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Abstract: Magnesium-based materials, which are known for their light weight and ex-
ceptional strength-to-weight ratio, hold immense promise in the biomedical, automotive,
aerospace, and military sectors. However, their inherent limitations, including low wear
resistance and poor mechanical properties, have driven the development of magnesium-
based metal matrix composites (Mg-MMCs). The pivotal role of powder metallurgy (PM) in
fabricating Mg-MMCs was explored, enhancing their mechanical and corrosion resistance
characteristics. The mechanical characteristics depend upon the fabrication methodology,
composition, processing technique, and reinforcement added to the magnesium. PM is
identified as the most efficient due to its ability to produce near-net shape composites
with high precision, cost-effectiveness, and minimal waste. Furthermore, PM enables
precise control over critical processing parameters, such as compaction pressure, sintering
temperature, and particle size, which directly influence the composite’s microstructure
and properties. This study highlights various reinforcements, mainly carbon nanotubes
(CNTs), graphene nanoparticles (GNPs), silicon carbide (SiC), and hydroxyapatite (HAp),
and their effects on improving wear, corrosion resistance, and mechanical strength. Among
these, CNTs emerge as a standout reinforcement due to their ability to enhance multiple
properties when used at optimal weight fractions. Further, this study delves into the
interaction between reinforcement types and matrix materials, emphasizing the importance
of uniform dispersion in preventing porosity and improving durability. Optimal PM condi-
tions, such as a compaction pressure of 450 MPa, sintering temperatures between 550 and
600 ◦C, and sintering times of 2 h, are recommended for achieving superior mechanical
performance. Emerging trends in reinforcement materials, including nanostructures and
bioactive particles, are also discussed, underscoring their potential to widen the application
spectrum of Mg-MMCs.

Keywords: reinforcement; fabrication methodology; metal matrix composite; powder
metallurgy; processing parameters
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1. Introduction
The high strength-to-weight ratio of magnesium and its alloys makes them particularly

useful in industry. However, the low formability at high temperatures reduces the strength
of the Mg and its alloys [1,2]. Therefore, the metal matrix composites serve the purpose
of widening the application usage of Mg-based alloys. The Mg-based MMCs involve
Mg (low density) as a matrix and fibers or particles as reinforcing agents, providing high
stiffness and strength at a high temperature [3]. The addition of reinforcing particles to Mg
enhances mechanical behavior with high wear and corrosion resistance [4,5]. Furthermore,
the beneficial aspects of MMCs include high thermal stability, good tribological proper-
ties, a controllable coefficient of thermal expansion, and superior electrical and damping
properties [6–8]. However, the mechanical characteristics of MMC mainly depend upon
the percentage and types of reinforcement, fabrication approach, matrix, fiber compo-
sition, and processing parameters [9–12]. Furthermore, severe plastic deformation and
alloying strain hardening can enhance strength [13]. Concerning the beneficial aspect of
Mg-MMCs, researchers are keen to incorporate a suitable fabrication technique to prepare
composites. The enlisted processing techniques, i.e., friction stir processing (FSP) [14], stir
casting [15], powder metallurgy (PM) [16], disintegrated melt deposition [17], and spray
deposition [18], etc., are used to prepare the magnesium-based matrix composite. Com-
pared to other MMC fabrication techniques, the powder metallurgy method has several
advantages, including the ability to fabricate composites of insoluble materials [19]. PM
produces nearly net-shaped products with little machining needed, and fabricated compos-
ites with high melting points produce extremely little scrap [20]. This technique controls
porosity, produces self-lubricating materials, and offers good vibration and dampening
characteristics [13].

Powder metallurgy (PM) has the aforementioned benefits and is one of the most widely
utilized methods for creating MMCs. The PM approach acts as a cost-effective preparation
approach [21–23]. Figure 1 depicts the comparative advantages of powder metallurgy
over the other conventional processes. The PM technique ensures the homogeneous
dispersion of reinforcing agents into the matrix and requires a lower temperature than
other melting techniques [24–26]. PM generates complex forms with accurate sizes and
shapes at a high production rate and low cost [27]. Particles in the combination of elemental
or pre-alloyed powders are sintered in a furnace after being compressed in a die in the
P/M process. Due to characteristics like refractoriness, high hardness, wear resistance,
etc., several types of ceramic materials are frequently employed to reinforce Mg-based
alloys [28,29]. The PM approach makes it simple to create components with complex
dimensions and high-strength components. Magnesium matrix composites are being
produced sequentially in a straightforward and economical manner by adhering to the
powder metallurgy manufacturing technique.
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Although composites have better mechanical characteristics than alloys, the PM ap-
proach reduces porosity, poor wetting, and interfacial energies [31,32]. The reduction in
these flaws leads to an improvement in the mechanical performance of composites. In
comparison to composites made using traditional methods like liquid infiltration, PM
is inexpensive, is conveniently accessible, reduces the wastage of material, and achieves
a better surface finish (0.80–1.20 µm) [33–35]. It can efficiently process complex shapes
and control porosity and requires less machining, and the parts acquire good damping
properties [35]. PM forms parts with combinations of materials (ceramics and metals),
mainly tungsten and tungsten carbide [36]. PM provides good chemical homogeneity with
higher dimensional accuracy and allows the homogenous dispersion of reinforcement into
the matrix throughout [37]. Therefore, the production of metal matrix composites using
powder metallurgy processes is revolutionary in both research and industrial applications.
Regardless, composite materials with improved strength and hardness are created via
the powder metallurgy approach. Machining, casting, hot working, and cold working
processes are used to make components that fit the required dimensions. However, it
is impossible to combine metals and non-metals and create components with suitable
mechanical characteristics [38–42]. Still, the PM approach safeguards the aforementioned
limitations by synthesizing and combining non-metal and metal powders in the proper ra-
tio [43–45]. The blended powder is pressed into a die to obtain the desired dimensions, and
sintering is used to make it tougher. Once the secondary finishing process is completed, the
component has the desired characteristics, shape, and size. Further, the various processing
parameters involved in the powder metallurgy approach have been discussed in detail in
this review paper.

2. Processing Approach: Powder Metallurgy (PM)
Powder metallurgy is a solid-state approach employed in forming metal matrix com-

posites (MMCs) that involves the blending/mixing of reinforcing and matrix powder
materials. The blended powders are then compacted at a requisite pressure to obtain the
green compact. Then, the sintering of the green compact is accomplished at a sintering tem-
perature below the melting temperature to obtain the required size of the final product [46].
The PM approach involves the mixing of matrix and reinforcement powder, compaction of
powder materials, and sintering of the green compact, which are discussed below.

2.1. Mixing of Powder Materials

The reinforcing and matrix powder materials are mixed in a ball mill to obtain the
uniform dispersion of powder materials in the MMCs. During the mixing of the material
powder, stainless steel balls are added to a ball mill at a ball-to-powder ratio of 10:1 [47].
The blending of the material powder is vital to retard the accumulation of powder in the
composite via the uniform mixing of the powders [48]. Accumulation in the composite
material can lead to a reduction in grain refinement and the development of small cracks
on the surface of the composite, thereby deteriorating the properties [49]. Therefore, the
reinforcement and matrix powder should be adequately mixed through ball milling to
spread the reinforcing agent uniformly throughout the matrix. Thus, the mixing of powder
is the crucial step of powder metallurgy.

2.2. Compaction of Powder Materials

After mixing the reinforcement and matrix materials, the powder is compacted through
a cylindrical die by applying high pressure to obtain the appropriate shape and size of
the material. The compact pressure is crucial in order to reduce the porosity and improve
the strength of the composite materials [50]. Therefore, a suitable compaction pressure is
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required to significantly enhance the mechanical behavior of the composites and obtain
a strong green compact to enable the uncomplicated handling of the material [51]. The
compaction pressure is directly related to the porosity and strength of the green compact.
The porosity of the green compact decreases as the compact pressure increases.

2.3. Sintering of Green Compact

Sintering the green compact is the last and most important step of powder metallurgy,
as it enhances the endurance and strength of the green compact. In the sintering process,
the diffusion of the material occurs in pores that enable a chemical and physical bond
at the surface interface of the reinforcing and matrix powder materials, which improves
the strength of the composite material [52–55]. The research study suggested that the
diffusion of the material varies with temperature and time, indicating that the sintering
time and temperature determine the diffusion and expansion rate of powder materials in
the composite [56–58]. The sintering temperature is calculated as 0.8–0.9 times the melting
temperature of the material [59]. The literature study reported that a suitable sintering time
also enhances the strength of the composite. Figure 2 depicts the process diagram of the
powder metallurgy approach.
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3. Processing Parameters of PM and Reinforcement
The processing parameters of PM are vital in accessing the mechanical behavior of

the composite. The rate and types of reinforcement, compaction pressure, sintering time,
sintering temperature, size of reinforcement, and matrix material are such processing
parameters [60]. The significance of the above-mentioned parameters in terms of the
microstructure and mechanical characteristics is discussed below.

3.1. Compaction Pressure

Compaction pressure is a crucial processing parameter of PM. The porosity and density
of the composites produced using PM act as a function of compaction pressure [61,62]. The
high value of compaction pressure involves low porosity and high density. Compaction
pressure also influences the pore’s size and the number of pores [63]. The mechanical
characteristics of a material are directly dependent on porosity and density; hence, they are
significantly influenced by compaction pressure [64,65]. Yusof et al. [66] investigated the
effects of compaction pressure on the mechanical characteristics of a binary and ternary
magnesium-based alloy that is used for biodegradable implantation. The mixture of Mg-
9wt.%Zn-1wt.%Mn and Mg-10wt.%Zn alloy was mechanically alloyed in a planetary ball
mill by varying the compaction pressure from 100 MPa to 600 MPa, followed by sintering
at a temperature of 300 ◦C for 1 h. The 2 h of milling time obtained a homogenous
supersaturated solid solution of Mg-9wt.%Zn-1wt.%Mn and Mg-10wt.%Zn alloy. The
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density of the alloying sample was determined using Archimedes’ density measurement
and was found to increase with an increase in compaction pressure up to 400 MPa; however,
beyond that, the density decreased. The compressive strength and hardness of the Mg-
9wt.%Zn-1wt.%Mn and Mg-10wt.%Zn alloy were observed to increase up to 400 MPa,
and beyond that, there exists a reduction in compressive strength and hardness of the
composite. However, the compressive strength and hardness of the Mg-9wt.%Zn-1wt.%Mn
(255 MPa and 72.5 Hv) alloy were higher compared to that of the Mg-10wt.%Zn (245 MPa
and 66.9 Hv) alloy. The compaction pressure of 400 MPa was regarded as an optimum
value that improves the mechanical behavior of composites. Brezina et al. [67] analyzed
the influence of compaction pressure on the microstructure of magnesium by varying
compaction pressure, i.e., 100 MPa to 500 MPa. The compaction pressure of 100 MPa had
minimum plastic deformation with the highest porosity, and increasing the compaction
pressure resulted in lower porosity and maximum plastic deformation. The compaction
pressure between 300 MPa and 500 MPa obtained similar microstructural characteristics
(Figure 3a–e).
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The correlation between microhardness and compaction pressure is primarily influ-
enced by the mechanisms of densification and microstructural changes that occur during
the compaction and sintering processes [63]. The impact of compaction pressure on micro-
hardness is illustrated as follows:
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1. Increased Densification: Higher compaction pressure leads to greater densification
of the composite material. As the particles are forced closer together, the contact
area between them increases, facilitating better bonding during subsequent sinter-
ing [65]. This densification effectively reduces porosity, which is critical for enhancing
mechanical properties, including microhardness.

2. Grain Refinement: The application of a higher compaction pressure can also promote
grain refinement in Mg-based composites. Smaller grain sizes typically result in higher
hardness values due to the Hall–Petch effect, where finer grains impede dislocation
movement, thereby increasing resistance to deformation [66].

3. Interfacial Bonding: Increased compaction pressure improves the interfacial bonding
between the matrix and reinforcing phases present in the composite. This enhanced
bonding contributes to improved load transfer during mechanical testing, resulting in
higher microhardness [67].

Practically all desirable characteristics of a material, including shape, size, porosity,
hardness, density, and other mechanical and thermal properties, could be controlled in the
process of compaction [68,69]. Depending on punch movement and type of die (single-piece
or split), powder compaction can be performed in a variety of ways [70]. There are two types
of compactions, uniaxial and multiaxial, which depend on the punch movement [71]. Single-
action uniaxial compaction signifies the movement of the upper punch while the lower
punch stays stationary [72]. Double-action uniaxial compaction is a process that involves
the significant movement of the lower and upper punches [73]. Multiaxial compaction is
when the powder is compressed from multiple sides simultaneously. When the powder is
subjected to isostatic pressing, pressure is applied across all axes, suggesting multiaxial
compression [74]. Powder compaction pressure, pressure type (uniaxial or isostatic), kind
of matrix material, and type of reinforcing agent all affect the properties of a powder
metallurgy green compact (metallic, carbonaceous, or ceramic) [75]. Table 1 details the
comparative study of powder compaction via various dies. Rahmani et al. [76] analyzed
the effects of compaction pressure on the tribological and mechanical characteristics of
magnesium–tungsten trioxide (Mg-WO3) at variable compaction pressure, i.e., 300 MPa,
500 MPa, and 700 MPa. The relative density and hardness of the alloy were maximal
at 700 MPa due to the continuous reduction in porosity. Kumar et al. [77] analyzed the
effects of compaction pressure on recycling AZ91 magnesium alloy formed via powder
metallurgy. The AZ91 alloy was compacted at compaction pressures of 350 MPa, 400 MPa,
and 450 MPa. The green density and sintering density of the alloy was increased with an
increase in the compaction pressure. The optimum value for recycling AZ91 alloy was
450 MPa of compaction pressure. Burke et al. [78] analyzed the effects of compaction
pressure on the mechanical characteristics of magnesium alloy (AZ31) formed via powder
metallurgy at variable compaction pressure, i.e., 200 MPa, 300 MPa, 400 MPa, and 500 MPa.
The theoretical density of the magnesium alloy was increased with compaction pressure.
The hardness of the magnesium alloy was increased by increasing the compaction pressure.
With the increase in compaction pressure, the samples are in a highly stressed state, which
enables small dimensional changes to occur in the magnesium alloy sample—the influence
of compaction pressure on the density of the composite (Figure 3f). However, Figure 3f
shows conclusive evidence that the increase in sintering density defined the effectiveness
of compaction pressure, which acts as a function of eliminating the micro-pores/voids,
thereby reducing the porosity and ultimately increasing the mechanical properties.
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Table 1. Comparative study of powder compaction dies.

S. No. Compaction of Dies General Specifications Benefits of Dies Drawback of Dies

1 Single-piece
single-action dies

• Manufacturing of the mold
cavity is performed as a
single piece.

• Movement of the upper
punch is allowed in
compaction

• • Compaction is performed
at room temperature

• Ease of
manufacturing

• Reliability is
relatively high.

• The difference between
the density of the top and
bottom end of the green
compact is
relatively high.

• Removal of the green
compact is quite
complicated

2 Split single-
action dies

• Splitting of the mold cavity
into two pieces

• Movement of the upper
punch is allowed in
compaction

• Compaction is performed
at room temperature.

• Removal of the
compact is easy.

• During the removal of
the compact, the
edges are less
deformed.

• Reliability is relatively
low, and the chances of
bolt failure are frequent.

• Fracture of material in the
vertical direction
is frequent.

3 Split double-
action dies

• Splitting of the mold cavity
into two pieces

• Movement of lower and
upper punches allowed

• Compaction is performed
at room temperature.

• Much less difference
between the density
of the top and bottom
end of the green
compact

• Removal of the
compact is easy

• Manufacturing of dies is
more complex than
single-action dies.

• Spring and bolt failure
occur on a timely basis

• Fracture of material in the
vertical direction
is frequent.

4 Split double-action
elevated
temperature dies

• Splitting of mold cavity
into two pieces

• Movement of lower and
upper punches allowed

• A heating coil linked with a
die provides an adequate
heat supply to the powders

• Compaction is performed
at an elevated temperature

• High densification
• High-strength

compact
• Removal of the

compact is easy

• Manufacturing of dies is
more complex

• Less reliable

5 Isostatic
compression

• Use of flexible mold
• Hydro-static state of stress

applied on powder.
• All points are free to move

• Isotropic and uniform
properties

• Intricate shapes
formed easily.

• Manufacturing of dies is
more complex

• Cost is high

However, the statistical data obtained after the analysis of Taguchi DOE are given
below in Table 2. The outcomes revealed that the maximum value of the SN ratio for
microhardness was obtained for the S8 sample, which showed that the optimal value of
compaction pressure, combined with sintering temperature and sintering time, results
in grain refinement and porosity reduction [77]. Moreover, sintering temperature and
sintering time have a mixed effect on microhardness. Microhardness first increased with
the increase in the sintering temperature and sintering time. However, with a further
increase in sintering temperature and sintering time, microhardness is reduced because
of recrystallization and grain growth in the material [77,78]. Therefore, the optimum set
of process parameters that were used for the fabrication of the Mg-based composite is the
third level of compaction pressure (450 MPa), the second level of sintering temperature
(450◦), and a sintering time of 90 min. The analysis of variance data for hardness is depicted
in Table 3. The F and p values in the analysis of variance data are the measure of the
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effectiveness of the parameters. A parameter with high effectiveness has a high value of F
and a low value of p. F-values also confirm the same order of the effectiveness of parameters,
as obtained from response data for means for microhardness. The regression equation
for hardness obtained after the ANOVA analysis is given below. The optimum value of
hardness, which is obtained using the regression equation, with a compaction pressure of
450 MPa, sintering temperature of 450◦, and sintering time of 90 min, is 81.41 Hv [77].

H = −37.84 − 2.342 XX + 1.775 Y + 2.548 Z + 0.002729 XX2 − 0.002919 Y2 − 0.002248 Z2 +
0.001971 XXY − 0.004873 XXZ,

Here, H = hardness (Hv), X = compaction pressure (MPa), Y = sintering temperature (◦),
and Z = sintering time (minutes). The experimental validation of the results obtained
from regression equations for hardness was conducted. The outcomes revealed that the
percentage error between the experimental results and results obtained from the regression
equation is 4.3% for microhardness. Thus, regression equations provide satisfactory results
and can be used to determine the value of hardness at other sets of parameters.

Table 2. Dataset for experiment design for the preparation of Mg-based composite based on Taguchi
L9 orthogonal array [77].

S. No.
Compaction
Pressure
(MPa)

Sintering
Temperature
(°C)

Sintering
Time
(min)

Sample
Notation

Microhardness
(Hv)

SN Ratio for
Hardness

Level 1 350
400 60 S1 38.05 31.607
450 90 S2 52.4 34.386
500 120 S3 48.11 33.644

Level 2 400
400 90 S4 55.93 34.952
450 120 S5 63.85 36.103
500 60 S6 41.72 32.406

Level 3 450
400 120 S7 68.79 36.750
450 60 S8 80.8 38.148
500 90 S9 75.79 37.592

Table 3. Variance assessment for the microhardness data.

Source DF Adj SS Adj MS F-Value p-Value

Compaction Pressure 2 1349.40 674.70 16.18 0.058
Sintering Temperature 2 241.23 120.62 2.89 0.257
Sintering Time 2 108.13 54.07 1.30 0.435
Error 2 83.39 41.69
Total 8 1782.15

3.2. Types of Reinforcement

The types of reinforcement are critical in predicting the behavior of composite materi-
als. The characteristics of the reinforcing elements and matrix material have a substantial
influence on the final characteristics of the composite. The types of reinforcement are also
crucial in allowing the uniform dispersion of reinforcement in the matrix material through-
out [79]. The uniform dispersion of reinforcement in the matrix material leads to improve-
ment in the mechanical and corrosion characteristics of the composite by controlling porosity
(%) [80]. Duarte et al. [81] analyzed the effects of niobium oxide (Nb2O5) reinforcement in
the magnesium matrix on the mechanical characteristics formed via powder metallurgy. The
magnesium was blended with 1 wt.%, 2 wt.%, and 4 wt.% of Nb2O5 in the ball mill. The
microhardness of the green compact was increased with the increasing percentage of niobium
oxide. However, after sintering, the microhardness of the composite was reduced with the
addition of niobium oxide in the matrix material. Energy-dispersive spectroscopy (EDS)
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verified the homogenous dispersion of reinforcement in the matrix with slight oxidation.
Rashad et al. [82] investigated the effects of reinforcement with graphene in the magnesium
alloy (Mg–1%Al–1%Sn alloy) on the mechanical characteristics formed via powder metal-
lurgy. The SEM image of Mg: 1 wt.%, Al: 1 wt.% Sn: 0.18 wt.%, and GNP depicted that
Sn was evenly distributed throughout the matrix (Figure 4a). Due to oxidation during the
sintering process, the black component exists. However, due to their low composition, Al
and GNPs are difficult to identify using energy-dispersive X-ray spectroscopy (EDS). In
order to establish the existence and distribution of Al and GNPs in the composite, X-ray
mapping was performed in Figure 4b–f. It is evident in Figure 4f that GNPs are consis-
tently distributed throughout the matrix and function as a strong reinforcing filler to stop
the composite from deforming. The fractured morphology of the alloy exhibited ductile
behavior, with many tearing ridges and dimples (Figure 4g). Some GNP particles are present,
which are responsible for the low failure strain (Figure 4h). The 0.18 wt.% of graphene in
magnesium alloy enhanced the mechanical characteristics of composites, i.e., 272 MPa and
213 MPa of ultimate tensile strength and 0.2% yield strength, respectively, which is higher
than those of magnesium alloy. Sun et al. [83] analyzed the effects of reinforcement with
vanadium (V) in the AZ31 alloy (magnesium alloy) on the mechanical characteristics formed
via powder metallurgy. The magnesium alloy was blended with 5 wt.%, 7.5 wt.%, and
10 wt.% of vanadium in the ball mill. The theoretical density and porosity of the composite
were enhanced with an increase in the weight fraction of vanadium. The TEM image relating
the grain distribution for each weight fraction showcases the hindrance in grain growth
with the addition of vanadium (Figure 5a–f). The SEM image, along with EDS mapping,
revealed the presence of an intermetallic compound (Mn) and the uniform dispersion of
vanadium in the Mg matrix (Figure 5g–l). The microhardness of the composite was improved
with an increase in the amount of vanadium, with a maximum of 10 wt.% of vanadium,
i.e., 106 Hv. Khanra et al. [84] analyzed the effects of hydroxyapatite (HAp) reinforcement in
the magnesium matrix on the mechanical characteristics formed via powder metallurgy. The
magnesium material is blended with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of HAp in the ball
mill. The XRD identified the formation of the composite’s MgO layer, enabling the interaction
of matrix and reinforcing particles in the composite. The mechanical characteristics of the
composite, i.e., UTM (146 MPa) and YS (137 MPa), were observed for 10 wt.% of HAp. Still,
beyond that, there exists a reduction in yield strength with HAp. Further, the microhardness
was also enhanced with an increase in the amount of HAp.
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Figure 5. TEM image relating the grain distribution for (a,b) 5 wt.%, (c,d) 7.5 wt.%, and (e,f) 10 wt.%
of vanadium. (g–l) SEM image and EDS mapping for 5 wt.% of vanadium in the AZ31 alloy, revealing
the uniform dispersion of the reinforcing agent, along with the other elements, such as Al, Mn, and
Zn [83].
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In MMCs, reinforcement involves the majority of the applied load, with the matrix
binding the reinforcements together and providing the load distribution over the individual
reinforcement particles [84–88]. The powder metallurgy technique is widely regarded as
a low-cost approach to fabricating MMCs that is easy and highly suitable for large-scale
production [89,90]. The fabrication of MMCs via powder metallurgy involves no chemical
reaction between matrices and reinforcement with low porosity and obtains a uniform
composition of the reinforcing particles [91–95]. The strong bond between the particle
reinforcements and the metal matrix allows the load to be transferred and distributed
from the matrix to the reinforcement without failure [96–98]. Further, the addition of
ceramic particles improves the mechanical and frictional behavior of the composite [99].
The reinforcing materials are silicon carbide, alumina, aluminum oxide, and boron car-
bide. Research studies have confirmed that different reinforcements impact Mg properties
differently. Ercetin et al. [100] analyzed the effects of reinforcement with Al2O3 in the
Mg2Zn alloy on the mechanical characteristics and microstructure formed via powder
metallurgy. The magnesium alloy was blended with 0 wt.%, 2 wt.%, 4 wt.%, 6 wt.%, and
8 wt.% of Al2O3. The theoretical density of the composite was enhanced with Al2O3. The
SEM image depicted the uniform composition of reinforcement in the matrix, and no
pores were observed in the microstructure of all samples (Figure 6A(a,b)). The grain size
was reduced with the addition of Al2O3 to the composite, leading to an increase in the
tensile strength and hardness of the composite. The XRD image showed that the Mg peak
was seen initially, but increasing the amount of reinforcement led to the formation of an
Al2O3 peak in the composite (Figure 6B). Figure 6C(a–c) shows the EDS analysis of the
samples after immersion, showcasing the different elemental components in the composite
and showing that pitting corrosion is found in the presence of a high Al2O3 content. The
reduction in the elongation and corrosion resistance of the composite was observed with
Al2O3. Sankar et al. [101] analyzed the effects of reinforcement with B4C in the AZ91 alloy
(magnesium alloy) on the tribological performance formed using powder metallurgy. The
magnesium alloy was blended with 5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.% of B4C in a ball
mill. The density and microhardness of the composite were improved with B4C. The wear
resistance of the composite was improved with the increase in the amount of B4C.

The Orowan mechanism describes the effect of reinforcing particles on the strength
of composite materials [102–104]. The evenly distributed ceramic particles (SiC, B4C, alu-
mina) hinder dislocation movement, which acts as a function of improved strength [105].
However, superior adhesion and a distinct surface interface delay the detachment of re-
inforcement from the matrix material, which enhances the overall characteristics of the
composites. Kumar et al. [106] investigated the effects of reinforcement with silicon carbide
(SiC) in a magnesium matrix on the mechanical characteristics formed via powder metal-
lurgy. The magnesium matrix was blended with 0 wt.%, 4 wt.%, 8 wt.%, and 12 wt.% of SiC
in the ball mill. The density of the composite was observed to increase with the addition
of silicon carbide due to the reduction in porosity and was found to be at its maximum,
i.e., 1.79 g/cm3 for 12 wt.% of SiC. The compressive strength, Vickers hardness, and impact
strength of the composite were increased with an increase in the amount of silicon carbide
and maximum, i.e., 540 MPa, 71 Hv, and 5 J for 12 wt.% of SiC. Chand et al. [107] analyzed
the effects of fly ash in the magnesium matrix material on the mechanical characteristics
formed via powder metallurgy. The magnesium matrix was blended with 0.5 wt.%, 1 wt.%,
1.5 wt.%, and 2 wt.% of fly ash in a ball mill. The mechanical characteristics of the composite,
such as ultimate tensile strength and yield strength, were increased with fly ash due to
the reduction in porosity. But Young’s modulus, microhardness, and elongation (%) were
increased up to 1.5 wt.% of fly ash in the matrix; however, beyond that limit, there exists a
reduction in Young’s modulus, microhardness, and elongation (%) of the composite due
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to an increase in porosity. The influence of the types of reinforcement on the mechanical
characteristics of Mg-based material composite is depicted in Figure 7.
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Figure 6. (A) FESEM image and EDS mapping for (a) 2 wt.% of Al2O3 and (b) 8 wt.% Al2O3 of
Mg composites. (B) XRD analysis of the composite depicting (X = 0 wt.%, I = 2 wt.%, II = 4 wt.%,
III = 6 wt.%, IV = 8 wt.%). (C(a–c)) shows the EDS analysis of the samples after immersion, showcas-
ing the different elemental components in the composite and showing that pitting corrosion is found
in the presence of a high Al2O3 content [100].
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3.3. Weight Fraction of Reinforcement

The optimal volume or weight fraction value predicts the suitable mechanical char-
acteristics for the desired applications. However, decreasing or increasing the volume
or weight percentage of the reinforcement entails enhancing and degrading mechanical
characteristics [108]. The amount of reinforcement, therefore, becomes critical in assess-
ing the requisite mechanical characteristics of the composite and controlling the porosity
(%). Kaviyarasan et al. [109] analyzed the wear behavior of magnesium reinforced with
ceramics (SiC) (0.5 wt.%, 1 wt.%, 1.5 wt.%, and 2 wt.%) formed via powder metallurgy.
The magnesium was blended with silicon carbide in a ball mill to create a uniform mixing
of the reinforcement and matrix in the composite. The wear rate of the composite was
analyzed at a variable sliding velocity (0.4 m/s, 0.6 m/s, and 0.8 m/s), corresponding
to load variations of 5 N and 10 N. An SEM image of wear-out samples illustrated the
reduction in wear rate with the addition of silicon carbide (Figure 8a–f). Along with an
improvement in wear resistance, the hardness of the composite was also improved with an
increase in the amount of silicon carbide. Kanthasamy et al. [110] analyzed the corrosion
and mechanical characteristics of the magnesium alloy (AZ31) reinforced with groundnut
shell ash particles (GSAp) (1 wt.%, 2 wt.%, and 3 wt.%) formed by powder metallurgy. The
microhardness of the composite was enhanced up to 2 wt.% of GSAp (55.62 Hv) in the
matrix. Beyond that, there is a reduction in hardness with the particles of groundnut shell
ash. The micrograph depicted that the homogeneous dispersion of reinforcing material in
the matrix was observed up to 2 wt.% of GSAp. Beyond that, the agglomeration of particles
was observed, which caused cracks to appear on the surface, leading to a reduction in the
values of the mechanical characteristics of the composite. The compressive strength was
also reduced after 2 wt.% of GSAp in the matrix. The penetration rate of the composite
was positively increased with the addition of groundnut shell ash particles and was higher
than that of the AZ31 alloy. As a result, the corrosion rate of the composite was increased
with the addition of groundnut shell ash particles. Annbuchezhiyan et al. [111] analyzed
the mechanical characteristics and microstructure of magnesium alloy (AZ91D) reinforced
with TiC (3 wt.%, 6 wt.%, and 9 wt.%) formed via powder metallurgy. Optical microscopy
(OM) showed a fine lamellar grain structure that improved the mechanical characteristics
of the composite (Figure 8g–i). Other than that, the homogenous dispersion of titanium
carbide was observed in the matrix material in the composite. The microhardness and the
corrosion resistance of the composite were found to be increased with titanium carbide
in the matrix, as the titanium and carbide phases present in the composite hindered the
plastic flow and dislocation in the matrix.
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ments reduce the corrosion rate by forming a protective barrier and improving the uni-
formity of the passive film on the magnesium surface [124–126]. However, the high 
amount of reinforcement leads to cluster formation, ultimately introducing defects and 
exacerbating corrosion in the matrix material [127]. The presence of Al₂O₃ fibers in the 
AM60 magnesium alloy leads to increased corrosion rates, whereas increasing the amount 
of Al₂O₃ leads to an improvement in corrosion resistance [127]. Further, the addition of 
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Figure 8. SEM micrograph of worn-out surfaces of Mg /SiC (a) Mg/SiC for 0.4 m/s at 5 N, (b) Mg/SiC
for 0.4 m/s at 10 N, (c) Mg/SiC for 0.6 m/s at 5 N, (d) Mg/SiC for 0.6 m/s at 10 N, (e) Mg/SiC
for 0.8 m/s at 5 N, and (f) Mg/SiC for 0.8 m/s at 10 N [109]. (g–i) Optical characterization of
TiC-reinforced (3 wt.%, 6 wt.%, and 9 wt.%) magnesium composites [111].

Reinforcements play a crucial role in determining the corrosion and wear resistance of
composites. Magnesium is widely used in various industries due to its low density, high
specific strength, and excellent machinability. However, its susceptibility to corrosion in
various environments poses a significant limitation. Reinforcements, which are added to
improve mechanical properties such as strength and wear resistance, can also influence the
corrosion behavior of magnesium-based composites [112–116]. The effect of reinforcements
on corrosion resistance is complex and depends on factors such as the type of reinforcement,
its distribution, and interfacial bonding [117]. Ceramic particles, such as SiC, Al2O3, B4C,
and TiC, are commonly used to reinforce Mg material that is chemically stable and improve
the hardness and wear resistance of the composite. However, their impact on corrosion
resistance can be dual [118]. SiC particles can act as galvanic sites when embedded in the
Mg matrix, leading to localized corrosion around the reinforcement particles. This galvanic
effect occurs because SiC creates a potential difference that accelerates the corrosion of
the Mg-based materials [119–123]. However, Al2O3 reinforcements reduce the corrosion
rate by forming a protective barrier and improving the uniformity of the passive film
on the magnesium surface [124–126]. However, the high amount of reinforcement leads
to cluster formation, ultimately introducing defects and exacerbating corrosion in the
matrix material [127]. The presence of Al2O3 fibers in the AM60 magnesium alloy leads to
increased corrosion rates, whereas increasing the amount of Al2O3 leads to an improvement
in corrosion resistance [127]. Further, the addition of B4C in Mg imparts high hardness
and thermal stability, which leads to an enhancement in the wear resistance of composites
by reducing material loss during sliding or abrasive wear [128]. Moreover, the ceramic
particles effectively improve wear resistance by acting as load-bearing elements, thereby
reducing direct contact with abrasive surfaces.
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Metallic reinforcements, such as stainless steel, Ti fibers, and aluminum particles, can
significantly alter the corrosion and wear behavior of composites, as these reinforcements
improve mechanical properties by acting as cathodic sites and accelerating galvanic corro-
sion [129]. Furthermore, Ti and stainless steel fibers enhance wear resistance by improving
the load-bearing capacity of the composite. Magnesium composites reinforced with Ti parti-
cles exhibit superior wear resistance under dry sliding conditions compared to unreinforced
magnesium alloys [130]. However, stainless steel fibers provide excellent wear resistance by
improving the toughness and reducing the material loss during wear [131]. The presence
of metallic reinforcements can increase the density of the composite, which may limit their
use in weight-sensitive applications. Furthermore, carbon-based materials, such as CNT,
graphene, and carbon fiber, are increasingly being used to reinforce magnesium composites,
generally improving the wear resistance and mechanical properties of MMCs; however,
their effect on corrosion resistance is variable [132] since graphene acts as a cathodic to Mg,
promoting galvanic corrosion if not uniformly distributed [133]. However, functionalized
CNT enhances corrosion resistance by improving the dispersion of reinforcements and the
quality of the passive film on the magnesium matrix [134].

Furthermore, the interfacial bonding between the reinforcement and matrix is critical
in determining the corrosion and wear resistance of the composite. Weak bonding or the
presence of voids and cracks at the interface can serve as pathways for corrosive agents,
accelerating localized corrosion [135]. However, surface treatments of reinforcements,
such as coating with silane or metallic layers, can enhance interfacial bonding and reduce
corrosion rates [136]. Coating SiC particles with nickel or aluminum before incorporating
them into the Mg matrix can mitigate galvanic corrosion by reducing the potential difference
between the reinforcement and the matrix [137]. However, the size and distribution
of reinforcement particles play a significant role in the corrosion and wear behavior of
composites [18]. Uniformly distributed fine particles tend to enhance corrosion resistance by
improving the homogeneity of the microstructure and the passive film. In contrast, coarse
or clustered particles can create stress concentration points and galvanic cells, leading to
localized corrosion [138]. However, Mg reinforced with nano-Al2O3 particles demonstrated
superior corrosion resistance compared to Mg reinforced with micron-sized particles due
to the uniform dispersion and better interfacial bonding of the nano-reinforcements [139].

Jiang et al. [140] investigated the wear performance of Mg reinforced with B4C
(10 wt.%–20 wt.%) prepared using a powder metallurgy approach and showed an im-
provement in wear resistance, i.e., 5.7039 for 35 N at 20 wt.% of B4C [140]. Kaviti et al. [141]
investigated the wear performance of an AZ31/alumina composite prepared via powder
metallurgy by varying sliding speed (0.6 m/s, 0.9 m/s, and 1.2 m/s), normal load (5 N,
7 N, and 10 N), and sliding distance (500 m, 1000 m, and 1600 m). However, as the load
increased, the friction coefficient decreased, whereas sliding velocity and distance had little
effect. Jayaraman et al. [142] examined the tribological behavior of AZ31/CNTs (0.33 wt.%,
0.66 wt.%, and 1wt.%) prepared via powder metallurgy by varying the normal load (15.7 N,
25.5 N, 35.32 N) while keeping the sliding velocity constant (1.04 m/s). The outcomes show
that CNT up to 0.66 wt.% improved the wear resistance of the composite. Kaviti et al. [143]
examined how boron nitride (BN) (0 wt.%–2.5 wt.%) affected the wear behavior of Mg
composite prepared via powder metallurgy. The outcomes revealed that Mg reinforced
with 0.5 wt.% of BN has a lower wear rate and friction than Mg/1.5 wt.% BN and 2.5 wt.%
BN composites. SEM images of a worn Mg/0.5 wt.% BN composite at different sliding
speeds and normal loads are shown in Figure 9.
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load of 10 N and a sliding velocity of (c) 0.6 m/s, (f) 0.9 m/s, (i), 1.2 m/s [143]. 
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sium (Mg-1wt.%Al) alloy reinforced with fullerene (0.50 wt.%) formed via powder metal-
lurgy. Bragg’s diffraction peak (resembling hexagonal Mg phase) is around 15o to 75o, con-
firming the existence of fullerene in a Mg alloy. Field emission scanning electron micros-
copy (FESEM) shows no macrostructural defects appearing on the surface of the magne-
sium alloy reinforced with fullerene. The homogeneous dispersion of fullerene in the 
magnesium alloy matrix is present without the appearance of defects or cracks with full-
erene. The mechanical behavior of the composite, i.e., Vickers hardness (56 Hv), ultimate 
compressive strength (296 MPa), and compressive failure strain (15.72%), appeared to be 
enhanced with fullerene. The wear rate of the composite was assessed across sliding ve-
locity (48 mm/s and 96 mm/s) and applied load (5 N, 10 N, and 20 N) values. The wear 
resistance was increased with the addition of fullerene to the composite. The corrosion 
resistance of the composite was enhanced with fullerene in the magnesium alloy. Say et 
al. [145] analyzed the mechanical and corrosion characteristics of the magnesium alloy 
(AZ91 and AZ61) reinforced with carbon nanotubes (CNTs) (0.1wt.%, 0.2wt.%, and 0.5 
wt.%) formed via powder metallurgy. XRD confirmed the presence of the β-Mg17Al12 

Figure 9. Surface morphology of worn-out sample of Mg/0.5 wt.% BN composites at a normal load
of 5 N and a sliding velocity of (a) 0.6 m/s, (d) 0.9 m/s, and (g) 1.2 m/s; composites at a normal load
of 7 N and a sliding velocity of (b) 0.6 m/s, (e) 0.9 m/s, and (h) 1.2 m/s; and composites at a normal
load of 10 N and a sliding velocity of (c) 0.6 m/s, (f) 0.9 m/s, (i), 1.2 m/s [143].

Turan et al. [144] analyzed the mechanical and corrosion characteristics of a magnesium
(Mg-1wt.%Al) alloy reinforced with fullerene (0.50 wt.%) formed via powder metallurgy.
Bragg’s diffraction peak (resembling hexagonal Mg phase) is around 15o to 75o, confirming
the existence of fullerene in a Mg alloy. Field emission scanning electron microscopy
(FESEM) shows no macrostructural defects appearing on the surface of the magnesium
alloy reinforced with fullerene. The homogeneous dispersion of fullerene in the magnesium
alloy matrix is present without the appearance of defects or cracks with fullerene. The
mechanical behavior of the composite, i.e., Vickers hardness (56 Hv), ultimate compressive
strength (296 MPa), and compressive failure strain (15.72%), appeared to be enhanced with
fullerene. The wear rate of the composite was assessed across sliding velocity (48 mm/s
and 96 mm/s) and applied load (5 N, 10 N, and 20 N) values. The wear resistance was
increased with the addition of fullerene to the composite. The corrosion resistance of the
composite was enhanced with fullerene in the magnesium alloy. Say et al. [145] analyzed
the mechanical and corrosion characteristics of the magnesium alloy (AZ91 and AZ61)
reinforced with carbon nanotubes (CNTs) (0.1 wt.%, 0.2 wt.%, and 0.5 wt.%) formed
via powder metallurgy. XRD confirmed the presence of the β-Mg17Al12 phase in the
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magnesium alloy. The compressive strength and yield strength increased with carbon
nanotubes for the AZ31 alloy composite (Figure 10). The yield strength of the AZ91
alloy composite was decreased, whereas the compressive strength was increased with the
addition of carbon nanotubes to the composite. A continuous increase in the porosity and
reduction in ductility was observed for magnesium alloy composites (AZ61 and AZ91)
with the addition of carbon nanotubes.
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3.4. Volume Fraction of Reinforcement

Like the weight fraction, the volume fraction is crucial in analyzing the mechanical
characteristics of the Mg-based composite. The studies demonstrate the improvement in
the mechanical characteristics of Mg-MMCs via volume fraction of reinforcement. Kon-
doh et al. [146] analyzed the effects of volume fractions of reinforcement (0.95–1.43 vol.%
of CNTs) on the mechanical characteristics and microstructure of magnesium formed via
powder metallurgy. The microstructure analysis via TEM showed the existence of a thin
layer of MgO between the unbundled nanoparticles and the α-phase, creating the strong
interaction between the nanoparticles that led to effective transfer in tensile loading. The
uniform dispersion of reinforcement material in the matrix was analyzed using SEM. The
tensile strength and yield strength of the composite were observed to increase with an
increase in the number of carbon nanotubes. Further, the elongation (%) was reduced
with the amount of carbon nanotubes due to MgO layer formation, which hinders the
increase in ductility. Selvam et al. [147] analyzed the effect of 0.5 vol.% of zinc oxide on
the mechanical and wear behavior of an Mg alloy prepared via PM. The microhardness
and ultimate tensile strength (UTS) of the composite were increased with the addition of
0.5 vol.% of ZnO to the magnesium matrix composite. However, the 0.2% yield strength
was reduced with the addition of zinc oxide in the matrix material. The ultimate tensile
and compressive strength of the composite was enhanced with the addition of reinforce-
ment in the composite. The wear rate of the composite was analyzed, corresponding to
sliding velocity (0.6 m/s, 0.9 m/s, and 1.2 m/s) and normal load (2 N, 7.5 N, and 10
N). The wear rate for sliding velocities (0.6 m/s and 0.9 m/s) was increased due to the
formation of wear debris, scratches, and groves; however, there was a reduction in the
wear rate beyond that due to the formation of the oxides. Sankaranarayanan et al. [148]
analyzed the influence of the volume fraction of metallic glass (Ni50Ti50) on the mechanical
characteristics of Mg composite formed via powder metallurgy (3 vol.%, 6 vol.%, and 10
vol.%). Optical microscopy suggested that a reduction in the grain size of the composite
was observed with the addition of metallic glass to the matrix material. The mechanical
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characteristics of the composite, i.e., the ultimate tensile strength and 0.2% yield strength,
were found to be higher with an increase in the amount of metallic glass. However, the
failure strain of the composite appeared to be decreased with the increase in the amount of
metallic glass. The microhardness, ultimate tensile strength, and compressive strength of
the composite increased with the increase in the amount of reinforcing agent in the matrix
material. Jayalakshmi et al. [149] analyzed the effects of glass particles (Ni60Nb60) on the
mechanical characteristics of magnesium formed via powder metallurgy (3 vol.%, 5 vol.%,
and 10 vol.%). Optical microscopy suggested that a reduction in the grain size of the com-
posite was observed up to 5 vol.% of (Ni60Nb60); however, beyond that, a slight increase in
grain size occurred. The mechanical characteristics of the composite, i.e., ultimate tensile
strength and 0.2% yield strength, were found to be higher with an increase in the amount
of metallic glass. However, the failure strain of the composite appeared to be reduced with
the reduction in metallic glass. The UTS, microhardness, and ultimate compressive strength
(UCS) of the composite were increased with an increase in the amount of reinforcement in
the matrix material (Figure 11). The failure strain of the composite was observed to be lower
compared to that of the magnesium matrix by increasing the percentage of reinforcement
in the magnesium matrix. The XRD image showed that no reaction occurred between the
magnesium matrix and the glass particles.
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3.5. Particle Size of Matrix and Reinforcement

The particle size of the reinforcement and matrix affects the surface morphology and
mechanical behavior of Mg-based material formed using the powder metallurgy approach.
The strength and porosity of the composite material are directly related to the reinforcement
and matrix particle size [150–155]. Further, the size of the void developed in the composite
material influences the strength and porosity of the composite material, which is critical to
examine [156,157]. Dvorsky et al. [158] analyzed the effects of particle size on the corrosion
resistance and mechanical characteristics of WE43 (Mg-4Y-3REE-Zr) alloy and WE43 (Mg-
4Y-3REE-Zr) reinforced with HF composite. The mechanical characteristics of the alloy and
composite components were varied, along with the particle size, i.e., 25–36 µm, 36–45 µm,
45–63 µm, 63–100 µm, 100–125 µm, and 125–180 µm. The yield strength of the alloy
and composite was enhanced with an increase in the particle size; however, the ultimate
compressive strength of the alloy increased up to 100–125 µm and then decreased with
an increase in particle size up to 125–180 µm. The ultimate compressive strength of the
composite was increased initially up to 63–100 µm but then decreased with an increase in
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particle size up to 125–180 µm. The ultimate tensile strength of the alloy increased with
the increase in particle size. Still, the ultimate strength of the composite increased up to
63–100 µm, and then there was a sudden reduction in ultimate tensile strength with an
increase in particle size of up to 125–180 µm. The ductility (%) of the alloy and composite
was enhanced with the particle size. The corrosion resistance of the alloy and composite
was reduced with the increase in particle size. The ignition temperature of the alloy was
decreased with an increase in the size of the particles. Rahmani et al. [159] analyzed
the effects of the matrix particle size on the mechanical characteristics of a magnesium
alloy (AZ91) reinforced with B4C (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) formed via
powder metallurgy. The particle size of the matrix was taken as 10 µm and 60 µm to form
an AZ91/B4C composite. The porosity of AZ91 with a particle size of 60 µm reinforced
with different percentages of B4C was observed to be lower than that of AZ91 with a
particle size of 10 µm reinforced with varying percentages of B4C. Therefore, the density
and microhardness of the composite appeared to be higher for the matrix material with a
particle size of 60 µm than the matrix material with a particle size of 10 µm. The influence
of particle size of reinforcement on the mechanical properties of the composite is shown in
Figure 12.
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3.6. Sintering Temperature

The sintering temperature is an important process parameter that strengthens the
green compact. The sintering temperature and time are directly related to the diffusion of
reinforcing and matrix material in the composites that enhance the strength of the final
product obtained via powder metallurgy [160–162]. Therefore, the increase in grain growth
and diffusion bonding depends upon the strength of the green compact, which is related
to the sintering temperature. On increasing the sintering temperature, the diffusion bond-
ing improves between the reinforcing and matrix material, while the grain growth that
occurs reduces the strength of the material [163–165]. Therefore, the selection of sintering
temperature is critical in powder metallurgy. Zhu et al. [166] analyzed the effect of the
sintering temperature on the mechanical characteristics and surface topography of an Mg
alloy (AZ91) by varying the sintering temperatures, i.e., 350 ◦C, 400 ◦C, and 450 ºC. The
microstructure showed that the grain size of the AZ91 alloy increased with the increase
in the sintering temperature, whereas β-phase (Mg17Al12) precipitation content and GND
density were observed to decrease. The compressive strength of the alloy was reduced with
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the increase in the sintering temperature, whereas the fracture strain and ultimate compres-
sive strength (UCS) of the alloy were increased, which lowered the content of β-Mg17Al12

and MgO and coarse grains with the increase in sintering temperature. Ma et al. [167]
analyzed the effects of the sintering temperature on the mechanical characteristics of the
ZK60 magnesium alloy by varying the sintering temperature, i.e., 450 ◦C, 500 ◦C, 550 ◦C,
and 600 ºC. The microstructure demonstrated the presence of equiaxed grains and the α-Mg
phase in all samples of the alloy with varying sintering temperatures.

The sintering temperature (450 ◦C and 500 ºC) enabled the uniform dispersion of
material powder that increased the hardness and yield strength of the alloy. Still, beyond
that limit, a reduction in hardness and yield strength exists due to the decrease in the zinc
element in the melt. The compressive strength of the alloy was increased up to 550 ◦C, but
beyond that temperature, a reduction in the compressive strength occurred. The failure
strain was linearly varied with the increase in sintering temperature and observed to a
maximum of 600 ºC. Durai et al. [168] investigated the effects of the sintering temperature
on the mechanical characteristics of a magnesium–zirconium (Mg-Zr) alloy by varying
the sintering temperature, i.e., 450 ◦C, 500 ◦C, and 550 ºC. A reduction in the porosity
(%) of the alloy was observed by increasing the sintering temperature. The hardness and
tensile strength of the alloy were improved by increasing the sintering temperature due to
a reduction in porosity. The density of the alloy was increased up to 500 ◦C, but beyond
that temperature, a reduction in density was observed by increasing the sintering tempera-
ture. The magnesium alloy’s ductile cleavage fracture (combination of brittle and plastic
deformation) was observed with an increasing sintering temperature. Kumar et al. [77]
analyzed the effect of sintering temperature when recycling AZ91 magnesium alloy formed
via powder metallurgy at varying sintering temperatures, i.e., 673 ◦C, 723 ◦C, and 773 ◦C.
The theoretical density of the composite was observed to be increased up to 723 ◦C, but be-
yond that temperature, there occurred a reduction in density with the increase in sintering
temperature. The optimum sintering temperature at which to recycle AZ91 magnesium
alloy is 723 ◦C.

In the sintering process, the diffusion of the material occurs in pores that enable the
chemical and physical bond at the surface interface of reinforcing and matrix powder
material, which improves the strength of the composite material. The research suggests
that the diffusion of material varies with temperature and time and illustrates that the
sintering time and sintering temperature determine the diffusion and expansion rate of
powder materials in the composite [169–175]. The literature shows that a suitable sintering
time also enhances the strength of the composite. Zhou et al. [176] analyzed the effects of
the sintering temperature on the mechanical characteristics of the AZ91 alloy by varying
the sintering temperature, i.e., 450 ◦C, 500 ◦C, 550 ◦C, and 600 ºC. The hardness, tensile
strength, and density are observed to increase up to 550 ºC, but beyond that temperature,
there exists a reduction in mechanical characteristics due to an increase in porosity that
generates tiny holes in the alloy sample. The microstructure depicted that the β-Mg17Al12

phase was distributed around the grain boundaries that enhance the resistance to corrosion
characteristics of the alloy. The β-Mg17Al12 and α-Mg phases were obtained in white and
gray matter distributed along the grain boundary. Minarik et al. [177] analyzed the effects of
the sintering temperature on the mechanical characteristics of the AE42 magnesium alloy by
varying sintering temperatures, i.e., 400 ◦C, 450 ◦C, 500 ◦C, and 550 ◦C. The microhardness
of the alloy was observed to decrease with the increase in the sintering temperature due to
grain growth. The increase in the sintering temperature was shown to result in the loss of
mechanical characteristics of the alloy due to an increase in grain size. Annur et al. [178]
analyzed the effects of the sintering temperature (580 ◦C and 630 ◦C) on the mechanical
characteristics of an Mg-Zn-Ca alloy and an Mg-Zn-Ca/carbamide composite prepared
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via PM. The XRD image showed the MgO phase in all samples of the Mg-Zn-Ca alloy
at all sintering temperatures, and the CaO phase was obtained in all the samples of the
Mg-Zn-Ca/carbamide composite at all sintering temperatures. The compressive strength
of the composite decreased at sintering temperatures beyond 580 ◦C in all samples due to
an increase in porosity. SEM confirmed that high sintering temperatures resulted in higher
porosity, which reduced the mechanical characteristics. Burke et al. [78] analyzed the effects
of the sintering temperature on the mechanical characteristics of a magnesium alloy (AZ31)
formed via powder metallurgy at varying sintering temperatures, i.e., 500 ◦C, 550 ◦C, and
600 ◦C. The small dimensional changes occurred in the sample subject with an increase
in sintering temperature due to an increase in densification. The theoretical density and
Rockwell hardness of the magnesium alloy were reduced with an increase in the sintering
temperature (Figure 13).
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The interface between the Mg as a matrix and the reinforcement plays a pivotal
role in determining the mechanical properties of Mg-based materials. The strengthening
mechanisms at the interface are governed by several interrelated factors, including the
formation of the interfacial layer, the interfacial binding force, and the stability of the
interface during sintering [179]. Each of these aspects contributes uniquely to the overall
performance of the composite.

1. Formation of the Interfacial Layer: During the sintering process, a reaction layer
developed at the boundary interface between the reinforcement and matrix [180]. However,
the characteristics of this layer, including its thickness, composition, and compatibility
with both the matrix and reinforcement, can either improve or detract from the mechan-
ical properties of the composite [181]. Moreover, an optimally designed interfacial layer
enhances the efficiency of load transfer by facilitating a smooth transition in mechanical
properties between the matrix and the reinforcement [182]. Conversely, if the interfacial
layer is too thick or brittle, it may become a stress concentration at the interface, result-
ing in early failure [181,182]. The interfacial layers serve as obstructions to dislocation
movement, thus increasing the strength of the composite [183]. However, the presence of
nano-MgO particles at the interface was identified in the Mg composite reinforced with
reduced graphene oxide. These particles increase the interfacial bonding strength between
reduced graphene oxide and the matrix, leading to simultaneous improvements in strength
and ductility [184].
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2. Interfacial Binding Force: The efficiency of stress transfer from the matrix to the
reinforcement is dictated by the strength of the interfacial bond [185]. A composite’s
load-bearing capacity is improved through robust chemical bonding or mechanical in-
terlocking at the interface. However, to attain an ideal binding force during sintering, a
careful balance of reactivity must be maintained; too many reactions can compromise the
interface’s integrity, while inadequate bonding results in diminished load transfer and
lower composite strength [186]. Therefore, the effective load transfer and overall perfor-
mance of the composite hinge on the strength of the bonding force between the matrix and
reinforcement. Strong interfacial bonding guarantees that stress is effectively conveyed
from the softer matrix to the stiffer reinforcement, thus boosting the composite’s strength
and stiffness [187]. Reinforcing Mg-based materials with few layers of MXene results in
strong interfacial bonding, which contributes to significant improvements in mechanical
properties [188]. Additionally, applying surface coatings, i.e., nickel, copper, or ceramic
layers, in the reinforcement phase can improve the wettability and chemical compatibility
between the reinforcement and the magnesium matrix, resulting in stronger interfacial
bonding and improved mechanical properties [189].

3. Interfacial Stability: Maintaining the integrity of the composite during sintering
heavily relies on the thermal and chemical stability at the interface of the composite. If
reactions between the reinforcement and matrix are not controlled, then it will result in un-
wanted voids or phases that compromise the mechanical properties of the composite [190].
By optimizing sintering parameters, such as temperature and time, interfacial stability
can be maintained, thereby ensuring reliable performance [191]. Therefore, it is crucial to
uphold interfacial stability during sintering to avoid the creation of brittle phases, thereby
safeguarding the composite’s integrity. Elevated sintering temperatures may trigger in-
terfacial reactions that yield brittle intermetallic compounds, negatively impacting the
mechanical characteristics of composites [192]. However, the Mg-Ti composites produced
via powder metallurgy at lower sintering temperatures sustained interfacial stability and
averted the development of brittle phases, thus improving the mechanical performance of
the composite [193].

Further, the sintering temperature influences the various parameters, i.e., particle
size, grain refinement, and reinforcement distribution, that critically affect the mechanical
behavior of the Mg-based material [194]. These factors are as follows:

1. Grain Growth and Microstructure Refinement: The growth of grains in Mg-based
materials is affected by the sintering temperature. Increasing sintering temperatures
can enhance the mobility of grain boundaries, which may cause the microstructure to
coarsen [195]. However, the use of smaller particle sizes can mitigate excessive grain
growth by offering additional nucleation sites, leading to finer microstructures [196]. As
the presence of smaller reinforcement particles like nano-SiC or nano-Al2O3 often creates
a pinning effect at grain boundaries, limiting their movement and ensuring a refined
microstructure is preserved, even at higher sintering temperatures [196].

2. Reinforcement Distribution and Bonding: Increased sintering temperatures enhance
the diffusion bonding between reinforcement particles and the matrix, resulting in stronger
interfacial connections [197]. This enhancement is particularly significant when the sizes of
the particles are minimized, as smaller particles provide a greater surface area for bonding
and interaction with the matrix. The research studies indicated that at optimized sintering
temperatures, a uniform distribution of nano-sized reinforcements can be attained, which
helps avoid clustering and bolsters the mechanical properties of composites [198].

3. Porosity Reduction: The reduction of porosity is aided by elevated sintering tempera-
tures, which facilitate improved densification. This phenomenon is especially pronounced
when fine particles are employed, as they more effectively occupy voids and encourage
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uniform packing [199]. Nonetheless, if the temperatures are too high, it may result in grain
coarsening and the deterioration of the mechanical properties of composites.

4. Thermal Stability: Mg-based materials with smaller reinforcement particles frequently
demonstrate enhanced thermal stability, which is attributed to their capacity to prevent
grain boundary movement [200]. However, this stability is essential for preserving the
mechanical integrity of composites when subjected to different sintering conditions.

Mg-based composites promote grain growth, the reduction of porosity, and the distri-
bution of reinforcements, especially in composites that incorporate nano-sized reinforce-
ments at an optimal value of sintering temperature [201]. Further, nano-sized reinforce-
ments can often achieve effective bonding and dispersion at lower sintering temperatures,
whereas micron-sized particles might require somewhat elevated temperatures to counter-
act their reduced surface reactivity.

3.7. Sintering Time

Likewise, the sintering time also affects the mechanical characteristics of magnesium
and its alloy-based composites. Sintering time improves the bonding strength between the
matrix and reinforcing particles in MMCs [202–205]. Sintering time is critical in reducing
the voids or pores in the green compact and provides adequate time to increase the strength
of the composites [206,207]. However, the relationship between sintering time and sintering
density is also a critical aspect that affects the mechanical properties and structural integrity
of the composite. Sintering involves several stages, including initial particle contact, neck
formation, and densification [208]. During these stages, sintering time plays a significant
role in determining the final density of the material. In the initial stage, particles begin to
come into contact, forming small necks. The rate of densification is influenced by the time
allowed for these necks to grow [209]. The intermediate stage is crucial for densification,
as longer sintering time allows for more effective diffusion processes that reduce porosity
and increase density [210]. In the final stage, grain growth can occur, which may affect
density if it is not controlled properly, as excessive grain growth can lead to reduced
mechanical properties [211]. As sintering time increases, the apparent density of Mg-based
composites also increases while porosity decreases. However, the studies showed that
apparent density can rise significantly with extended sintering times due to enhanced
atomic diffusion leading to pore closure [212,213]. Further, longer sintering time generally
correlates with larger grain size and reduced porosity. This occurs because prolonged
exposure to heat allows for more complete particle bonding and pore elimination through
diffusion processes [214]. Aliuzzaman et al. [212] showed that apparent density increased
from 4.649 g/cm³ to 4.724 g/cm³ when the sintering time was extended from 1 h to 5 h.
While sintering time is crucial, it often interacts with sintering temperature. A higher
sintering temperature combined with a longer sintering time tends to yield higher densities
due to enhanced mass transport mechanisms [215]. However, it is essential to balance these
parameters since excessive sintering temperature or sintering time can lead to undesirable
grain growth.

Gunes et al. [216] analyzed the effects of sintering time on the tribological characteris-
tics of magnesium by varying the sintering time (2 h, 4 h, and 6 h) at a sintering temperature
of 600 ◦C. The X-ray diffraction (XRD) image showed MgO, MgO2, and Mg compounds
after sintering of Mg at 600 ◦C. The wear rate of magnesium was observed to decrease
with an increase in the sintering time. Similarly, the corrosion resistance increased with
an increase in sintering time and increased by 36% at a 6 h sintering time compared to a
2 h sintering time. The surface roughness of magnesium was observed to decrease with
an increase in sintering time, with a value of 2.47 µm obtained at a 6 h sintering time. The
microhardness was observed to be increased with an increase in sintering time, and a value
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of 75 Hv at a 6 h sintering time was obtained. The continuous reduction in porosity was
observed with an increase in the sintering time. Kumar et al. [77] analyzed the effect of
sintering time when recycling AZ91 magnesium alloy formed via powder metallurgy by
varying the sintering time at values of 1 h, 1.5 h, and 2 h. The theoretical density of the
composite was enhanced with an increase in the sintering time. The optimum value to
recycle AZ91 magnesium alloy was 2 h. Burke et al. [78] analyzed the effects of sintering
time on the mechanical characteristics of magnesium alloy (AZ91) formed via powder
metallurgy by varying the sintering time, i.e., 20 min, 40 min, and 60 min. The theoretical
density of the magnesium alloy increased with a sintering time of up to 40 min, but beyond
that time, there exists a reduction in the theoretical density of the magnesium alloy. The
hardness of the magnesium alloy was reduced by increasing the sintering time. The me-
chanical characteristics, i.e., ultimate tensile strength and elastic modulus, increased with a
sintering time of up to 40 min, but beyond that time, there is a reduction in the mechanical
characteristics with the increase in sintering time. The influence of sintering time on the
mechanical properties of the composite is shown in Figure 14.
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4. Conclusions
This study explores the possibility of magnesium as a replacement for traditional

alloys. Magnesium is known to be the lightest metal, with a density of 1.76 g/cc. Due to
its inherent high strength and stiffness, magnesium is desirable for use in various sectors,
including biomedical, automotive, aerospace, and military. However, in order to overcome
its drawbacks, magnesium-based metal matrix composites (Mg-MMCs) have been devel-
oped. These materials have been developed in response to the intrinsic difficulties of low
wear resistance and poor mechanical properties. To improve the mechanical properties
of magnesium composites, it is critical to comprehend the complex interactions among
manufacturing, composition, processing methods, and the addition of different reinforcing
agents. One of the most critical areas of research is reinforcing functions in magnesium
matrix composites and how they affect both the materials’ broader range of uses and the
overall mechanical characteristics. A variety of reinforcing agents are taken into consid-
eration, such as fly ash, hydroxyapatite (HAp), silicon carbide (SiC), carbon nanotubes
(CNTs), boron carbide (B4C), titanium carbide (TiC), graphene nanoparticles (GNP), and
aluminum oxide (Al2O3). After investigating several fabrication methods, it was found that
powder metallurgy is the most effective way to create magnesium metal matrix composites
because it strikes a good balance between efficiency and adaptability. It is demonstrated
that the mechanical properties obtained via the powder metallurgy method depend on
several processing variables. These consist of the following: matrix composition, sintering
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duration, sintering temperature, types and rates of reinforcement, and particle size of
reinforcement. The result of these studies is a methodical analysis highlighting the critical
role that powder metallurgy parameters play in the mechanical behavior of magnesium
composites, providing opportunities for precise control and optimization.

The importance of processing factors in shaping mechanical and wear properties and
broadening the application area of magnesium metal matrix composites was critically
examined. This study provides significant insights into common reinforcing agents, such as
SiC, CNTs, GNPs, B4C, and TiC, emphasizing their value in enhancing the corrosion resis-
tance, wear resistance, and overall mechanical performance of composite materials. Carbon
nanotubes (CNTs) emerge as the most significant reinforcing agent, exhibiting improved
wear, mechanical, and corrosion properties, particularly when the weight percentage is
kept below 1%. The amount of reinforcement is a significant component in determining
composite porosity and preventing reinforcement agglomeration inside the matrix. Further,
reinforcement types help maintain homogeneous dispersion within the matrix material,
hence improving the overall qualities of the composite. Furthermore, optimization studies
reveal 450 MPa as the ideal compaction pressure for finding a compromise between low
porosity and high density in the composite. Both matrix and particle sizes are critical
factors that significantly affect mechanical properties by affecting the development of ag-
glomerations in the composite material. It has been shown that the sintering temperature
range of 550–600 ◦C is favorable for improving the diffusion of reinforcing agents and
matrix materials, which enhances the characteristics of the composite. Also, the study
emphasizes the temporal component; 2 h of sintering time is the ideal amount of time to
recycle magnesium alloys, strengthen green compacts, and improve the mechanical and
corrosion properties of composites made of magnesium matrix material.

5. Future Scope
The current review provides a framework for future studies on metal matrix compos-

ites based on magnesium. This analysis clarifies that processing parameter optimization
lays the foundation for further investigation and refinement. Research on new reinforcing
agents beyond the widely utilized ones, such as SiC, CNTs, GNPs, B4C, and TiC, may reveal
materials with improved characteristics or those that work better together. It is necessary to
investigate the stability and long-term performance of magnesium composites in practical
applications to gain an understanding of these materials’ long-term dependability and
durability. Furthermore, this review’s emphasis on the scalability and cost-effectiveness
of the powder metallurgy approach opens new research directions aimed at improving
the viability of large-scale production processes. Future research should focus on the state-
of-the-art area of magnesium composite additive manufacturing method advancements,
which are consistent with the general developments in the additive manufacturing industry.
These works can significantly contribute to the development of metal matrix composites
based on magnesium and their applications across a wide range of sectors.
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