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Abstract. We analyze shift-invariant spaces Vs, subspaces of Sobolev spaces
Hs(Rn), s ∈ R, generated by the set of generators φi, i ∈ I, I is countable at
most, by the use of range functions and characterize Bessel sequences, frames
and Riesz basis of such spaces. Also Vs are described through Gramians and
their direct sum decompositions. We show that an f ∈ D′

L2(Rn) belongs to

Vs if and only if its Fourier transform has the form f̂ =
∑

i∈I figi, fi = φ̂i ∈
L2
s(Rn), {φi(· + k) : k ∈ Zn, i ∈ I} is a frame and gi =

∑
k∈Zn aike

−2π
√
−1⟨·,k⟩,

with (aik)k∈Zn ∈ ℓ2. Moreover, connecting two different approaches to shift-
invariant spaces Vs and V2

s , s > 0, under the assumption that the finite
number of generators belongs to Hs∩L2

s, we give the characterization of ele-
ments in Vs through the expansions with coefficients in ℓ2s. The corresponding
assertion holds for the intersections of such spaces and their duals in the case
when the generators are elements of S(Rn). Then, we show that ∩s>0Vs is
the space consisting of functions which Fourier transforms equal products of
functions in S(Rn) and periodic smooth functions. The appropriate assertion
is obtained for ∪s>0V−s.
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1 Introduction

Following the range function approach used in Bownik [8] - [10], based
on [6], [7], [12], [19] (see also [20]), in this paper we investigate the structure
of the shift-invariant subspaces of Sobolev spaces Hs = Hs(Rn), s ∈ R,
denoted as Vs, generated by at most countable family of generators, elements
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of As ⊂ Hs so that Vs is the closure of the span of integer translations of
functions in As, s ∈ R. In the case s = 0, one arrives to L2-theory. For the
L2(Rn), Bownik [8] gave a comprehensive analysis of the space V (V = V0).

The analysis of shift-invariant spaces has a very rich foundation and his-
torical background. It is extended in various directions as to shift-invariant
(locally) compact groups (see [9], [13], [16]), shift-invariant subspaces of
Lp,q(Rn+1)-spaces (see [14]) and to the powers of shift-invariant operators
determining generators of V (see [2], [3]). Note that another approach, with
the frames consisting of the finite set of generators and expansions with co-
efficients in ℓp-sequence spaces, p ≥ 1, was developed in [4], [5] (see also
references therein) and in [17] with the weighted ℓp sequences, ℓps sequences
in [17]. This approach is connected with the one used in this paper in case
p = 2.

In the first part of the paper we transfer the results of [8] from L2-
framework to Hs, s ∈ R, and give the structure of elements in the shift-
invariant spaces Vs ⊂ Hs, s ∈ R, through the Fourier transform as it is stated
in the Abstract. Our main results are given in the second part of the paper, in
Section 5, where we compare results of the approach of Aldroubi and collabo-
rators, cf. [4], [5], [17], with the ones related to the approach of [8] presented
in this paper. Note that in case s = 0, the mapping T : L2 → L2(Tn, ℓ2),
φ 7→ (t 7→ (φ̂(t + k))k∈Zn , t ∈ [0, 1)n), φ̂ = F(φ), considered in [8], can be

changed by T̃ φ 7→ (t 7→ (φ(t + k))k, t ∈ [0, 1)n). This transform commute
with the translation and implies another development of the theory. In the
case s ̸= 0 the definition of Ts, s ̸= 0 of this paper is the only possible transfer
from the Sobolev spaces to the corresponding weighted sequence spaces. We
also note that in this paper we give an analysis of shift-invariant spaces in
the framework of distributions, in Hs, s < 0.

The paper is organized as follows. In Section 2 we follow the definitions
of [8] now applied to subsets and shift-invariant subspaces of Hs, s ∈ R.
We define the mapping Ts which, for a.e. t ∈ [0, 1)n, maps an f ∈ Hs to
a sequence (ĝ(t + k)/(1 + |k|2)s/2)k∈Zn ; f ∈ Hs and g ∈ L2(Rn) are con-
nected by the relation (1 − ∆

4π2 )
s/2f = g (∆ is Laplacian), s ∈ R. For

f ∈ Hs, (1 − ∆
4π2 )

s/2f is defined as a Fourier multiplier (1 − ∆
4π2 )

s/2f =

F−1
(
(1 + | · |2)s/2f̂(·)

)
. With this, we are able to extend notions and theo-

rems in [8] revisiting the proofs from that paper. Since the theory is complex
enough in the L2-case, we carefully analyse the range function Js acting on
spaces Vs = span

{
shifts of elements in As ⊂ Hs

}
. Frames, Riesz basis and

Bessel families are analysed in Section 3. Section 4 is devoted to the orthog-
onal sum decomposition of spaces Vs. We give in Section 5 the structure
of spaces Vs, s ∈ R. Especially for s > 0, we connect Vs-spaces with the
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V2
s -spaces from [17] motivated by the results of Aldroubi and his collabora-

tors, assuming that the finite number of generators belong to Hs ∩ L2
s (with

appropriate decrease at infinity) and characterize the elements of Vs through
the expansions with coefficients in corresponding weighted sequence spaces
ℓ2s under the assumption that V2

s , s > 0 is closed in L2
s. We have proved that

the assumption s > 1/2 implies Vs = V2
s so that we have a new characteri-

zation of elements in Vs by the coefficients in ℓ2s. Even for s = 0, our result
seems new one. The corresponding corollaries related to the intersections of
Vs-spaces s > 0 and their duals are also given.

2 Notations and basic assertions

Throughout the paper we assume s ∈ R and Tn stands for [0, 1)n. Notation
Tyf(·) = f(· − y), means the shift by y ∈ Rn. Define the Fourier transform

f̂ of an integrable function f by Ff(t) = f̂(t) =
∫
Rn f(x)e

−2π
√
−1⟨x,t⟩ dx,

t ∈ Rn (F−1f(t) = f̂(−t)), where ⟨x, t⟩ =
∑n

i=1 xiti, x, t ∈ Rn. Note that
the Fourier transform without 2π in the exponent is used in [5] and [17]. Let
µs(·) = (1 + | · |2)s/2. Next,

ℓ2s = ℓ2s(Zn) =
{
(ck)k∈Zn :

∑
k∈Zn

|ck|2µ2
s(k) < +∞

}
, s ∈ R,

with the scalar product ⟨(ck)k∈Zn , (dk)k∈Zn⟩ℓ2s =
∑

k∈Zn ckdkµ
2
s(k). Recall, (cf.

[1], [15]),

Hs =

{
f ∈ S ′(Rn) : (1 + | · |2)s/2f̂(·) ∈ L2(Rn)

⇔ ∥f∥Hs =

(∫
Rn

|f̂(t)|2µ2
s(t) dt

)1/2

< +∞
}
, s ∈ R,

and ⟨f, g⟩Hs =
∫
Rn f̂(t)ĝ(t)µ

2
s(t) dt. Note, L

2
s = L2

s(Rn) = F(Hs), i.e. f ∈ L2
s

if and only if f̂ ∈ Hs, s ∈ R. From the distribution theory we recall that the
Schwartz space S(Rn) consisting of rapidly decreasing functions, is dense in
Hs, s ∈ R. Also, that the pseudo-differential operator

(1− ∆
4π2 )

s/2f(x) = F−1
(
f̂(t)µs(t)

)
(x), x ∈ Rn,

is an isometry of Sobolev spaces:(
1− ∆

4π2

)s/2
: Hm+s → Hm, m, s ∈ R.
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The Hilbert space H (Tn, ℓ2s) consists of all vector valued measurable
square integrable functions F : Tn → ℓ2s with the norm

∥F∥H(Tn,ℓ2s)
=

(∫
Tn

∥F (t)∥2ℓ2s dt
) 1

2

< +∞.

In the case s = 0, it is denoted as L2 (Tn, ℓ2) . Let A ⊂ L2(Rn). We denote

As =
{
φ ∈ S ′(Rn) : φ̂ = ψ̂µ−s for some ψ ∈ A

}
and Es(As) = {Tkφ : φ ∈ As, k ∈ Zn}. Clearly, Es(As) is a subset of Hs.
Denote by I a finite set or N and put AI = {ψi : i ∈ I} ⊂ L2. We use
notation AI,s = As if elements of As are φi, i ∈ I. If I = {1, 2, . . . , r}, we
use notation Ar,s (Ar if s = 0) instead of notations AI,s (AI if s = 0).

It is said that a closed subspace Vs ⊂ Hs is shift-invariant if φ ∈ Vs
implies Tkφ ∈ Vs, for any k ∈ Zn. For any subset As ⊂ Hs, let

Ss(As) =span
{
Tkφ : φ ∈ As, k ∈ Zn

}
=span

{
(1− ∆

4π2 )
−s/2Tkψ : ψ ∈ A, k ∈ Zn

}
,

where, for a given set M, span(M) denotes the closure of all the linear
combinations of elements in M . It is a shift-invariant space generated by
As. If Vs = Ss({φ}), it is called a principal shift-invariant space (PSI) and
Vs = Ss({φ1, φ2, . . . , φr}) is called a finitely generated shift-invariant space
(FSI). Note that if s = 0, then we have notation S(A) and E(A), as in [8].

Following the definition of the mapping T : L2 → L2(Tn, ℓ2) ([8]), we
define Ts : Hs → H(Tn, ℓ2s) (T = Ts, for s = 0) by

Tsφ(t) =
(
ψ̂(t+ k)

µs(k)

)
k∈Zn

, t ∈ Tn, φ ∈ Hs,
(
1− ∆

4π2

)s/2
φ = ψ(∈ L2(Rn)).

Lemma 2.1. Let s ∈ R.
a) Ts : Hs → H(Tn, ℓ2s).
b) The following diagram of isometries commutes

L2 T−→ L2(Tn, ℓ2)
↓ αs ↓ βs
Hs Ts−→ H(Tn, ℓ2s),

where αs
(
g
)
= F−1

(
ĝ(·)/µs(·)

)
and βs((fk(·))k∈Zn) =

( fk(·)
µs(k)

)
k∈Zn; in partic-

ular, βs
((
ĝ(·+ k)

)
k∈Zn

)
=

( ĝ(·+k)
µs(k)

)
k∈Zn.

c) Let φ ∈ S(Rn). Then TsTjφ(·) = e−2π
√
−1⟨·,j⟩Tsφ(·), j ∈ Zn.

4



Proof. a) We prove the assertion for an arbitrary function φ ∈ S(Rn). Then,
by the density arguments, the assertion holds for all the functions in Hs. So,
let φ̂ = ψ̂µ−s. Then

∥Tsφ∥2H(T,ℓ2s) =

∫
Tn

∥Tsφ(t)∥2ℓ2s dt =
∫
Tn

∥∥∥( ψ̂(t+ k)

µs(k)

)
k∈Zn

∥∥∥2

ℓ2s

dt

= ∥ψ̂∥2L2 =

∫
Rn

|φ̂(t)|2µ2
s(t) dt = ∥φ∥2Hs .

b) This assertion is clear.

c) Since T̂jφ(·) = e−2π
√
−1⟨·,j⟩φ̂(·) it follows

TsTjφ(·) =
(
ψ̂(·+ k − j)

µs(k)

)
k∈Zn

= e−2π
√
−1⟨·,j⟩Tsφ(·), j ∈ Zn.

Remark 2.1. Instead of T : L2 → L2(Tn, ℓ2), φ 7→ ((t 7→ (φ̂(t + k))k, t ∈
Tn), in [8], one can use the mapping T̃ φ 7→ (t 7→ (φ(t+ k))k, t ∈ Tn), which
commutes with the translation Tj, j ∈ Zn (with appropriate consequences on
the theory). For the weighted L2

s - spaces one can use a weighted version of

T̃s : φ 7→ (t 7→ (φ(t+k)
µs(k)

)k, t ∈ Tn), with the commutation of translation and T̃s.
Then, we have that T̃s(φ) = Ts(F−1φ), φ ∈ L2

s(Rn).

Next, we reintroduce several notions following [8]. Concerning the mea-
surability, since Hs is separable, strong and weak measurability are equiv-
alent. So in both cases a sequence of measurable functions, if converges, it
converges to a measurable function. With this, we recall the definitions and
propositions related to the range function.

A mapping Js : Tn →
{
closed subspaces of ℓ2s

}
is called the range func-

tion. It is measurable if the associated orthogonal projections PJs(t) : ℓ
2
s →

Js(t), t ∈ Tn, are weakly operator measurable; i.e., t 7→ ⟨PJs(t)c, d⟩ℓ2s is a
measurable scalar function for each c, d ∈ ℓ2s. For a given range function Js
(not necessarily measurable), the space

MJs =
{
F ∈ H(Tn, ℓ2s) : F (t) ∈ Js(t) for a.e. t ∈ Tn

}
is a closed subspace of H(Tn, ℓ2s). If MJs = MKs for some measurable range
functions Js and Ks with associated orthogonal projections PJs and QKs ,
respectively, then Js(t) = Ks(t) for a.e. t ∈ Tn. The proof is the same as in
[8]. Suppose that Js is a measurable range function. Let Ps be the projection

H(Tn, ℓ2s) ∋ F 7→ Ps(F ) ∈MJs
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so that for a.e. t ∈ Tn,
(
PsF

)
(t) ∈ Js(t). Let

PJs : Tn →
{
space of projections of ℓ2s onto closed subspaces of ℓ2s

}
,

so that PJs(t) : ℓ
2
s → Js(t), for a.e. t ∈ Tn.

The next assertions are generalizations of the corresponding ones in [8].
Their proofs for s ̸= 0 are similar as in the case s = 0 and they are omitted.

Theorem 2.1. Let Js be a measurable range function.
a) If F ∈ H(Tn, ℓ2s), then

(
PsF

)
(t) = PJs(t)

(
F (t)

)
for a.e. t ∈ Tn.

b) A closed subspace Vs ⊂ Hs is shift-invariant if and only if there exists
some range function Js such that

Vs =
{
φ ∈ Hs : Tsφ(t) ∈ Js(t) for a.e. t ∈ Tn

}
.

The correspondence between Vs and Js is one-to-one under the convention
that the range functions are identified if they are equal over Tn a.e. Further-
more, if Vs = Ss(AI,s) for some AI,s ⊂ Hs, then

Js(t) = span{Tsφ(t) : φ ∈ AI,s} for a.e. t ∈ Tn.

c) In the case that Js is not measurable, there exists a unique measurable
range function Ks such that Ks(t) ⊆ Js(t) for a.e. t ∈ Tn, and MJs =MKs.

Recall that the spectrum of Vs is given by

σ(Vs) = {t ∈ Tn : Js(t) ̸= {0}}.

3 Bessel families and frames

We refer to [11] or any other book with the frame theory for the definitions
of a Bessel family, a Riesz basis and a frame in a Hilbert space. Recall that,
X is a fundamental frame in a Hilbert space H if span(X) is dense in H.

We follow [8] and give analogue results related to frames, Bessel families
and Riesz basis. We give assertions with the sketch of the proofs or without
them since the arguments are already given in [8]. The next lemma is needed
for the characterization of frames and quoted families in Vs. We give only a
sketch of the proof in order to avoid repetition of all the arguments already
given in [8].

Lemma 3.1. a) Let Es(AI,s) be a Bessel family. Then, for all f ∈ AI,s, one
has ∑

φ∈AI,s

∑
k∈Zn

∣∣⟨Tkφ, f⟩Hs

∣∣2 = ∑
φ∈AI,s

∫
Tn

∣∣∣〈Tsφ(t), Tsf(t)〉ℓ2s∣∣∣2 dt.
b) ⟨Tkφ, f⟩Hs = ⟨Tkψ, g⟩L2 .
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Proof. a) With ψ, g ∈ L2 such that φ̂ = ψ̂µ−s and f̂ = ĝµ−s, we have∑
φ∈AI,s

∑
k∈Zn

∣∣⟨Tkφ, f⟩Hs

∣∣2
=

∑
φ∈AI,s

∑
k∈Zn

∣∣∣∣ ∫
Rn

e−2π
√
−1⟨k,t⟩φ̂(t)f̂(t)µ2

s(t) dt

∣∣∣∣2
=

∑
ψ∈AI

∑
k∈Zn

∣∣∣∣ ∫
Rn

e−2π
√
−1⟨k,t⟩ψ̂(t)ĝ(t) dt

∣∣∣∣2
=

∑
ψ∈AI

∑
k∈Zn

∣∣∣∣ ∑
j∈Zn

∫
Tn

e−2π
√
−1⟨k,t⟩ψ̂(t+ j)ĝ(t+ j) dt

∣∣∣∣2
=

∑
ψ∈AI

∑
k∈Zn

∣∣∣∣ ∫
Tn

e−2π
√
−1⟨k,t⟩

∑
j∈Zn

ψ̂(t+ j)ĝ(t+ j) dt

∣∣∣∣2.
Recall, if A(t) =

∑
j∈Zn ψ̂(t + j)ĝ(t + j), t ∈ Tn, then the coefficients of

the periodic function A(t) = A(t + α), t ∈ Tn, α ∈ Zn, are determined by
ck =

∫
Tn e

−2π
√
−1⟨k,t⟩A(t) dt, k ∈ Zn. Also, ∥A(t)∥2L2(Tn) =

∑
k∈Zn |ck|2. We

now apply these arguments to obtain

∑
φ∈AI,s

∑
k∈Zn

∣∣⟨Tkφ, f⟩Hs

∣∣2 = ∑
ψ∈AI

∫
Tn

∣∣∣∣ ∑
j∈Zn

ψ̂(t+ j)ĝ(t+ j)

∣∣∣∣2 dt
=

∑
ψ∈AI

∫
Tn

∣∣∣∣ ∑
j∈Zn

ψ̂(t+ j)

µs(j)
· ĝ(t+ j)

µs(j)
µ2
s(j)

∣∣∣∣2 dt
=

∑
φ∈AI,s

∫
Tn

∣∣∣〈Tsφ(t), Tsf(t)〉ℓ2s∣∣∣2 dt.
This completes the proof of a).

b) The assertion follows from

⟨Tkφ, f⟩Hs =

∫
Rn

T̂kφ(t)f̂(t)µ
2
s(t) dt =

∫
Rn

e−2π
√
−1⟨t,k⟩φ̂(t)f̂(t)µ2

s(t) dt

=

∫
Rn

e−2π
√
−1⟨t,k⟩ψ̂(t)ĝ(t) dt =

∫
Rn

T̂kψ(t)ĝ(t) dt = ⟨T̂kψ, ĝ⟩L2

= ⟨Tkψ, g⟩L2 .

With this two assertions we have:
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Lemma 3.2. Let s, s0 ∈ R. Then {Tsφ(t) : φ ∈ AI,s} ⊂ ℓ2s is a frame for
Js(t) or a Riesz basis with bounds A, B or a Bessel family with bound B for
a.e. t ∈ Tn, if and only if {Ts0φ(t) : φ ∈ AI,s0} is a frame or a Riesz basis
for Js0(t) with bounds A, B or a Bessel family with bound B for a.e. t ∈ Tn,
respectively. Moreover, {Tsφ(t) : φ ∈ AI,s} is a fundamental frame for a.e.
t ∈ Tn, if and only if {Ts0φ(t) : φ ∈ AI,s0} is a fundamental frame for a.e.
t ∈ Tn.

Since s and s0 in the previous lemma are two arbitrary real numbers, we
reformulate the previous lemma into the next theorem.

Theorem 3.1. Es(AI,s) is a frame or a Riesz basis for Vs = Ss(AI,s) with
bounds A, B or a Bessel family with bound B for every s ∈ R (equivalently,
by the previous two lemmas, for some s ∈ R), if and only if {Tsφ(t) : φ ∈
AI,s} ⊂ ℓ2s is a frame for Js(t) with bounds A, B or a Bessel family with
bound B for a.e. t ∈ Tn, for every s ∈ R (equivalently for some s ∈ R),
respectively. Moreover, Es(AI,s) is a fundamental frame for every s ∈ R, if
and only if {Tsφ(t) : φ ∈ AI,s} ⊂ ℓ2s is a fundamental frame for a.e. t ∈ Tn,
for every s ∈ R.

Let AI,s = {φi : i ∈ I} ⊂ Hs. Set

zis = (zis(k))k∈Zn ⊂ ℓ2s, i ∈ I, (3.1)

where zis(k) is defined by zis(k) =
ψ̂i(t+k)
µs(k)

, for fixed t ∈ Tn, and ψi ∈ L2 such

that φ̂i = ψ̂iµ−s, i ∈ I.
Let (zis)i∈I be given. One defines operator Ns by

Ns(c) =

(∑
i∈I

ciz
i
s(k)

)
k∈Zn

, (3.2)

for sequence c = (ci)i∈I with compact support (this means that only finitely
many members are different from zero), and then extend it as a continuous
mapping Ns : ℓ2(I) → ℓ2s(Zn). It has the adjoint operator N∗

s : ℓ2s(Zn) →
ℓ2(I) given by

N∗
s (a) =

(
⟨a, zis⟩ℓ2s

)
i∈I , a = (ak)k∈Zn ∈ ℓ2s(Zn). (3.3)

It is evident that Ns is bounded if and only if N∗
s is bounded if and only

if (zis)i∈I is a Bessel family. Thus, ∥N∗
s ∥2 ≤ B implies that {zis : i ∈ I} is a

Bessel family with the same constant B.
The Gramian Gs of the system {zis : i ∈ I} (see (3.1)), defined by Gs =

N∗
sNs, defines a mapping Gs : ℓ2(I) → ℓ2(I), and its dual Gramian G̃s :

ℓ2s(Zn) → ℓ2s(Zn) is defined by G̃s = NsN
∗
s , where Ns and N∗

s are given by
(3.2) and (3.3), respectively.
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Remark 3.1. It is evident that Gs and G̃s are self-adjoint and that ∥Ns∥2 =
∥N∗

s ∥2 = ∥Gs∥ = ∥G̃s∥.

Remark 3.2. Let {ei : i ∈ I} be the usual basis of ℓ2(I). Since ⟨Gsei, ej⟩ℓ2 =
⟨Nsei, Nsej⟩ℓ2s = ⟨zis, zjs⟩ℓ2s , i, j ∈ I, and ⟨G̃sek, eℓ⟩ℓ2s = ⟨N∗

s ek, N
∗
s eℓ⟩ℓ2 =∑

i∈I
zis(k)z

i
s(ℓ), we have

Gs(t) =
(〈

Tsφi(t), Tsφj(t)
〉
ℓ2s

)
i,j∈I

=

( ∑
k∈Zn

ψ̂i(t+ k)ψ̂j(t+ k)

)
i,j∈I

and for the dual Gramian

G̃s(t) =

(∑
i∈I

ψ̂i(t+ k)

µs(k)
· ψ̂i(t+ ℓ)

µs(ℓ)

)
k,ℓ∈Zn

.

Theorem 3.2. Let AI,s = {φi : i ∈ I} ⊂ Hs.
a) Es(AI,s) is a Bessel family with the bound B if and only if

esssup
t∈Tn

∥Gs(t)∥ℓ2 ≤ B

if and only if esssup
t∈Tn

∥G̃s(t)∥ℓ2s ≤ B.

b) Es(AI,s) is a frame with positive constants A, B if and only if

A∥a∥2ℓ2s ≤ ⟨G̃s(t)a, a⟩ℓ2s ≤ B∥a∥2ℓ2s , (3.4)

where a ∈ span{Tsφi(t) : i ∈ I} for a.e. t ∈ Tn, if and only if

σ(G̃s(t)) ⊆ {0} ∪ [A,B] for a.e. t ∈ Tn. (3.5)

Furthermore, Es(AI,s) is a fundamental frame with constants A, B if and

only if σ(G̃s(t)) ⊆ [A,B] for a.e. t ∈ Tn.

c) Es(AI,s) is a Riesz family with constants A, B if and only if

A∥c∥2ℓ2 ≤ ⟨Gs(t)c, c⟩ℓ2 ≤ B∥c∥2ℓ2 , c ∈ ℓ2(I) for a.e. t ∈ Tn, (3.6)

if and only if
σ(Gs(t)) ⊆ [A,B] for a.e. t ∈ Tn. (3.7)

Furthermore, Es(AI,s) is a Riesz basis if and only if (3.7) holds and 0 /∈
σ(G̃s(t)) for a.e. t ∈ Tn.

9



Proof. We will use the analysis similar to that in [8], for s = 0.
a) The assertion follows from Theorem 3.1 and Remarks 3.1 and 3.2.
b) Since

⟨G̃s(t)a, a⟩ℓ2s = ⟨N∗
s a,N

∗
s a⟩ℓ2 =

∑
i∈I

∣∣⟨a, zis⟩ℓ2s∣∣2, a ∈ ℓ2s(Zn),

by Theorem 3.1, the first equivalence is obtained. Since G̃s(t) is self-adjoint
operator, it follows that

ker G̃s(t)⊕ rank G̃s(t) = ℓ2s(Zn).

Furthermore, ker G̃s(t) = kerN∗
s = Js(t)

⊥, where Js is the range function

of Ss(AI,s), implies rank G̃s(t) = Js(t) for a.e. t ∈ Tn. The equivalence

(3.4)⇔(3.5) is obtained considering the restriction of operator G̃s(t) on Js(t).

Additionally, if ker G̃s(t) = Js(t)
⊥ = {0} for a.e. t ∈ Tn, then Es(AI,s) is a

fundamental frame.
c) The first equivalence follows from

⟨Gsc, c⟩ℓ2 = ⟨Nsc,Nsc⟩ℓ2s =
∥∥∥∥∑
i∈I

ciz
i
s

∥∥∥∥2

ℓ2s

, c = (ci)i∈I ∈ ℓ2(I),

and Theorem 3.1. The equivalence (3.6)⇔(3.7) is due to the fact that Gs is

a non-negative definite operator. Additionally, if ker G̃s(t) = Js(t)
⊥ = {0};

i.e., 0 /∈ σ(G̃s(t)) for a.e. t ∈ Tn, then Es(AI,s) is a Riesz basis.

4 The decomposition

This section, for s ̸= 0 gives the same kind of decomposition as in the case s =
0. So, the proof are omitted. We follow [8] and define the dimension function
of Vs, denoted by dimVs . Let Js be a range function and Vs = T −1

s MJs . A
mapping dimVs : Tn → N∪{0,+∞} defined by dimVs(t) = dim Js(t) is called
the dimension function of Vs .

Let Vs = Ss(φ), φ ∈ Hs and φ0 ∈ Vs. It is said that φ0 is a tight frame
generator or quasi-orthogonal generator of Vs if

∥f∥2Hs =
∑
k∈Zn

∣∣⟨Tkφ0, f⟩Hs

∣∣2, for all f ∈ Vs.

By Theorem 2.1 and Lemma 3.1 the following conditions are equivalent:
(1) φ0 is a quasi-orthogonal generator of Vs = Ss(φ),
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(2) ∥Tsφ0(t)∥ℓ2s = 1σVs (t) for a.e. t ∈ Tn.
Now, we can prove the decomposition theorem. The same construction given
in the proof of Theorem 3.3 in [8] with the change

ηk(t) =

{ PJs (t)eπ(k)

∥PJs (t)eπ(k)∥ℓ2s
, t ∈ Ak,

0, otherwise,

leads to the proof of the next theorem.

Theorem 4.1. Suppose that Vs is a shift-invariant subspace of Hs. Then,
Vs can be decomposed as an orthogonal sum

Vs =
⊕
i∈N

V i
s ,

where V i
s , i ∈ N, are principal shift-invariant spaces with quasi-orthogonal

generators φi, i ∈ N, and σV i+1
s

⊂ σV i
s
, for all i ∈ N. Moreover, dimV i

s
(t) =

∥Tsφi(t)∥ℓ2s , i ∈ N, and

dimVs(t) =
∑
i∈N

∥Tsφi(t)∥ℓ2s , for a.e. t ∈ Tn.

Remark 4.1. The decomposition of the shift-invariant space Vs is not always
unique, but this decomposition always gives us an optimal number of non-
trivial components V i

s , i ∈ N.

5 Structural theorems

Recall [18], [21], that DL2(Rn) =
⋂
s≥0H

s and D′
L2(Rn) =

⋃
s≥0H

−s.

We construct a dual frame Ed
s for Es(AI,s). Note Vs is a closed subspace

of Hs, s ∈ R, so it is also a separable Hilbert space. The dual frame
{
θik :

k ∈ Zn, i ∈ I
}
is determined by

θik = L−1
(
Tkφi

)
, k ∈ Zn, i ∈ I,

where L is the frame operator,

L(f) =
∑
i∈I

∑
k∈Zn

⟨f, Tkφi⟩HsTkφi, f ∈ Vs.

Theorem 5.1. Assume that Es(AI,s) is a frame for Vs and that {Tkθi : k ∈
Zn, i ∈ I} is its dual frame. Then F(Vs) is the set of Fourier transforms of
elements f ∈ D′

L2(Rn) so that

f̂(·) =
∑
i∈I

φ̂i(·)
∑
k∈Zn

aike
−2π

√
−1⟨·,k⟩,
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where (aik)k∈Zn ∈ ℓ2 is given by

aik =

∫
Rn

f̂(x)e2π
√
−1⟨k,x⟩θ̂i(x)µ2

s(x) dx, k ∈ Zn, i ∈ I. (5.1)

Equivalently, it is equal to the space of elements f ∈ D′
L2(Rn) which Fourier

transforms have the form

f̂ =
∑
i∈I

figi, gi ∈ L2
per(Rn),

where fi = φ̂i ∈ L2
s(Rn), i ∈ I, and gi, i ∈ I, have the expansions

gi(·) =
∑
k∈Zn

aike
−2π

√
−1⟨·,k⟩,

with aik determined by (5.1).

Proof. Recall that the frame operator is a bijection. Moreover, it is a self-
adjoint shift-preserving operator (commutes with the shift). Since

L−1
(
φi(x− k − j)

)
= θik+j(x) and L−1

(
φi(x− k − j)

)
= θij(x− k),

we have θik+j(x) = θij(x − k), x ∈ Rn, k, j ∈ Zn, i ∈ I. So, for j = 0 we
obtain

θik(x) = Tkθ
i(x), x ∈ Rn, k ∈ Zn, i ∈ I.

As in [8], the corresponding range operator is given by G̃s(t)|Js(t), for a.e.

t ∈ Tn, where G̃s = NsN
∗
s (see (3.2) and (3.3)) is the dual Gramian for

{Tsφ(t) : i ∈ I} for a.e. t ∈ Tn. We know that for every f ∈ Vs there holds

f =
∑
i∈I

∑
k∈Zn

〈
f(x), Tkφi(x)

〉
HsTkθ

i

=
∑
i∈I

∑
k∈Zn

〈
f(x), Tkθ

i(x)
〉
HsTkφi =

∑
i∈I

∑
k∈Zn

aikTkφi

in the sense of convergence in Vs, where

aik =

∫
Rn

f̂(x)e2π
√
−1⟨k,x⟩θ̂i(x)µ2

s(x) dx, k ∈ Zn, i ∈ I.

Since
{
Tkθ

i : k ∈ Zn, i ∈ I
}
is a frame, we have

A∥f∥2Hs ≤
∑
i∈I

∑
k∈Zn

|aik|2 ≤ B∥f∥2Hs , A > 0, B > 0.
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Thus, f ∈ Vs if and only if

f =
∑
i∈I

∑
k∈Zn

aikTkφi,

where (aik)k∈Zn ∈ ℓ2 are given by (5.1).
Since the space of periodic L2-functions, L2

per(Rn), is defined by

L2
per(Rn) =

{
g : g(·) =

∑
k∈Zn

ake
−2π

√
−1⟨·,k⟩, (ak)k∈Zn ∈ ℓ2

}
,

we have proved the assertion.

5.1 Relations with V2
s

Instead of notation V p
s in [17] (and Vp in [5]) we use V2

s , for p = 2. We recall
some results of [17], where we have considered a weighted version of spaces
V p, p ∈ [1,+∞), analysed in [5].

So, assume that p = 2. In the case s = 0, we assume that ψi ∈ L∞,
i = 1, . . . , r, where

L∞ =

{
ψ : ∥ψ∥L∞ = sup

t∈Tn

∑
j∈Zn

|ψ(t+ j)| < +∞
}
.

By [5],

V2 =

{
f : f =

r∑
i=1

∑
k∈Zn

cikTkψ
i, (cik)k∈Zn ⊂ ℓ2, i = 1, . . . , r

}
.

Theorem 5.2. Assume that Ar = {ψi : i = 1, . . . , r} ⊂ L2(Rn)∩L∞. Then,

V2 = V = S(Ar),

if V2 is closed in L2(Rn).

Proof. Recall [5] that the closedness of V2 in L2(Rn) is necessary and suf-
ficient condition that B =

{
Tkψ

i : k ∈ Zn, i = 1, . . . , r
}
is a frame for V2.

Since E(Ar) = B and S(Ar) is closed in L2(Rn) by the definition, it follows
that the same frame determines both spaces so that V2 = V .

Now, we consider weighted versions [17]. Let s > 0 be fixed. We will
introduce several assumptions on generators ψi, i = 1, . . . , r, in order to have
that their linear combinations determine subspaces of Hs and of L2

s:

ψi ∈ Hs ∩ L2
s, i = 1, . . . , r. (5.2)
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Moreover, in order to have the same assumptions as in [5] (and [17]), we
assume, as in the previous assumption, that

ψi ∈ L∞, i = 1, . . . , r. (5.3)

Recall [17],

V2
s =

{
f : f =

r∑
i=1

∑
k∈Zn

cikTkψ
i, (cik)k∈Zn ∈ ℓ2s, i = 1, . . . , r

}
. (5.4)

Theorem 5.3. Assume that s > 0, (5.2) and (5.3) hold.
a) Assume that

Vs and F(V2
s ) are closed in L2

s.

Then,
V2
s ⊂ Hs and V2

s = Vs = Ss(Ar,s).

In particular, any element f ∈ Vs has the frame expansion as in (5.4).
b) Assume that s > 1/2 and that V2

s is closed in L2
s. Then, F(V2

s ) is
closed in L2

s and both assertions in a) hold true.

Proof. a) Since ψi ∈ Hs, i = 1, . . . , r, consider

Bs =
{
Tkψ

i(t) : k ∈ Zn, t ∈ Rn, i = 1, . . . , r
}
⊂ Hs ∩ L2

s.

By [17], V2
s is closed in L2

s is equivalent with Bs is a frame for V2
s . We know

that the Fourier transform is an isomorphism of Hs and L2
s. Since F(V2

s )
is closed in L2

s, it follows that F−1(FV2
s ) = V2

s is a closed subset of Hs.
Both sets, Vs and V2

s have the same dense subset consisting of compactly
supported functions

∑r
i=1

∑
k∈Zn cikψ

i(· − k), we have that they are equal.
The particular part of the assertion now easily follows and any f ∈ Vs has
the expansion as in (5.4).

b) If f ∈ V2
s , then

f(·) =
r∑
i=1

∑
k∈Zn

cikψ
i(· − k) and f̂(·) =

r∑
i=1

ψ̂i(·)
∑
k∈Zn

cike
−2π

√
−1⟨·,k⟩.

Let

f̂N(·) =
r∑
i=1

ψ̂i(·)
∑
|k|>N

cike
−2π

√
−1⟨·,k⟩.

In order to show that f̂ ∈ L2
s we will show that∫

Rn

f̂N(ξ)f̂N(ξ)(1 + |ξ|2)s dξ → 0, N → +∞.
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In the product f̂N(ξ)f̂N(ξ) under the integral sign we have

r∑
i1,i2=1

ψ̂i1(ξ)ψ̂i2(ξ)
∑
|k|>N

ci1k e
−2π

√
−1⟨ξ,k⟩

∑
|k|>N

ci2k e
2π

√
−1⟨ξ,k⟩

=
r∑

i1,i2=1

ψ̂i1(ξ)ψ̂i2(ξ)Ii1,i2,N .

Since
ψ̂i1(ξ)ψ̂i2(ξ)(1 + |ξ|2)s ∈ L2(Rn),

if we prove that

|Ii1,i2,N | ≤ sup
ξ∈Rn

∣∣∣ ∑
|k|>N

ci1k e
−2π

√
−1⟨ξ,k⟩

∑
|k|>N

ci2k e
2π

√
−1⟨ξ,k⟩

∣∣∣ → 0, N → +∞,

we will have f̂N → 0, N → +∞ in L2
s. We have

Ii1,i2,N ≤
∑
|k|>N

|ci1k |
∑
|k|>N

|ci2k | ≤

∑
|k|>N

|ci1k |
2(1 + |k|2)s

∑
|k|>N

1

(1 + |k|2)s
∑
|k|>N

|ci2k |
2(1 + |k|2)s

∑
|k|>N

1

(1 + |k|2)s
.

Since (cik)k ∈ ℓ2s, i = 1, . . . , r, we see that the last expression tends to zero as
N → +∞. This proves the claim and the assertion b).

Concerning the duality, we have the following assertion.

Theorem 5.4. Assume that s > 0, (5.2) and (5.3) hold. Moreover, assume
that the conditions of assertion a) or conditions of assertion b) of Theorem
5.3 hold. Then in (both cases),

a) (V2
s )

′ = V2
−s, where V2

−s is the space of formal series of the form

F (·) =
r∑
i=1

∑
k∈Zn

bikψ
i(· − k),

r∑
i=1

∑
k∈Zn

|bik|2(1 + |k|2)−s < +∞,

with the dual pairing

⟨F, f⟩ =
r∑
i=1

∑
k∈Zn

bikc
i
k, (f is of the form given in (5.4)).

b) V2
−s = V−s.
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Proof. Part a) is clear while the second part follows from the fact that the
compactly supported elements of the form

∑r
i=1

∑
k∈Zn bikψ

i(· − k) are dense
in both spaces V2

−s and V−s, s > 0.

In order to consider the intersections of Vs, s ≥ 0, instead of conditions
(5.2) and (5.3), we assume

ψi ∈ S(Rn), i = 1, . . . , r. (5.5)

Theorem 5.5. Assume that (5.5) holds. Then,⋂
s≥0

V2
s =

⋂
s≥0

Vs,

and the expansion for their elements has the form as in (5.4) with

sup
k∈Zn

|cik|ks < +∞, i = 1, . . . , r, for every s > 0.

Recall that the space P(Rn) = P of periodic smooth test functions (with
period one in any variable) is given by

P =

{
ϕ : ϕ(·) =

∑
k∈Zn

ake
−2π

√
−1⟨·,k⟩, (ak)k∈Zn ∈ ℓ2s for every s ≥ 0

}
,

while its dual space P ′(Rn) = P ′ is given by

P ′ =
{
ϕ : ϕ(·) =

∑
k∈Zn

ake
−2π

√
−1⟨·,k⟩, (ak)k∈Zn ∈ ℓ2−s for some s ≥ 0

}
.

A direct consequence part b) of Theorem 5.3 is the following assertion.

Corollary 5.1. Assume that (5.5) holds. Then

F
(⋂
s≥0

V2
s

)
=

{ r∑
i=1

ψ̂i(·)
∑
k∈Zn

cike
−2π

√
−1⟨·,k⟩ : (cik)k∈Zn ∈ ℓ2s, i = 1, . . . , r, for every s ≥ 0

}
,

where Φi(·) =
∑

k∈Zn cike
−2π

√
−1⟨·,k⟩ ∈ P, i = 1, . . . , r.

Concerning the duality, by Theorem 5.4 we have:
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Corollary 5.2. Assume that (5.5) holds. Then V ′
s = V2

−s, ∪s>0V
′
s = ∪s>0V2

−s
and

F
(⋃
s≤0

V2
s

)
=

{ r∑
i=1

ψ̂i(·)
∑
k∈Zn

cike
−2π

√
−1⟨·,k⟩ : (cik)k∈Zn ∈ ℓ2s, i = 1, . . . , r, for some s ≤ 0

}
,

where Fi(·) =
∑

k∈Zn cike
−2π

√
−1⟨·,k⟩ ∈ P ′, i = 1, . . . , r.

Note that the assumption ψi ∈ S(Rn) implies a well defined product of a
smooth function and a (periodic) Schwartz distribution.
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Faculty of Technical Sciences, University of Kragujevac, Svetog Save 65,
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