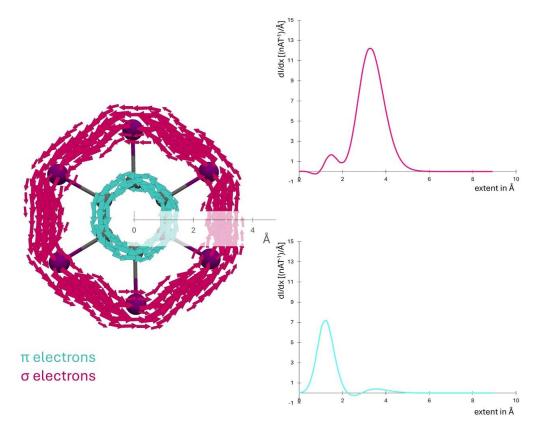


MAGIC 2024

 5^{th} Workshop on Magnetically induced molecular Currents


9.-13. September 2024

Ring currents in *per*iodo-hydrocarbons

Slađana Đorđević, Slavko Radenković

University of Kragujevac, Faculty of Science, P.O. Box 60, Kragujevac 34000, Serbia

A well-known example of doubly aromatic molecule is the hexaiodobenzene dication, $[C_6I_6]^{2+}$. Both, π -electrons in the benzene ring and σ -electrons in the outer ring formed by iodine atoms, induce diatropic currents (Fig. 1). In this work, the magnetically induced current densities were calculated for a series of *per*iodohydrocarbons. The current densities computed by means of the diamagnetic-zero variant of the continuous transformation of the origin of the current density (CTOCD-DZ) method were found to be a powerful tool for both qualitative and quantitative assessment of double aromaticity. The magnetic aspects of the double aromaticity were further compared with electronic aromaticity indices.

XXXII