monotonic tests is acceptable due to the
stress—strain curve form resemblance under monotonic and cyclic loading. This is also a
consequence of the lack of experimental results of cyclic tests in the damage zone due to
buckling problems and complicated test configuration. To overcome this drawback, it is
possible to use a similar correlation between the two types of loadings outside the damage
zone (adopting a double strain decrease in the damage zone).
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