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Abstract 

This paper explores the dynamics and stability of measles infection within a specified population, 
utilizing the SEIRV+D model. The study commences by establishing the equilibrium points and 
determining the reproduction number. The stability of this equilibria is contingent on the 
calculated reproduction number. The research draws upon real data obtained by Public Health 
Institute of North Macedonia to conduct a case study. Various simulations are executed, 
examining a range of transmission and vaccination rates.  

Keywords: dynamic model, measles infection, SEIRV+D model, reproduction number, 
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1. Introduction 

Measles is among the highly contagious infection diseases with a long history of presence in 
humans. It is caused by a virus from Morbillivirus genus, part of the Paramyxoviridae family 
(Griffin, 2016). The virus is spread through respiratory droplets, typically released by coughing, 
sneezing or close contact with an infected person.  

The first effective measles vaccine was developed by Dr John Enders and colleagues in the 
1960s (Berche 2022), laying the formulation for the development MRP vaccine. The introduction 
of the vaccine has significantly reduced the incidence of measles and its associated complications. 
The MRP vaccine is typically administered in two doses to children, with the first dose given 
around 12-15 mounts of age and the second dose from 4 to 6 years of age. High vaccination 
coverage helps establish community immunity, protecting those who cannot be vaccinated due to 
certain medical conditions. Despite vaccination efforts, measles still exists in some parts of the 
world, and the outbreaks can occur due to various factors. In the last decade, measles epidemic 
occurred in North Macedonia in 2014, 2017, 2018 and 2019. According to Public Health Institute 
(2023) in the 2018/2019 epidemic, 1901 individual was infected across 24 cities. 
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The transmission of many infectious diseases, including measles, influenza, COVID-19 and 
tuberculosis have been described using dynamic mathematical models. These models utilize 
mathematical equations to describe the interactions among various factors, aiding researchers and 
public health officials in understanding how diseases spread and in developing strategies to 
control the outbreak. The mathematical models are based on classical SIR (Susceptible, Infected, 
Recovered) model represented in Lau (2022) and Zaman (2017). The SEIR (Susceptible, 
Exposed, Infected, Recovered) model is adapted for diseases characterized by longer incubation 
periods and longer-lasting immunity, as discussed by Arsal (2020), Ottar (2002) and Stojkovikj 
(2024). Most recently, SEIRV (or SVEIR) models and SEIRVS models have been deployed as 
by Kukusheva Paneva (2024). The influence of vaccination on measles transmission and 
dynamics is explored by Hajii (2022) and Al- Darabsah (2021). 

The model deployed in this paper is a modification of the model represented by Kukusheva 
Paneva (2024) with the difference that the recruitment rate Λ is used instead of birth rate λ . In 
the paper by Kukusheva Paneva (2024) only the model and the reproduction number are given, 
where the reproduction number is not derived. The case study in that paper is conducted for a 
period of 5 years, whereas in our paper the case study is performed for twelve months. Also, the 
stability of the system and disease-free equilibrium point for the deployed model are represented. 
The proposed SEIRV+D model offers several benefits in analyzing the transmission of measles. 
By including the vaccination rates and the immunity development rate, the model enables the 
quantification of the impact of immunization programs. This model can represent real-world 
scenarios, illustrating the effectiveness of vaccination and its influence on disease-related 
mortality. The model also includes demographic factors, such as birth and death rates. These rates 
enable simulations that consider population changes and how those changes may affect disease 
spread over time. Additionally, the model considers the transmission rate, which highlights the 
effect on disease spread based on the number of contacts an infected individual has with other 
individuals. Another advantage of the model is its flexibility - any parameter can be adjusted, 
making it suitable for testing various scenarios. The model uses real data (e.g. from Public Health 
Institute of North Macedonia), enhancing its relevance and applicability. 

The model also has certain limitations. It assumes that every individual interacts with an 
equal number of other individuals. This oversimplifies the real dynamics, especially in areas with 
varying population densities. Also, social distancing among individuals, the introduction of 
quarantines, or other measures applied during epidemics, which can significantly alter the 
disease's dynamics, are not considered in this model. Additionally, the model does not consider 
the effect of the age group and the comorbidities’ infected individuals have on measles-related 
mortality. 

2. Methods and materials 

The research involves the development and analysis of SEIRV model which divides the total 
populations into six compartments at any given time: susceptible, exposed, infected, recovered, 
vaccinated and deceased:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )N t S t E t I t R t V t D t= + + + + +  (1) 

where time t is in months. 

The susceptible compartment is affected by the recruitment rate Λ and the rate of ineffective 
vaccination σ. To achieve community immunity, WHO (2019) recommends 95% of the total 
population to be vaccinated. Vaccination is deemed ineffective when a fully vaccinated individual 
fails to develop immunity and returns to susceptible compartment. The rate of unsuccessful 
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vaccination according to Bailey (2023) is around 5% among all vaccinated individuals. Once 
fully vaccinated, the susceptible individuals’ transit to vaccinated compartment at a vaccination 
rate q. Antibodies for measles typically appear between 12 and 15 days after vaccination, but 
sometimes between 21 and 28 days (Moss, 2006). The vaccinated individuals who develop 
immunity move to recovered compartment with successful vaccination rate ν. Individuals from 
susceptible compartment may interact with infected individual and upon contact progress to 
exposed compartment with transmission rate β. Proportion of exposed individuals progress to 

infected compartment by incubation rate 
1

latent

α
τ

=  , where latentτ  is the latent (incubation) period 

of measles and approximately last 10 days but can vary from 7 to 21 days upon exposure (CDC, 
2021). Infected individuals who receive treatment and recover progress to recovered 

compartment with recovery rate 
cov

1

re eryτ
γ = . The time covre eryτ  is recovery time of measles 

usually between 2 and 3 weeks, after which the individual is immune (resistant) to the measles 
virus. Infected individuals who die because of measles progress to death compartment with 
measles-related death rate δ.  The susceptible, exposed, infected, vaccinated and recovery 
compartments are decreased with constant natural mortality rate denoted by μ. The deployed 
model is shown in Figure 1. 

 
Fig. 1. Measles infection compartments model 

The transmission dynamics of measles for this model can be represented with the system of 
stochastic differential equations as: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

dS t S t I t
qS t V t S t

dt N
dE t S t I t

E t E t
dt N

dI t
E t I t I t I t

dt
dR t

I t V t R t
dt

dV t
qS t V t V t V t

dt
dD t

I t
dt

β
σ µ

β
α µ

α γ δ µ

γ ν µ

σ ν µ

δ

= Λ − − + −

= − −

= − − −

= + −

= − − −

=

 (2) 

Where the initial conditions are: 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 00 0, 0 0, 0 0, 0 0, 0 0, 0 0.S S E E I I R R D D V V= ≥ = ≥ = ≥ = ≥ = ≥ = ≥  (3) 

Theorem 2.1. If the system given with Equation (2) is valid, then the bounded region for 
feasible solution with initial conditions (3) is: 

 ( ) 6, , , , , : 0x S E I R V D N
µ

 Λ
Ω = = ∈ ≤ ≤ 

 


 (4) 

Proof 2.1. The total population for the deployed model is given by (1) and then: 

 

( ) ( )

Nd dS dE dI dR dV dD
dt dt dt dt dt dt dt

S E I R V N Dµ µ

= + + + + + =

Λ − + + + + = Λ − −
 (5) 

Because of D N
, the equation (5) becomes: 

 Nd N
dt

µ≈ Λ −   

Then, it can be deducted that: 

 Nd N
dt

µ≤ Λ −  (6) 

By solving the following ordinary differential equation: 

 

0
t

Nd N
dt

N C e µ

µ

µ
−

+ = Λ

Λ
= +

  

For initial condition 0t = : 

 0 0 0 0N C C N
µ µ
Λ Λ

= + ⇒ = −   
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So, ( )0 0 1t t tN N e N e eµ µ µ

µ µ µ
− − − Λ Λ Λ

= + − = + − 
 

 

Because of (6): 

 ( )0 1t tN N e eµ µ

µ
− −Λ

≤ + −   

with taking t →∞  the following is obtained: 

 N
µ
Λ

≤  (7) 

Thus, it is proved that (4) is bounded region. 

Theorem 2.2. The equilibrium point for the model (2) is: 

 

[ ]

* * * * * ** ( , , , , , )

( )
, 0, 0, , , 0

( )( ) ( )( ) ( )( )

X S E I R V D

q q
q q q q q q

σ ν µ ν
µ σ ν µ σ µ µ σ ν µ σ µ σ ν µ σ

=

Λ + + Λ Λ

+ + + − + + + − + + + −

=

 
 
 

 (7) 

Proof 2.2. The equilibrium point is reached when all the equations form Equation (2) are set 
to zero. 

 0
dS dE dI dR dV dD
dt dt dt dt dt dt

= = = = = =   

 

0

0

0
0

0
0

SI qS V S
N

SI E E
N
E I I I
I V R

qS V V V
I

β σ µ

β α µ

α γ δ µ
γ ν µ

σ ν µ
δ

Λ − − + − =

− − =

− − − =
+ − =
− − − =
=

 (8) 

If the system is solved, from equation (8) for the pointes * * * * *, , , ,S E I R V and *D  follows: 

 * ( )
( )( )q q

S σ ν µ
µ σ ν µ σ
Λ + +

+ + + −
=   

 * 0E =   

 * 0I =   

 
[ ]

*

( )( )
qR

q q
ν

µ µ σ ν µ σ
Λ

=
+ + + −
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 *

( )( )
qV

q qµ σ ν µ σ
Λ

=
+ + + −

  

and 

 * * * * * * * * * * * *( ) ( ) 0S E I R V S E I R VD N
µ
Λ

= − + + + + = − + + + + =   

From above equations, the total population is 
*N

µ

Λ
=  applying the equilibrium point. For 

disease-free equilibrium (DFE) point (7) is obtained. 

The basic reproduction number 0ℜ  quantifies a disease’s potential to be transmitted within 
a population and it is used to describe the contagiousness of the infectious disease.  This concept 
was developed by Van den Driessche and Walmough (2002) and is calculated as the largest 
eigenvalue of the next- generation matrix. 

Theorem 2.3. The model (2) has the following basic reproduction number 0ℜ : 

 0
( )

( )( ) ( )( )q q
βµ σ ν µ α
µ σ ν µ σ α µ γ µ δ

+ +
ℜ = ⋅

+ + + − + + +
 (9) 

Proof 2.3. Each element of the next generation matrix represents the rate of transmission 
between compartments. The next generation matrix can be derived from two matrices denoted as 
ℑ  and ϒ . The matrix ( )xℑ  gives the rate of new infection appearances and the matrix ( )xℑ  
gives the rate of individuals’ transition in and out of compartments.  

Because ( , , , , , )TX S E I R V D= for model (2) follows: 

 ( ) ( )dX x x
dt

= ℑ − ϒ   

Where: ( )

0

0
0
0
0

SI
N

X

β
 
 
 
 
 ℑ =  
 
 
 
  

, and ( )
( )
( )

( )

SI qS S V
N

E

I EX
R I V

V qS
I

β µ σ

α µ

γ δ µ α
µ γ ν
σ ν µ
δ

 + + + − −Λ 
 

+ 
 + + −ϒ =  
 − −
 
− + + − 
 − 

 

The Jacobian matrix is obtained from two matrices F and V . The elements in new infection 
matrix F represent the flow of new infections in the model and the elements of transition or 
recovery matrix V gives the flow of individual leaving the compartments. If the equilibrium point 
is applied in model (2) these matrices are: 
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 * 0
( )

0 0

S
F X N

β 
 =
 
 

  

and 

 * 0
( )V X

α µ
α γ δ µ
+ 

=  − + + 
  

In Theorem 2.1. for the total population was proven that N
µ

Λ
≤ . In the equilibrium point, 

the total population is N
µ

Λ
= , so that * 0

( )
0 0

S
F X

βµ
= Λ
 
 
 
 

. 

For the next generation matrix is obtained: 

 1

1 0( )0
( )( )

1
0 0

( )( )

q qFV
βµ σ ν µ

α µ
µ σ ν µ σ

α
α µ γ µ δ γ µ δ

−

 + +  +  + + + −=     −  + + + + + 

  

Thus, the theorem 2.3 is proved. 

Theorem 2.4. If 0 1ℜ > , the disease-free equilibrium point (7) is unstable, indicating that the 

disease is transmitting within given population. Conversely, if 0 1ℜ < , the disease-free 
equilibrium point (7) is asymptotically stable, suggesting that the disease will eventually die out 
in the population. 

Proof 2.5. The Jacobian matrix of model (2) is: 

 

( )

( )

( )

( )

0 0 0

0 0 0

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0 0

I Sq
N N

I S
N N

J

v
q v

β βµ σ

β βα µ

α γ δ µ
γ µ

σ µ
δ

 − − + − 
 
 − + 
 = − + + 
 −
 

− + + 
 
 

  

The Jacobian matrix at DFEP is: 
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 ( )

( )

( )

( )

( )

*

*

*

0 0 0

0 0 0 0

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0 0

Sq

S

J X

v
q v

βµµ σ

βµα µ

α γ δ µ
γ µ

σ µ
δ

 
− + − Λ 
 

− + Λ = − + + 
 − 

− + + 
 
 

  

It is essential to ensure all the eigenvalues of Jacobian ( )*J X are negative. For this purpose, 

the characteristic equation ( )( )*det 0J X Eλ− =  is considered. Calculating this determinant, 
follows that: 

 2 2( )( ( ) )( ( ) ) 0A F AF q B C BC Gλ λ µ λ λ σ λ λ α+ + + + − + + + − =   

Where A q µ= + , B α µ= + , C γ δ µ= + + , F σ υ µ= + + and 
*S

G
αβµ

=
Λ

. 

Because *, , , , , , , , , 0q Sα β γ δ υ σ µΛ > , it follows that , , , , 0A B C F G > . For simplification, 

0ℜ and *S expressed by , , , ,A B C F G are given with the following equations: 

 0
( )

( )( ) ( )( )
F

q q AF q BC
βµ σ ν µ α βµ α
µ σ ν µ σ α µ γ µ δ σ

+ +
ℜ = ⋅ = ⋅

+ + + − + + + −
  

and 

 * ( )
( )( )

F
q q AF q

S σ ν µ
µ σ ν µ σ σ
Λ + + Λ

+ + + − −
= =   

The following eigenvalues of ( )*J X  are obtained: 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1

2

2

3

2

4

2

5

2

5

0
0

4
2

4
2

4
2

4
2

A F A F AF q

A F A F AF q

B C B C BC G

B C B C BC G

λ
λ µ

σ
λ

σ
λ

α
λ

α
λ

=
= − <

− + − + − −
=

− + + + − −
=

− + − + − −
=

− + + + − −
=

  

Now, the eigenvalues 5λ and Gα  are estimated. In the quadratic equation 
2 ( ) 0A F qλ λ σ+ + − = for the coefficients are true 0A F+ > and 0AF qσ− > . It is clear 

that 0A F+ > , while for 0AF qσ− > is obtained: 

( )( ) 2 0AF q q v q q qv q v qσ µ σ µ σ σ µ µσ µ µ σ− = + + + − = + + + + + − >   

Lemma 2.1. The discriminant of the quadratic equation 

 ( )2 0B C BC Gλ λ α+ + + − =   

is greater than zero, for every value of , , , , , , , , .qα β γ δ υ σ µΛ  

Proof Lemma 2.1. It is clear that: 

 ( ) ( ) ( )2 2det 4 4 0B C BC G B C Gα α= + − − = − + >   

and 5 6, Rλ λ ∈ thus 5 0.λ <  The sign of 6λ depends on: 

 ( ) ( )2 4B C BC G B Cα+ − − ≤ +   

Or 

 ( ) ( )2 4B C BC G B Cα+ − − > +   

The equation ( )2 0B C BC Gλ λ α+ + + − = can be transformed as: 

 ( ) ( )02

0

1
0

G
B C

α
λ λ

−ℜ
+ + + =

ℜ
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The last equation is correct because of 0

0 0

(1 )G G
G

α α
α

−ℜ
= −

ℜ ℜ
and 

 

*

( ) ( )

FS
G AF q BCF FG

AF q BC AF q BC

αβµαβµ
α σ

αβµ αβµα
σ σ

−Λ= = =

− −

  

If 0 1ℜ <  than 2( ) 4( ) ,B C BC G B Cα+ − − ≤ + because the eigenvalue 6 0λ < and the 

equilibrium point *X is considered to be locally asymptotically stable. If 
0

1ℜ > than 

2( ) 4( )B C BC G B Cα+ − − > +  because the eigenvalue 6 0λ > , then the equilibrium 

point *X is locally asymptotically unstable. 

3. Results and discussion 

The analysis is conducted with data obtained from Public Health Institute of North Macedonia 
(2023). The model was simulated using AnyLogic® software and the effects of different values 
of some parameters with graphical interpretations have been analyzed. Each compartment: 
susceptible (S), exposed (E), Infected (I), Recovered (R), Vaccinated (V) and Death (D) can be 
represented by state chart in AnyLogic®. The chart defines the transmission between states over 
time. The parameters used in the simulation are dynamic and during the simulation their impact 
can be evaluated. AnyLogic uses time-series plots for data visualization for all compartments. 
Additionally, with AnyLogic® multiple scenarios can be tested, such as different vaccination 
rate, transmission rate etc. These parameters can be adjusted to assess how their change affects 
the outcome of the pandemic. The total population in North Macedonia is 2114176 (Macrotrends, 
2024). The natural mortality rate per capita is 0.013 and the recruitment of susceptible population 
is 21960 (Macrotrends, 2023). The period of incubation for measles is from 10 to 14 days but can 
extend up to 21 days. The recovery period is from 2 to 3 weeks, so the recovery rate has been set 

as 
cov

1 1
0.071

14re eryτ
= =  . According to Public Health Institute (2023) in 2018 North Macedonia 

had a measles-related mortality rate of 2 deaths per 1000 infected individuals. That year, the 
vaccination rate in North Macedonia is 74.4% with 99.2% of those vaccinated developing 
immunity. In Table 1 are listed all the parameters with their values. 
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Parameter description value 

Λ Susceptible recruitment 21960 

β Transmission rate 0.6-0.9 

α Exposure rate 0.100 

γ Recovery rate 0.071 

δ Mortality rate of measles 0.002 

q Vaccination rate 0.744-0.96 

ν Immunity development rate 0.992 

σ Ineffective vaccination rate 0.008 

μ Natural mortality rate 0.013 

Table 1. Description and estimated values of parameters. 

 
Fig. 2. Number of infected individuals for transmission rate a) 0.6β = and b) 0.9β = for 

vaccination rate 0.744q =  

In Figure 2, the variations are represented of the number of infected persons for the developed 
model (2) for the period of 12 months when the vaccination rate is 0.744 or 74.4% and variable 
transmission rates. When the transmission rate is set to be 0.6, the number of annual infected 
individuals is little above 1600 individuals, as shown in Figure 2(a), whereas when the 
transmission rate is increased to 0.9, the annual number of infected individuals increases to a 
value under 2000 infected individuals. Figure 2 shows that at the end of the year, the number of 
infected persons is higher if the transmission rate is increased.  

 
Fig. 3. Number of infected individuals for transmission rate a) 0.6 and b) 0.9 for vaccination 

rate 0.950q =  

WHO (2019) recommends a vaccination rate over 0.95 for herd immunity and elimination 
of measles. Therefore, the next set of simulation was conducted with vaccination rate 0.95. All 
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other values of the model (2) are set as in Table 1. When the transmission rate is 0.9, the annual 
number of infected individuals remains below 1000. However, when the transmission rate 
decreases to 0.6, the number of infected individuals per year decreases to under 600 individuals. 
Figure 2 and Figure 3 demonstrate that reducing the transmission rate decreases measles 
transmission. In high- density areas, close contact between individuals increases transmission 
risk, necessitating social distancing and public health measures. Higher vaccination rate reduces 
the number of susceptible individuals, lowering transmission and overall measles spread. Also, 
the highly effective measles vaccine significantly reduces the number of infected individuals. 
Figure 4 compares the number of measles-related deaths for a constant transmission rate 0.6β =
, showing a decrease in deaths with higher vaccination rate. 

 
Fig. 4. Number of deceased individuals for transmission rate 0.6β = and vaccination rates a) 

0.950 and b) 0.744 

4. Conclusions 

In this paper, SEIRV+D model was developed to investigate measles’ dynamics within a given 
population. First, the equilibrium point was derived, and then the expression for the reproduction 
number is presented. The stability of the equilibrium is assessed based on reproduction number.  

The advantages of this model are based on the fact that it combines many important 
components that make it adaptable to real-world scenarios compared to traditional SEIR models. 
The proposed model improves upon simple models like SIR and SEIR by introducing more 
compartments and considering additional rates. Compared to static models, this model also 
considers birth rates and mortality rates, maintaining the model's dynamic nature. Unlike the 
dynamic SEIRV model, this model considers natural mortality, which is not caused by measles, 
making it adaptable to dynamic populations. It also considers the success of vaccination, making 
the model more realistic and predicting the impact of vaccination.  

 This model includes a vaccination compartment, where individuals transition from 
susceptible to vaccinated, and if the vaccination is successful, they move to the recovered state. 
Otherwise, they return to the susceptible state, allowing for dynamic adjustments of vaccination 
rates. This can influence vaccination campaigns by demonstrating the significance of vaccination 
and its impact on disease transmission and immunity. It can be emphasized that these elements 
facilitate better forecasting, planning, and policymaking in public health. 

The case study is based on real data from Public Health Institute of North Macedonia. The 
simulations were conducted with varying transmission and vaccination rates. The transmission 
rate, a critical parameter, quantifies how quickly measles spreads from infectious to susceptible 
individuals. It is directly linked to the contact rate and represents the frequency of interactions 
leading to measles transmission. Results show that at a vaccination rate of 0.744 and transmission 
rate 0.6 the annual number of infected individuals is slightly above 1600. Increasing the 
vaccination rate to 0.95 for the same transmission rate, the annual number of infections is reduced 
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to under 600. For a higher transmission rate (β=0.9), infection decreases from nearly 2000 at 
vaccination rate 0.744 to below 1000 for vaccination rate 0.95. At vaccination rate 0.744, 
measles-related deaths remain higher for all transmission rates, reflecting the vulnerability of a 
larger susceptible population. When vaccination rate reaches 0.95, annual deaths for transmission 
rate of 0.9 are significantly reduced, aligning with the WHO’s goal for measles elimination.  

The deployed SEIRV+D model proves highly effective in quantifying the combined impact 
of vaccination, transmission reduction, and annual mortality. It highlights that achieving 
vaccination coverage above 95% and maintaining low transmission rate is critical to minimizing 
the number of infected individuals and measles-related deaths.  

In summary, the model indicates that North Macedonia can achieve significant progress 
toward measles elimination by improving vaccination coverage, implementing public health 
measures, and maintaining effective immunization programs.  
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