

Symmetry 2025, 17, 771 https://doi.org/10.3390/sym17050771

Article

A Novel Approach in 3D Model Reconstruction from

Engineering Drawings Based on Symmetric Adjacency

Matrices Using DXF Files and Genetic Algorithm

Predrag Mitić 1, Vladimir Kočović 1, Milan Mišić 2, Miladin Stefanović 1, Aleksandar Đorđević 1,*, Marko Pantić 3

and Damir Projović 4

1 Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia; predrag2904@gmail.com (P.M.);

vladimir.kocovic@kg.ac.rs (V.K.); miladin@kg.ac.rs (M.S.)
2 Kosovo and Metohija Academy of Applied Studies, 38218 Leposavić, Serbia; milan.misic@pr.ac.rs
3 Department of Production Engineering, Faculty of Technical Sciences, University of Priština in Kosovska

Mitrovica, 38220 Kosovska Mitrovica, Serbia; marko.pantic@pr.ac.rs
4 Department of Management, Military Academy, The University of Defence in Belgrade,

11000 Belgrade, Serbia; damirpro@yahoo.com

* Correspondence: adjordjevic@kg.ac.rs

Abstract: The application of CAD/CAM technologies in modern production has revolu-

tionized manufacturing processes, leading to significant improvements in precision, effi-

ciency, and flexibility. These technologies enable the design and manufacturing of com-

plex geometries with high accuracy, reducing errors and material waste. CAD/CAM inte-

gration streamlines workflows, enhances productivity, and facilitates rapid prototyping,

accelerating the time-to-market for new products. Additionally, it supports customization

and scalability in production, allowing for cost-effective small-batch and large-scale man-

ufacturing. Without a 3D model of the product, it is not possible to use the advantages of

applying advanced CAD/CAM technologies. Recognizing 3D models from engineering

drawings is essential for modern production, especially for outsourcing companies in

fluctuating market conditions, where the production process is organized with 2D work-

shop drawings on paper. This paper proposes a novel methodology for reconstructing 3D

models from 2D engineering drawings, specifically those in DXF file format, leveraging a

genetic algorithm. A core component of this approach is the representation of the 2D

drawing as a symmetric adjacency matrix. This matrix serves as the foundational data

structure for the genetic algorithm, enabling the evolutionary process to effectively opti-

mize the 3D reconstruction. The experimental evaluation, conducted on multiple engi-

neering drawing test cases (including both polyhedral and cylindrical geometries),

demonstrated consistent convergence of the proposed GA-based method toward topolog-

ically valid and geometrically accurate 3D wireframe models. The approach achieved suc-

cessful reconstruction in all cases, with fitness scores ranging from 1.1 to 112.2 depending

on model complexity, and average execution times from 2 to 100 seconds. These results

confirm the method’s robustness, scalability, and applicability in real-world CAD envi-

ronments, while establishing a new direction for topology-driven 3D reconstruction using

evolutionary computation.

Keywords: symmetric adjacency matrices; 3D model reconstruction; genetic algorithm;

engineering drawings; DXF file

Academic Editors: Jie Yang and Shi

Cheng

Received: 4 April 2025

Revised: 9 May 2025

Accepted: 13 May 2025

Published: 15 May 2025

Citation: Mitić, P.; Kočović, V.;

Mišić, M.; Stefanović, M.; Đorđević,

A.; Pantić, M.; Projović, D. A Novel

Approach in 3D Model

Reconstruction from Engineering

Drawings Based on Symmetric

Adjacency Matrices Using DXF Files

and Genetic Algorithm. Symmetry

2025, 17, 771. https://doi.org/10.3390/

sym17050771

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Symmetry 2025, 17, 771 2 of 33

1. Introduction

The integration of computer-aided design and computer-aided manufacturing

(CAD/CAM) technologies has profoundly transformed modern manufacturing by ena-

bling rapid prototyping, design precision, and flexible production. However, in many in-

dustrial environments, particularly those relying on legacy documentation, two-dimen-

sional (2D) workshop drawings remain the predominant format for technical communi-

cation. These drawings are often the only documentation available, especially in subcon-

tracting or archival scenarios, making the automatic reconstruction of three-dimensional

(3D) models from 2D sources a critical challenge.

The reconstruction of 3D models from 2D technical drawings is a key problem in

CAD, reverse engineering, and model understanding. Orthographic projections, as stand-

ardized 2D representations, encode critical geometric and topological information of an

object, yet lack depth and perspective, making the reconstruction process inherently un-

derdetermined and often ambiguous.

Despite decades of research, the fully automated reconstruction of 3D models from

2D orthographic drawings remains a technically demanding problem. The majority of ex-

isting approaches are either limited to specific object categories (e.g., polyhedral shapes),

require supervised learning with annotated datasets, or rely heavily on manually defined

features and heuristics. One critical limitation is the absence of topological data in stand-

ard formats such as Drawing Exchange Format (DXF), which only contain isolated geo-

metric entities (lines, arcs, circles) without information on how these entities are connected

across views. This is particularly evident in the case of the DXF. Developed by Autodesk,

DXF is an open, CAD-native file format originally created to enable interoperability be-

tween different CAD systems. In a DXF file, each geometric entity is represented by a

structured ASCII or binary record, which facilitates programmatic extraction of coordi-

nates and primitive types but does not include explicit topological connectivity.

Moreover, many methods do not generalize well to complex industrial parts that in-

clude curved surfaces, intersecting features, or non-standard projection layouts. Compu-

tational complexity is another barrier, as approaches based on exhaustive geometric

matching or volumetric reconstruction often become infeasible for drawings with a high

number of elements. Consequently, there is a clear need for reconstruction methods that

can operate without prior knowledge of shape classes, while remaining computationally

tractable and tolerant to incomplete or ambiguous input data.

Automated 3D reconstruction from 2D orthographic projections has become increas-

ingly important due to its role in streamlining digital manufacturing workflows. Since 3D

models serve as the foundation for CAM (such as AutoCAD Mechanical v24.0) software

and the generation of CNC programs, their availability is essential for modern production

systems. Manual reconstruction is time-consuming, error-prone, and incompatible with

the demands of scalable, automated manufacturing environments.

Recent studies have attempted to address these limitations through machine learning

models, rule-based extraction, and graph-based interpretations. For example, Furferi et al.

[1] employed a set of geometric rules for feature recognition, while Zhang et al. [2] pro-

posed a method based on shape matching and solid feature extraction. However, these

approaches typically depend on either specific geometric constraints or extensive domain

knowledge, which limits their flexibility. CNN-based techniques [3,4] have shown prom-

ise in object classification tasks but are not easily adaptable to wireframe reconstruction

without labeled training datasets.

Furthermore, although some researchers have explored the use of genetic algorithms

(GA) for reconstruction tasks [5], these efforts are often restricted to prismatic objects or

simplified scenarios with predefined projections. To the best of our knowledge, no exist-

ing study has formulated the reconstruction task using a symmetric topological

Symmetry 2025, 17, 771 3 of 33

representation that abstracts the geometry into a generalized graph structure. This gap

highlights the need for a new approach that combines topological abstraction and evolu-

tionary optimization to address the limitations of current methods in terms of generality,

scalability, and independence from geometric priors.

The primary purpose of this study is to develop a robust and generalizable method-

ology for reconstructing 3D wireframe models from 2D orthographic engineering draw-

ings in DXF format. Unlike existing methods that rely on geometry-specific rules or ex-

tensive training datasets, our approach seeks to abstract the reconstruction process by

modeling the structural relationships within the drawing. This enables the proposed

method to function independently of specific shape types and to be applicable to a broad

range of industrial components, including those with curved or hybrid geometries.

To address these challenges, this paper proposes a novel method that integrates ge-

ometric reasoning with a topological representation based on symmetric adjacency matri-

ces. This representation compactly encodes the relationships between vertices and edges,

supporting efficient detection of geometric consistencies and inconsistencies across pro-

jections. The proposed method extracts geometric entities directly from DXF files and con-

structs a connectivity matrix that forms the basis for identifying spatial relations. A GA is

then employed to search the solution space for a plausible 3D reconstruction that satisfies

geometric constraints while aligning projections from multiple views. This hybrid strat-

egy enhances automation and robustness, particularly in reconstructing wireframe mod-

els from standard 2D technical drawings.

The proposed approach is expected to achieve accurate and consistent reconstruction

of 3D wireframe models from 2D technical drawings, even in cases where traditional

methods fail due to geometric ambiguity or incomplete data. Through extensive testing

on real-world engineering examples—including both polyhedral and cylindrical compo-

nents—the method is designed to demonstrate strong generalization capabilities, low

computational overhead, and high structural fidelity. These outcomes would confirm the

practical potential of the approach for integration into CAD/CAM workflows and digital

twin environments.

The remainder of this paper is organized as follows. Section 2 reviews the back-

ground and related work in 3D reconstruction from 2D drawings, focusing on existing

methodologies and identifying research gaps. Section 3 presents the theoretical model,

outlining the assumptions, mathematical formulation, and the complete workflow for

wireframe reconstruction using symmetric adjacency matrices. Section 4 introduces the

genetic algorithm developed for optimization, including chromosome representation, fit-

ness evaluation, and evolutionary operators. Section 5 discusses the experimental setup

and presents results obtained on several real-world test cases, including polyhedral and

cylindrical geometries. Section 6 concludes the paper with a summary of findings, identi-

fied limitations, and future research directions.

2. Background and Related Work

The reconstruction of 3D models from 2D technical drawings has been explored since

the 1970s, primarily through two fundamental approaches: Boundary Representation (B-

Rep) and Constructive Solid Geometry (CSG). B-Rep describes objects by their boundaries

(vertices, edges, and surfaces), while CSG relies on Boolean operations over basic geomet-

ric primitives. The first known algorithm for generating 3D models from orthographic

projections was introduced in 1973 [2] and later formalized in subsequent works [3,4].

These early methods mainly focused on polyhedral object reconstruction, with a more

efficient algorithm proposed in [5].

Previous studies on 3D model reconstruction from 2D drawings have explored a

range of methodologies, including rule-based systems, graph-based representations, and

Symmetry 2025, 17, 771 4 of 33

evolutionary computation. Zhang et al. [2] classify existing methods into three main

groups: wireframe reconstruction, direct solid reconstruction, and machine learning-

based methods. This classification can be extended to include metaheuristic approaches

such as GAs, which, despite their potential, remain relatively underexplored. A compre-

hensive review of modern methods is provided in [2].

Within the wireframe domain, Furferi et al. [1] developed a MATLAB v7. 10 algo-

rithm that utilizes vector drawings and vertex connectivity to construct 3D models. The

authors in [6] applied fuzzy logic to analyze surface connectivity, while [7] addressed the

construction of conic curves using Bézier interpolation. However, most methods struggle

with curved edges and complex shapes. A decision tree approach is used in [8] to recog-

nize surfaces from all three projections, though the algorithm is complex due to multiple

parallel analyses.

Further developments include [9–12], which introduce a hybrid model linking verti-

ces, edges, and surfaces, later converted into B-Rep. Although informative, this method

requires high computational resources due to surface relation identification in each view.

Varley [12] applied shortest path algorithms on graphs to detect loops corresponding to

surfaces. Others, such as [13,14], rely on extrusion and knowledge bases but are limited to

simple forms and predefined geometries.

Machine learning approaches—particularly convolutional and transformer neural

networks—are becoming more prominent, yet a functional model for direct 3D recon-

struction from 2D drawings is still lacking [9], and thus this work does not explore that

domain further.

Among metaheuristic strategies, GAs show promise. Chen and Feng [15] were the

first to apply GAs for reconstructing 3D models from imprecise 2D contours. Similar con-

cepts have been explored in [16–18], although these are largely limited to prismatic shapes

and do not handle more complex surfaces.

Based on the literature, three main challenges can be identified: high computational

complexity, limited applicability to drawings with mixed geometries, and underutiliza-

tion of genetic algorithms. This paper introduces a novel method based on symmetric

connectivity matrices, which efficiently encodes the topology of 2D entities extracted from

DXF files and serves as the foundation for GA-based optimization. Our approach enables

wireframe model reconstruction through graph-based traversal, independent of shape

complexity, including lines, arcs, and curves.

Unlike existing GA approaches that operate on contours or raster images, our

method uses a graph-based representation with clearly defined topology. To the best of

our knowledge, this is the first work to formulate wireframe reconstruction as a graph

optimization problem addressed via evolutionary algorithms. The method demonstrates

good performance and opens promising directions for further research. The proposed

method not only enhances the efficiency of shape reconstruction but also emphasizes the

inherent symmetry in structural representations of engineering geometries.

3. Model Elements and Workflow for 3D Model Reconstruction from

2D Engineering Drawings

3.1. Initial Hypotheses and Assumptions

This paper hypothesizes that representing 2D orthographic projections using sym-

metric adjacency matrices enables efficient, scalable, and accurate reconstruction of 3D

wireframe models through evolutionary optimization. The central assumption is that the

topological and geometric relationships inherent in 2D technical drawings can be com-

pactly encoded in symmetric matrices and interpreted as graph structures, forming a con-

sistent foundation for reconstructing 3D geometry.

Symmetry 2025, 17, 771 5 of 33

The main contributions of this paper are:

• A novel representation of 2D engineering drawings using symmetric adjacency ma-

trices.

• A mathematical model that formalizes the 3D wireframe reconstruction problem as

a binary integer optimization task.

• Development and implementation of a customized genetic algorithm for solving this

optimization problem

• Experimental validation across both polyhedral and cylindrical geometries, demon-

strating the method’s generality and robustness, including cases with curved edges

and varying levels of drawing complexity.

Figure 1 shows a 3D model of a typical industrial machine part, designed in one of

the software packages.

Figure 1. Typical industrial machine part.

For drawing creation, including the method of marking individual components of

the drawing, certain conventions have been adopted over the past decades and regulated

by appropriate standards [19]. The goal of adopting these conventions is to ensure that

drawings provide unambiguous instructions for the manufacture of the depicted parts.

These standards, whether international ISO standards or national standards, are inte-

grated into commercial software packages and offer multiple options for representing in-

dividual elements of machine parts in technical or workshop drawings. These options

provide designers with some freedom when creating workshop drawings, making it prac-

tically impossible to incorporate all possibilities into an algorithm for identifying geomet-

ric information. Therefore, this research is based on the following assumptions:

It is assumed that the 2D workshop drawing is complete and contains three ortho-

graphic projections made according to ISO-E or European projection layout: front view,

top view, and left view, as shown in Figure 2.

It is assumed that the 2D workshop drawing contains all the necessary information

that clearly and unambiguously defines the shape of the machine part. Sections, details,

partial views, etc., are not considered, meaning all edges, vertices, and hidden lines are

shown in the corresponding projections (Figure 2).

The dimensions of the 3D model can be directly obtained from the vertex coordinates,

assuming they can be corrected with an appropriate scaling factor. For simplicity, this

research assumes that the orthographic projections are created at a scale of 1:1.

It is assumed that all three orthographic projections are created in accordance with

the dimensional and geometric tolerances previously embedded in the 3D model.

Symmetry 2025, 17, 771 6 of 33

DXF files, due to their binary or ASCII format, offer a significant advantage in entity

recognition tasks, as highlighted in [20,21]. This format simplifies the identification of ge-

ometric entities such as lines, circles, points, and polylines within engineering drawings.

When an object is provided with three projections in the DXF format, identifying the in-

dividual components (such as lines, circles, etc.) is a relatively straightforward process.

However, the DXF format lacks topological data, meaning the file contains no logical se-

quence for the entities and no explicit information about their connectivity. In simpler

terms, details about the spatial arrangement of projections and the edges associated with

them are absent. Due to this limitation, a method to separate the drawing into three dis-

tinct views is required before proceeding with further analysis [6].

These assumptions simplify the input data for the process of the identification and

conversion of geometric information, enabling its practical implementation. Without these

assumptions, the process of identifying and recognizing geometric information would

significantly exceed the scope of this research.

Figure 2. Orthographic projections—engineering drawing of an industrial part.

3.2. Workflow of 3D Reconstruction Process

The flowchart presented in Figure 3 outlines the overall workflow of the proposed

methodology, beginning with the parsing of DXF projections and culminating in the re-

construction process based on a GA. Each element of the flowchart corresponds to a spe-

cific sub-procedure, the details of which are elaborated in the subsequent sections. This

modular structure ensures clarity and reproducibility, reflecting the systematic integra-

tion of geometric data processing and evolutionary optimization.

The orthographic projections shown in Figure 4, which are analogous to the example

found in [16] consist of different flat geometric shapes. These shapes can be lines, circular

arcs and circles. Those geometric shapes represent entities that form contours as shown in

Figure 4. Also, it should be noted that entities are defined by their starting and ending

points and some other characteristics that depend on the type of the entity.

In the example shown in Figure 4, which represents the front view of the part shown

in Figure 1, there are a total of 9 points that form line entities. A line is an entity determined

with the starting point (X1, Y1) and the ending point (X2, Y2), i.e., the coordinates of the

starting and ending points in the Cartesian coordinate system.

In addition to line entities, there are also entity circle, determined by the coordinate

of the center (X, Y) in the Cartesian coordinate system, and the radius R and an Arc or

circular arc, determined by the coordinate of the center (X, Y) in the Cartesian coordinate

system and the radius R, as well as the initial and final angle of the circular arc expressed

in degrees.

Symmetry 2025, 17, 771 7 of 33

Figure 3. Flow diagram of 3D model reconstruction process.

Figure 4. Entities of orthographic projection.

Recognizing lines, circles, points, and polylines is fundamental to automated 3D

model recognition, as they define surface boundaries. While entities recognition and po-

sitioning in DXF files are relatively simple and well documented in [16], our research ad-

dresses the more complex challenge of automatically establishing topological relation-

ships between vertices and edges. The following presents the structured pseudocode for

the extraction of line entities from the entities section of a DXF file. A similar approach is

used for processing circular arcs and other entity types (Algorithm 1).

The procedure is organized into five key stages:

• File selection: User selects a DXF file from disk.

• Data initialization: The file is loaded and the ENTITIES section is located.

• Parsing logic: LINE entities are scanned and decomposed into vertex coordinate

pairs.

Symmetry 2025, 17, 771 8 of 33

• Edge creation: Edges are constructed by linking each vertex pair.

• Post-processing: Duplicate vertices are removed and the final vertex and edge arrays

are produced.

Algorithm 1 Extraction of line entities and graph construction from a DXF file.

PROCEDURE ExtractLineEntities

 INPUT: FilePath (string)–dxf file path

 OUTPUT: VertexList (list of unique vertices), EdgeList (list of edges)

 // 1. File selection

 Open DXF file at FilePath

 IF file cannot be opened THEN

 RETURN error

 // 2. Data initialization

 Locate “ENTITIES” section in file

 IF “ENTITIES” section not found THEN

 RETURN error

 Initialize empty list RawVertices

 Initialize empty list EdgeList

 // 3. Parsing logic

 FOR each entity in “ENTITIES” section DO

 IF entity type is “LINE” THEN

 Read start point (X1, Y1)

 Read end point (X2, Y2)

 // 4. Edge creation

 Add (X1, Y1) to RawVertices

 Add (X2, Y2) to RawVertices

 Add edge: ((X1, Y1), (X2, Y2)) to EdgeList

 END IF

 END FOR

 // 5. Post-processing

 VertexList ← Remove duplicate points from RawVertices

 FOR each edge in EdgeList DO

 Replace (X1, Y1) and (X2, Y2) with corresponding indices in VertexList

 END FOR

 RETURN VertexList, EdgeList

END PROCEDURE

3.3. Creating Orthographic Projection Matrices

This section expands on how edges are formed from vertices based on their coordi-

nates, and how this relationship is mathematically represented to construct the adjacency

matrix AdjA for the front view (Figure 4).

Definition 1. Let:

𝑃 = {𝑝1, 𝑝2, … , 𝑝3 }: A set VA of 𝑛 vertices in the front orthographic projection. Each vertex

is represented as: 𝑝𝑖 = {𝑥𝑖 , 𝑦𝑗 }, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}

𝐸 = {𝑒1, 𝑒2, … , 𝑒3 }: A set EA of 𝑚 edges, where each edge 𝑒𝑘 connects two vertices 𝑝𝑖 and

𝑝𝑗. Each edge is represented as: 𝑒𝑘 = {𝑝𝑖 , 𝑝𝑗 }, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, 𝑖 ≠ 𝑗

Each entity is defined by a start point(, 𝑥𝑠, 𝑦𝑠), and an endpoint (𝑥𝑘, 𝑦𝑘).

Edge is defined by start and end points.

Symmetry 2025, 17, 771 9 of 33

() () (), , , , .i s s j e e k i jp x y p x y e p p= = =

If the start or end point does not exactly match a vertex in P, a proximity threshold ϵ > 0 to

account for numerical inaccuracies can be applied: 𝑝𝑖 − (𝑥𝑠, 𝑦𝑠)‖ ≤ 𝜖 and ‖𝑝𝑗 − (𝑥𝑒 , 𝑦𝑒)‖ ≤ 𝜖

The adjacency matrix is defined as:

𝐴𝑑𝑗𝐴 ∈ ℝ𝑛×𝑛, 𝐴𝑑𝑗𝐴[𝑖, 𝑗] = {
1, if (𝑝𝑖 , 𝑝𝑗) ∈ 𝐸

0, otherwise.

where indicates that an edge exists between vertices. It is important to notice that orthogonal pro-

jection can be represented as an undirected graph [16] and then the matrix 𝐴𝑑𝑗𝐴 is symmetric:

𝐴𝑑𝑗𝐴[𝑖, 𝑗] = 𝐴𝑑𝑗𝐴[𝑗, 𝑖], ∀𝑖, 𝑗.

Diagonal elements 𝐴𝑑𝑗𝐴[𝑖, 𝑖] = 0-no self-loops are considered as: 𝐴𝑑𝑗𝐴[𝑖, 𝑖] = 0, ∀𝑖.

The adoption of symmetric adjacency matrices is driven by their capacity to com-

pactly encode topological relationships among vertices in a standardized and computa-

tionally efficient format. In contrast to edge lists or conventional graph-based representa-

tions, symmetric matrices inherently minimize redundancy—owing to their structural

symmetry—and support efficient matrix operations, such as the computation of the Fro-

benius norm, which plays a critical role in the iterative optimization process governed by

GA. Furthermore, this representation naturally corresponds to the undirected nature of

edge relationships in engineering drawings, thereby preserving consistent connectivity

across multiple orthographic projections. By abstracting geometric entities into binary

topological relations, the proposed approach achieves a high level of generality, effec-

tively handling both linear and curved elements without introducing additional algorith-

mic complexity.

The preceding definitions lay the groundwork for constructing the adjacency matrix

representing the orthogonal projection. The construction of an adjacency matrix is a sim-

ple algorithm and for verifying the consistency of the matrix two important rules should

be checked as follows:

• Edge count: The total number of edges, i.e., 1’s in 𝐴𝑑𝑗𝐴 (excluding diagonal ele-

ments) should be equal 2m for m edges: ∑ 𝐴𝑑𝑗𝐴𝑖𝑗𝑖,𝑗 − ∑ 𝐴𝑑𝑗𝐴𝑖𝑖𝑖 = 2𝑚;

• Symmetry: For undirected graph: 𝐴𝑑𝑗𝐴 = 𝐴𝑑𝑗𝐴𝑇.

However, there is one difference in this study that is very important for the research

presented.

Figure 5 presents the orthogonal projection matrix for the front view shown in Figure

4. As can be seen, vertices F4–F6 form an edge, but so do vertices F4–F7. The same applies

to vertices F4–F2 and F4–F3. The formula for the number of edges would hold if vertices F4–

F3 and F4–F6 formed edges but F4–F7 and F4–F6 did not, and then it would be an undirected

graph. However, the 3D model is unknown, and whether there is, for example, an edge

F4–F7 can only be determined by considering hidden edges and a series of vertex relation-

ship tests and calculations, which is difficult to perform for more complex models. There-

fore, the assumption is introduced that the orthogonal projection matrix must include pro-

jections of all possible surfaces that the 3D model can have in a direction normal to the

projection plane, which are defined for the example in Figure 4 by vertices 1-2-4-6-7-8-9,

1-2-3-5-6-7-8-9, and 3-4-6-5.

Symmetry 2025, 17, 771 10 of 33

Figure 5. Front orthogonal projection matrix.

Following the previous discussion, new rules were introduced into the model. These

rules establish a new coordinate, denoted as 𝑐 ∈ 𝑥, 𝑦, 𝑧, that find all points 𝑉𝑖 ∈ 𝑆 such that:

𝑐𝑖 = 𝐶, ∀𝑖 ∈ 𝐼, which states that if there are three or more points where one specific co-

ordinate remains constant, then any pair of these points can be connected by a valid edge,

as follows:

1. Let 𝑆 = 𝑉1, 𝑉2, … , 𝑉𝑛, where 𝑉𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1,2, … , 𝑛.

2. For a specific coordinate 𝑐 ∈ 𝑥, 𝑦, 𝑧, find all points 𝑉𝑖 ∈ 𝑆 such that: 𝑐𝑖 = 𝐶, ∀𝑖 ∈ 𝐼,

where C is a constant. {1,2, , }I n 

3. If |𝐼| ≥ 3 then all points in the subset: 𝑆𝑐 = 𝑉𝑖: 𝑖 ∈ 𝐼 can form valid edges E.

The number of valid edges now can be calculated using the formula for the binomial

coefficient

𝐸 = (
|𝐼|
2

) =
|𝐼|(|𝐼| − 1)

2
,    if |𝐼| ≥ 3,

where each edge corresponds to a pair of points., i.e., representing several ways to select

a pair of points from |𝐼|. Now, a completely defined way of forming a matrix of orthogo-

nal projections is given. In addition to the matrix shown in Figure 5, for each projection, a

sequence of vertex coordinates is defined and shown in Table 1 for the example of the

projection from Figure 4. In the same way, projection matrices and vertex coordinate ar-

rays are formed for the other two orthogonal projections.

Table 1. Vertex coordinate array for front projection.

 X Z

F1 X1 Z1

F2 X2 Z2

F3 X3 Z3

F4 X4 Z4

F5 X5 Z5

F6 X6 Z6

F7 X7 Z7

F8 X8 Z8

F9 X9 Z9

Now, three square adjacency matrices are defined, representing orthogonal projec-

tions 𝐴𝑑𝑗𝐴 is an 𝑛𝐴 × 𝑛𝐴 matrix, 𝐴𝑑𝑗𝐵 is an 𝑛𝐵 × 𝑛𝐵 matrix, 𝐴𝑑𝑗𝐶 is an 𝑛𝐶 × 𝑛𝐶 matrix. Each

matrix corresponding to the to the number of vertices in the respective projection.

Symmetry 2025, 17, 771 11 of 33

For each orthogonal projection, a coordinate array is associated: 𝑉𝐴 =

𝑉𝐴1, 𝑉𝐴2, … , 𝑉𝐴𝑛𝐴
,    𝑉𝐵 = 𝑉𝐵1, 𝑉𝐵2, … , 𝑉𝐵𝑛𝐵

,    𝑉𝐶 = 𝑉𝐶1, 𝑉𝐶2, … , 𝑉𝐶𝑛𝐶
 where the length of each

array (|𝑉𝐴| = 𝑛𝐴,    |𝑉𝐵| = 𝑛𝐵,    |𝑉𝐶| = 𝑛𝐶) corresponds to the dimension of the associated

adjacency matrix. With these definitions, the symmetric adjacency matrix describes the

connectivity (edges) of vertices in each projection and coordinate arrays provide the spa-

tial locations of the vertices in their respective views. Now, a 3D model is given with:

𝑀 = {𝐴𝑑𝑗𝐴, 𝑉𝐴, 𝐴𝑑𝑗𝐵, 𝑉𝐵, 𝐴𝑑𝑗𝐶, 𝑉𝐶}

This formulation sufficiently describes each orthogonal projection to proceed with

the identification of candidate vertices and the formation of a pseudo-wireframe model.

Table 2 provides a comparative overview of commonly used topology representa-

tions in 3D model reconstruction. This highlights the advantages of the proposed method

over traditional edge-based, raster, and graph-matching approaches.

Table 2. Comparative overview of topology representations in 3D reconstruction methods.

Representation

Method
Input Structure

Geometry Inde-

pendence

Supports Curved

edges
Suitability for GA Complexity Level

Edge list
List of connected

points
❌ Limited No Medium Medium

B-Rep/CSG
Surfaces and oper-

ations
No Partial No High

Image-based/Ras-

ter methods

Pixel-based shape

data
No No No Medium/High

Graph matching Labeled graphs Partial With conditions Yes High

Symmetric adja-

cency matrix (This

paper)

Binary vertex–ver-

tex topology
Yes

Partial, to be tested

for complex curves
Optimized Low/Structured

As seen in Table 2, the symmetric adjacency matrix offers an optimal balance of gen-

erality, simplicity, and GA compatibility, making it a robust foundation for 3D reconstruc-

tion from engineering drawings.

The following pseudocode presents the process of converting a DXF file into a sym-

metric adjacency matrix, encapsulating the previously described methodology in a clear,

step-by-step format (Algorithm 2).

Algorithm 2 Generation of a symmetric adjacency matrix from DXF orthographic projec-

tions.

Pipeline for converting DXF data into a symmetric adjacency matrix

Input: DXF file containing 2D orthographic projections (front, top, left)

Output: Symmetric adjacency matrices for each projection

Import and parse the DXF file (ASCII format)

Segment the drawing into three orthographic views based on spatial grouping

For each view:

1. Identify geometric entities: LINE, ARC, CIRCLE

2. Extract start and end points for each entity

3. Create vertex list by grouping nearby points (with tolerance ε)

4. Generate edge list by mapping entities to vertex pairs

5. Build adjacency matrix: set Adj[i][j] = 1 if an edge connects vertex i and j

Ensure symmetry: enforce Adj[i][j] = Adj[j][i]

Validate: check consistency rules (number of edges, symmetry, no self-loops)

Symmetry 2025, 17, 771 12 of 33

3.4. Generation of Candidate Vertices and a Pseudo Wireframe Model

The formation of a pseudo-wireframe model was initially described and formalized

in [3,4], with an additional method presented in [5]. In this paper, a new method for form-

ing a pseudo wireframe model will be presented. The initial step involves defining all

potential vertices for the pseudo-wireframe model, which entails several sub steps. The

goal is to identify all potential 3D vertices 𝑉𝑖
3𝐷 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) that are consistent across all

three orthogonal projections. This is achieved by verifying compatibility between the pro-

jection based on the given coordinates. Based on the discussions in Section 3.3, a step-by-

step procedure for generating candidate vertices is provided:

1. Iterate over all combinations: For each combination of indices (i,j,k), 𝑖 ∈

1,2, … , 𝑛𝐴,    𝑗 ∈ 1,2, … , 𝑛𝐵,    𝑘 ∈ 1,2, … , 𝑛𝐶 evaluates the following condition:

2. Compatibility check: A vertex (x,y,z)) is a candidate if the following conditions are

met:

|𝑥𝐴𝑖 − 𝑥𝐵𝑗| = 0

|𝑦𝐵𝑗 − 𝑥𝐶𝑘| = 0

|𝑦𝐴𝑖 − 𝑦𝐶𝑘| = 0

3. Generate candidate vertex: If the conditions hold, compute the candidate vertex as

𝑥 = 𝑥𝐴𝑖, 𝑦 = 𝑦𝐵𝑗, 𝑧 = 𝑦𝐶𝑘.

4. Store candidate: Add the candidate vertex 𝑉3𝐷 = (𝑥, 𝑦, 𝑧) to the result set: 𝑉candidates
3𝐷

5. Output: The final result is the set of all valid candidate vertices: 𝑉candidates
3𝐷 =

𝑉1
3𝐷, 𝑉2

3𝐷, … , 𝑉𝑚
3𝐷, where 𝑚 ≤ 𝑛𝐴 ⋅ 𝑛𝐵 ⋅ 𝑛𝐶 depends on the number of valid combina-

tions.

Following the logic that an orthogonal projection is represented by a symmetric ad-

jacency matrix and a set of vertex coordinates, the same applies to the pseudo-wireframe

3D model. Therefore, it is necessary to define the matrix Adj as the symmetric adjacency

matrix of edges in the 3D model. The procedure is relatively simple and evaluates whether

an edge exists between two vertices in a 3D model based on their adjacency in the spatial

symmetric adjacency matrix and their projections in the three orthogonal views. An edge

is considered to exist within a 3D model if and only if its representation is present in all

orthogonal projections. The visual representation of an edge in these projections can vary,

appearing as either a line or a point. This variability is determined by the edge’s spatial

orientation relative to the coordinate planes—specifically, whether it is orthogonal or par-

allel to them. Generally, if an edge is neither orthogonal nor parallel to any coordinate

plane, it will manifest as a line in all three projections.

For each pair of candidate vertices (𝑣𝑖 , 𝑣𝑗) , their corresponding Adj[i][j] is deter-

mined as follows:

1. Map Vertices to Projections: Project vertices 𝑣𝑖 and 𝑣𝑗 onto the orthogonal planes:

𝑃1 = (𝑥𝑖 , 𝑧𝑖) ∧ 𝑃2 = (𝑥𝑗 , 𝑧𝑗) for xz plane

𝑃3 = (𝑥𝑖 , 𝑦𝑖) ∧ 𝑃4 = (𝑥𝑗 , 𝑦𝑗) for xy plane

𝑃5 = (𝑦𝑖 , 𝑧𝑖) ∧ 𝑃6 = (𝑦𝑗 , 𝑧𝑗) for yz plane

Using these projections, locate the corresponding indices in the projection vertex arrays:
𝐼1 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃1, 𝑉𝐴), 𝐼2 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃2, 𝑉𝐴)

 𝐼3 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃3, 𝑉𝐵), 𝐼4 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃4, 𝑉𝐵)

𝐼5 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃5, 𝑉𝐵), 𝐼6 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃6, 𝑉𝐵)

2. Edge existence check in projections: Evaluate whether edges exist between the pro-

jected vertices in their respective adjacency matrices:

Symmetry 2025, 17, 771 13 of 33

𝐸𝐴 = (AdjA[𝐼1][𝐼2] > 0) ∨ ((𝐼1 = 𝐼2) ∧ (AdjA[𝐼1][𝐼2] = 0))

𝐸𝐵 = (AdjB[𝐼3][𝐼4] > 0) ∨ ((𝐼3 = 𝐼4) ∧ (AdjB[𝐼3][𝐼4] = 0))

𝐸𝐶 = (AdjC[𝐼5][𝐼6] > 0) ∨ ((𝐼5 = 𝐼6) ∧ (AdjC[𝐼5][𝐼6] = 0))

3. Spatial edge update: Update the spatial symmetric adjacency matrix Adj for the edge

[i][j]

𝐸𝐴 ∧ 𝐸𝐵 ∧ 𝐸𝐶 ⇒ 𝐴𝑑𝑗[𝑖][𝑗] = 1

 ¬(𝐸𝐴 ∧ 𝐸𝐵 ∧ 𝐸𝐶) ⇒ 𝐴𝑑𝑗[𝑖][𝑗] = 0

The 3D model is now represented by 𝑀 = {𝐴𝑑𝑗, 𝑉 candidates
3𝐷 }, which defines all possible

solutions of the pseudo-wireframe model. Figures 6 and 7 illustrate the reconstruction

process for the part shown in Figure 1. Figure 6 presents the symmetric adjacency matrix

AdjA, while Figure 7 shows all possible 3D models generated from this matrix and the

corresponding candidate vertices. Figure 7a shows a pseudo-wireframe 3D model that

encompasses three valid reconstruction candidates, as their geometries are consistent with

the input projections. Among them, the model in Figure 7d is the one intended for recon-

struction, while the models shown in Figure 7b,c are also geometrically valid solutions;

however, they do not represent the target 3D reconstruction and must therefore be dis-

carded during the process.

Figure 6. Example of adjacency matrix of pseudo-wireframe mode.

Figure 7. Example of pseudo wireframe model with all possible 3D models : (a) pseudo-wireframe

model with ambiguous geometry; (b), (c), and (d) represent different valid interpretations of the

3D model reconstructed from the same projection data.

Pseudo wireframe model (a)

Valid 3D model (c)

Valid 3D model (d)

Valid 3D model (b)

Symmetry 2025, 17, 771 14 of 33

Human designers often approach engineering drawings by attempting to mentally

reconstruct the 3D object through identification of geometric relationships across multiple

views. This process typically involves a sequence of intuitive evaluations and repeated

adjustments, which continues until a coherent 3D representation is formed in their minds

[6].

The process of 3D wireframe model reconstruction can be defined as a process of

adding or removing candidate vertices and their corresponding edges while respecting

constraints related to geometric consistency until a solution is obtained that satisfies pre-

defined criteria. This defined process of 3D wireframe model reconstruction represents a

standard optimization problem, for the realization of which it is necessary to define a

mathematical model that should be independent of the optimization method.

3.5. Mathematical Formulation of the Proposed Model

Input variables

1. Orthogonal projection symmetric adjacency matrices and their dimensions:

• 𝐴𝑑𝑗𝐴 ∈ {0,1}𝑛𝐴𝑥𝑛𝐴 adjacency matrix for the front projection;

• 𝐴𝑑𝑗𝐵 ∈ {0,1}𝑛𝐵𝑥𝑛𝐵 adjacency matrix for the top projection;

• 𝐴𝑑𝑗C ∈ {0,1}𝑛C𝑥𝑛C adjacency matrix for the left projection.

2. Vertex coordinates of projections:

• 𝑉𝐴 = {(𝑥𝑖
𝐴, 𝑧𝑖

𝐴)}
𝑖=1
𝑛𝐴 coordinates of vertices in front projection;

• 𝑉B = {(𝑥𝑖
B, y𝑖

B)}
𝑖=1

𝑛B
 coordinates of vertices in top projection;

• 𝑉𝐶 = {(𝑦𝑖
𝐶 , 𝑧𝑖

𝐶)}
𝑖=1
𝑛𝐶 coordinates of vertices in left projection.

1. Coordinate vertex set and connectivity:

• VK = {(𝑥𝑖
𝐾 , 𝑦𝑖

𝐾 , 𝑧𝑖
𝐾)}

𝑖=1
𝑁𝐾 3D candidate vertex coordinates;

• 𝐴𝑑𝑗 ∈ {0,1}𝑁𝐾𝑥𝑁𝐾 symmetric adjacency matrix for pseudo wireframe model.

2. Bounds on the number of vertices:

• 𝑛 ≤ 𝑁 ≤ 𝑁𝐾, 𝑛 = 𝑚𝑎𝑥(𝑛𝐴, 𝑛𝐵, 𝑛𝐶).

3. Target number of edges:

• Marked as T where T is derived from Adj.

Control variables of the mathematical model

In addition to the observed model’s input variables, it is necessary to define a vector

of control variables, that is, variables that describe the optimization objectives stated.

𝑥𝑖 ∈ {0,1}, 𝑖 = 1,2, . . . , 𝑁𝐾 (1)

where 𝑥𝑖—vertex inclusion indicator is a binary variable indicating whether vertex i is

included in the 3D model

𝑒𝑖𝑗 ∈ {0,1}, 𝑖, 𝑗 = 1,2, . . . , 𝑁𝐾 (2)

where 𝑒𝑖𝑗—edge inclusion indicator is a binary variable indicating whether edge (i, j) is

included in the 3D model

𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗) ∈ {0,1}, 𝑖, 𝑗 = 1,2, . . . , 𝑁𝐾 (3)

where 𝐴𝑑𝑗𝑐𝑢𝑟𝑟 —reduced symmetric adjacency matrix is a binary variable representing

the current 3D model using 𝑥𝑖 and 𝑒𝑖𝑗.

The objective function

The objective function of the mathematical model represents the criteria of optimiza-

tion. As mentioned earlier the goal is to measure the difference between current 3D model

and the target 3D model where target 3D model is represented with orthogonal projec-

tions. However, determining this difference is not sufficient, and even has a smaller

Symmetry 2025, 17, 771 15 of 33

impact on the optimization result, because orthogonal projections encompass all possible

model solutions that are geometrically consistent. Therefore, in addition to measuring the

difference between projections, it is necessary to introduce an additional parameter into

the objective function. Figure 7 clearly shows that the solutions differ in the number of

edges, although all edges are displayed in a pseudo-wireframe model. The target number

of edges cannot be the number of edges of the pseudo-wireframe model because valid

models have fewer edges. It is necessary to determine the difference between the number

of edges of 𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗) and the target number of edges that the model to be recog-

nized has. This can be achieved with the following procedure:

1. Identify the vertex with the highest weight (most edges) in Adj;

2. Set all entries in the corresponding row and column of that vertex 0 in Adj;

3. Adj=𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗);

4. Repeat steps 1-3 until each row and column in Adj has either 0 or 3 non-zero entries

but without violating geometric consistency;

5. The sum off all 1-values in Adj after processing is the target number of edges T.

When there is more than one goal to achieve during the optimization process, there

are several ways to define an objective function [21] without entering in space of multi-

objective optimization. Finally, objective function 𝐹(𝑥, 𝑒) can be written as:

𝑚𝑖𝑛 (𝐹(𝑥, 𝑒)) = 𝑚𝑖𝑛 (𝜔1 ∙ 𝐹𝑁(𝑥, 𝑒) + 𝜔2 ∙ (𝐹𝑇(𝑥, 𝑒) × 𝑝)) (4)

𝐹𝑁(𝑥, 𝑒) = ‖𝐴𝑑𝑗𝐴 − 𝑃𝑟𝑜𝑗𝐴(𝑥, 𝑒)‖𝐹
2 + ‖𝐴𝑑𝑗𝐵 − 𝑃𝑟𝑜𝑗𝐵(𝑥, 𝑒)‖𝐹

2 + ‖𝐴𝑑𝑗𝐶 − 𝑃𝑟𝑜𝑗𝐶(𝑥, 𝑒)‖𝐹
2 (5)

𝐹𝑇(𝑥, 𝑒) = (𝐸(𝑥, 𝑒) − 𝑇)2 (6)

where 𝐹𝑁(𝑥, 𝑒) is the Frobenius norm between goal projections adjacency matrices and

projection adjacency matrices of orthogonal projections of current 3D model ProjA, ProjB,

ProjC. 𝐹𝑇(𝑥, 𝑒) is the difference between the total number of edges of a current 3D model

and the target number of edges, 𝜔1 , and 𝜔2 are weighting coefficients that determine

weights for the two objectives in the overall objective function. Vector p
ur

 is a penalty vec-

tor and will be explained later.

Constraints of a mathematical model

The vertex–edge consistency constraint ensures that an edge 𝑒𝑖𝑗 can only exist if both

of its corresponding vertices i and j are included in the model. This is critical for maintain-

ing logical consistency in the graph structure of the 3D model.

𝑒𝑖𝑗 ≤ 𝑥𝑖 , 𝑒𝑖𝑗 ≤ 𝑥𝑗 , ∀𝑖, 𝑗. (7)

This constraint ensures that edges cannot “float” without being connected to valid

vertices. In other words, if a vertex is excluded from the model, all edges connected to that

vertex must also be excluded. This maintains the integrity of the graph structure during

the iterative procedure.

The geometric consistency constraint prevents the removal of vertices and their as-

sociated edges if the result violates the required geometric structure during the iterative

procedure. Specifically, it is required that the symmetric adjacency matrix 𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗)

after removing a vertex (and its corresponding edges) must have a non-zero-sum, ensur-

ing that at least some connections remain.

,

0ij i j

i j

e x x  
(8)

The minimum and maximum vertices constraint ensures that the reconstructed 3D

model contains only vertices within the permissible range defined by the input data. This

constraint is expressed as:

Symmetry 2025, 17, 771 16 of 33

1

K

i K

i

n x N
=

  (9)

The edge connectivity constraint ensures that if an edge (1)ije = exists, then both ver-

tices 𝑥𝑖 and 𝑥𝑗 are present. This adds a lower bound on the sum 𝑥𝑖 + 𝑥𝑗, reinforcing that

both vertices must exist for the edge to be valid.

2 , , .i j ijx x e i j+    (10)

3.6. Introduction to the Proposed GA for 3D Wireframe Model Reconstruction

An acceptable 3D wireframe model can be defined as a selected subset of vertices

derived from a larger set, structured to represent a 3D object while adhering to the con-

straints specified in a corresponding integer programming formulation. Genetic algo-

rithms (GAs), as modern metaheuristic optimization techniques, are particularly well

suited for addressing such problems due to their strong capability to converge toward a

global optimum with high probability in most cases [22].

It is important to emphasize that the performance of a GA is significantly influenced

by the choice of crossover and mutation operators [23]. However, for the model under

consideration, the most critical component is the penalization of candidate solutions based

on their validity. Only feasible solutions, as defined by the problem’s constraints, are ac-

cepted in the model, and further explanation will be provided in subsequent sections.

Numerous variants of genetic operators exist in the literature, many of which can be

tailored to accommodate specific characteristics of the problem at hand, thereby enhanc-

ing the adaptability of the GA. Since the general functioning of GAs is well established

and extensively documented, this work provides only brief definitions of the fundamental

GA components, contextualized within the proposed model.

In this model, a gene corresponds to a vertex (denoted as xix_ixi) and serves as the

basic unit of encoded information. An individual or chromosome is a combination of such

genes, representing a candidate 3D wireframe model. A population refers to the collection

of all such individuals, i.e., the full set of acceptable 3D wireframe configurations.

Parents are two feasible 3D wireframe models that participate in reproduction to gen-

erate new candidate models. The fitness function evaluates the quality of each model; in

this context, it is based on the discrepancy between the orthogonal projections derived

from the engineering drawing and those generated from the candidate model, along with

the difference in the number of edges. This is formally defined in Equation (4) of the math-

ematical model.

The crossover operator is responsible for combining two parent solutions (analogous

to tool paths) to produce a new offspring. The mutation operator, on the other hand, mod-

ifies one or more genes within a single individual with the aim of introducing variability

and potentially discovering superior solutions. The specific implementation of these ge-

netic operators, as applied in the proposed model, will be detailed in later sections.

3.7. Chromosome Representation and Decoding: Initial Population

The initial phase of any genetic algorithm involves selecting a suitable encoding

scheme to represent candidate solutions. Choosing the right representation is paramount,

as it impacts every subsequent stage of the GA’s execution. In our framework, this entails

encoding each chromosome as a binary vector, with the specifics dictated by the underly-

ing model. The approach is based on a binary chromosome representation where each

gene corresponds to a vertex in the model, and the total number of genes equals the di-

mension of the symmetric adjacency matrix. A gene’s value indicates the inclusion (1) or

exclusion (0) of a vertex in the reconstructed model. Each vertex is assigned a weight based

Symmetry 2025, 17, 771 17 of 33

on the number of edges connected to it. Typically, vertices in most mechanical parts have

a maximum of three edges, but the pseudo-wireframe model may include vertices with

higher connectivity (e.g., four, five, or more edges).

The reconstruction process differentiates between acceptable and valid individuals.

Acceptable individuals are those maintaining geometric consistency, making them suita-

ble for the initial population. Valid individuals are obtained through the evolutionary

process, where crossover and mutation operators improve the population by refining ge-

ometric and structural consistency. Geometric consistency is maintained by ensuring that

the sum of all elements in the symmetric adjacency matrix is not zero after the removal of

any vertex or its edges.

The chromosome is decoded into the current symmetric adjacency matrix, reflecting

the connectivity of the vertices included in the current individual. This matrix is compared

with the original adjacency matrix to measure projection consistency and edge count.

The initial population includes chromosomes that do not violate geometric con-

sistency. During the evolutionary process, vertices with higher weights are more likely to

be excluded, provided their removal does not disrupt the model’s structural integrity. The

optimization ensures convergence to a valid model. For a model with 19 vertices (as

shown in Figure 7), the chromosome is represented as a binary vector (11).

x = [1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0] (11)

w = [3, 3, 4, 3, 4, 4, 3, 6, 4, 4, 3, 3, 4, 3, 4, 3, 3, 3, 3] (12)

The weights are calculated based on the adjacency matrix Adj (Figure 6), resulting in

the weight vector 
ur

 (12). Each gene is not only defined by its binary value but also by

its position within the chromosome and its associated entry in the adjacency matrix. Be-

yond its value, a gene is further specified by an index denoting its position within the

chromosome and its corresponding entry in the connectivity matrix. Gene selection, for

creating a chromosome, specifically the inclusion of vertex ij in the model, is entirely sto-

chastic taking into account only the constraint given in (9), rendering the example pro-

vided in (11) incompatible with any valid solution in the beginning of the evolution pro-

cess. The initial population is formed as an array of chromosomes, without the implemen-

tation of other constraints except (9).

3.8. Fitness Calculation: Penalization of Acceptable Chromosomes

The fitness function plays a central role in steering the GA toward geometrically valid

and topologically optimal 3D reconstructions. It integrates a projection consistency com-

ponent—quantified using the Frobenius norm—with a penalty term that accounts for de-

viations from the expected number of edges. Each chromosome is assessed according to

these dual criteria, and only individuals that satisfy predefined geometric constraints are

retained as valid solutions. This fitness evaluation framework promotes convergence to-

ward a unique, structurally coherent configuration, thereby ensuring topological con-

sistency across projections within a finite number of evolutionary iterations.

The fitness function evaluates the quality of a chromosome in the GA, guiding the

evolutionary process toward reconstructing the 3D wireframe model. It is defined with

Equation (4), where:

• 𝐹𝑁(𝑥, 𝑒): Frobenius norm-based projection consistency measure, evaluating how well

the reconstructed model matches the initial orthogonal projections.

• 𝐹𝑇(𝑥, 𝑒): Edge count consistency measure, assessing the difference between the cur-

rent number of edges and the target edge count.

• 𝜔1 and 𝜔2: Weighting coefficients balancing the importance of 𝐹𝑁 and 𝐹𝑇. In the con-

text of the observed model 𝜔1 = 0.3 and 𝜔2 = 0.7.

Symmetry 2025, 17, 771 18 of 33

• p
ur

: Penalty vector, calculated as the product of the binary chromosome x and the

weight vector 
ur

, which represents the number of edges connected to each vertex.

The penalty mechanism is implemented through the penalty vector p
ur

 discourages

chromosomes with vertices that have excessive edge weights (w > 3). Each gene 𝑥i is pe-

nalized with a factor proportional10 if 3 i iw w  . This ensures that vertices with high con-

nectivity do not dominate the solution, as they often represent unrealistic or invalid struc-

tures in the context of the model. A lower fitness value indicates a better individual. Poorly

penalized chromosomes are less likely to be selected as parents, preventing them from

evolving further. This introduces a sort of genetic engineering into the algorithm by fo-

cusing the evolutionary process on improving acceptable solutions into valid ones.

Example of fitness evaluation:

x = [1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,0,1,1,0]

w = [3,3,4,3,4,4,3,6,4,4,3,3,4,3,4,3,3,3,3]

The penalty vector p
ur

 is computed by multiplying x and 𝜛 followed by penalizing

genes with 3iw 

p = [3,0,40,3,0,40,3,60,0,0,3,3,40,3,0,0,3,3,0

• 𝐹𝑁(𝑥, 𝑒) = 0.2 (normalized projection consistency for example);

• 𝐹𝑇(𝑥, 𝑒) = 0.1 (normalized edge count difference for example);

• 𝜔1 = 0.5 and 𝜔2 = 0.5.

(,) 0.5 0.2 0.5 20.2 10.2F x e =  +  =

Computing and summing elements of p gives up (,) 20.2Tp F x e =

Final fitness: (,) 0.5 0.2 0.5 20.2 10.2F x e =  +  =

Chromosomes with penalized vertices
3 5 8(e.g., w , w , w6 , w) contribute to higher fit-

ness values. The algorithm favors chromosomes with lower weights, as they are closer to

valid configurations.

3.9. Selection of Parents, Crossover, and Mutation Operator

In our GA framework, a pair of feasible 3D wireframe models (“parents”) is chosen

to generate a new candidate solution. Parent selection is achieved by ranking models ac-

cording to their fitness values; those with the lowest fitness scores are marked as parents

and advanced to the crossover pool. This selection cycle repeats until the predefined num-

ber of parent pairs—determined by the algorithm’s population size—has been reached.

Crossover then combines genetic information from two parent chromosomes to pro-

duce offspring. Each child inherits a mixture of binary-encoded genes from both parents,

and specialized crossover operators (e.g., one-point, two-point, uniform) appropriate for

binary strings are applied to effect this exchange. A concise review of the most widely

used crossover techniques can be found in [23–25]. For the observed model, single-point

crossover is chosen. The operation of single-point crossover is illustrated by the following

example:

• Parent 1: 𝑥1 = [1,0,1,1,0,1,1,0,0,1];

• Parent 2: 𝑥2 = [0,1,0,0,1,0,1,1,1,0].

A random crossover point is selected. For this example, let the crossover point be

after the 5th gene (index 5). The chromosomes are split into two segments:

• Parent 1: [1,0,1,1,0]∣[1,1,0,0,1];

Symmetry 2025, 17, 771 19 of 33

• Parent 2: [0,1,0,0,1]∣[0,1,1,1,0].

The offspring are generated by swapping the segments:

• Offspring 1: [1,0,1,1,0] + [0,1,1,1,0] = [1,0,1,1,0,0,1,1,1,0];

• Offspring 2: [0,1,0,0,1] + [1,1,0,0,1] = [0,1,0,0,1,1,1,0,0,1].

Each gene in the chromosome corresponds to a vertex in the model. The value 11

means the vertex is included, and 0 means it is excluded. The crossover combines the

structural characteristics of both parents. For instance:

• Offspring 1 inherits the first half of Parent 1 and the second half of Parent 2.

• Offspring 2 inherits the first half of Parent 2 and the second half of Parent 1.

After generating offspring, their fitness is evaluated using the fitness function, where

penalties p
ur

 are applied if vertices with high edge weights are included. Single-point

crossover creates new combinations of genes, promoting diversity in the population. In

the 3D model reconstruction problem, Parent 1 and Parent 2 might represent partial solu-

tions that preserve different structural features of the model. By combining their chromo-

somes, offspring may inherit valid structural properties from both, leading to improved

fitness and closer approximations to the target model.

The mutation operator chosen is an inversion operator. It is a mutation mechanism

used in GA to introduce variability into the population. It works by flipping the value of

a randomly selected gene in a chromosome.

• If the gene’s value is 1, it is changed to 0, and vice versa.

• The operation is triggered based on a predefined mutation rate, ensuring controlled

and rare alterations to preserve promising solutions while exploring new ones.

This operator prevents premature convergence by injecting diversity into the popu-

lation and helps the algorithm explore new areas of the solution space. In the context of

3D model reconstruction, inversion can add or remove vertices from the model, refining

the population towards geometrically consistent and valid solutions.

A known limitation of GA is its tendency to converge toward a local optimum, which

may not necessarily yield a valid 3D model reconstruction. This is compounded by the

fact that the GA’s execution is typically constrained by a predefined number of genera-

tions. Furthermore, given that the symmetric adjacency matrix encoding the 3D model’s

edges encompasses all potentially valid solutions, it becomes imperative to establish sup-

plementary termination criteria for the recognition process. Specifically, the reconstructed

3D model must exhibit geometric consistency, ensuring the absence of edge overlaps and

the uniqueness of the solution. Consequently, an iterative GA execution is required until

a single, geometrically sound solution is achieved, devoid of any edge ambiguities.

3.10. Pseudo Code of Proposed GA

The genetic algorithm implementation requires four primary configuration parame-

ters: (1) population cardinality, (2) quantity of parent individuals selected for reproduc-

tion, (3) probability of genetic mutation, and (4) maximum evolutionary cycles. The com-

putational process begins by instantiating the initial population and evaluating each can-

didate solution’s fitness. Through iterative generational advancement, the algorithm per-

forms selective breeding using single-point crossover operations, introduces random mu-

tations, and continuously monitors for topological validity until convergence criteria are

satisfied (Algorithm 3).

Symmetry 2025, 17, 771 20 of 33

Algorithm 3 Evolutionary reconstruction framework.

PseudoCode Evolutionary Reconstruction Framework

Parameters:

 - POP_SIZE : Integer (Population cardinality)

 - NUM_PARENTS : Integer (Reproductive pool size)

 - MUT_RATE : Float ∈ [0,1] (Variation probability)

 - MAX_GEN : Integer (Termination condition)

1. INITIALIZATION:

 population = GENERATE_RANDOM_POPULATION(POP_SIZE)

 EVALUATE_FITNESS(population)

 current_gen = 1

2. GENERATIONAL LOOP:

 WHILE current_gen ≤ MAX_GEN:

 selected_parents = BestFitness(population, NUM_PARENTS)

 offspring = EMPTY_SET()

 WHILE SIZE(offspring) < (POP_SIZE-NUM_PARENTS):

 parent1, parent2 = SELECT_PAIR(selected_parents)

 child = SINGLE_POINT_RECOMBINATION(parent1, parent2)

 IF RANDOM() < MUT_RATE:

 child = APPLY_MUTATION(child)

 ADD_TO_SET(offspring, child)

 population = COMBINE(selected_parents, offspring)

 EVALUATE_FITNESS(population)

 current_gen += 1

 IF VALID_SOLUTION_EXISTS(population) AND

 NOT HAS_EDGE_CONFLICTS(population):

 BREAK

3. TERMINATION:

 RETURN BEST_SOLUTION(population)

4. Experimental Results

The mathematical model provided in Section 2 is realized through application in

which the previously presented GA is implemented and is written in the object-oriented

programming language Delphi. It is independent executable software platform and in the

following paragraph, a brief overview of the main screen and the functionality of the ap-

plication is provided.

4.1. Brief Overview of the Software Platform

Figure 8 presents the application’s initial screen. In the middle of the main form there

are command buttons for the following:

• Data entry (loading orthogonal symmetric projection matrices and vertex arrays);

• Executing the GA;

• Closing the application.

The left side of the input form displays the GA execution results, while the bottom

half visualizes the GA process. The left half of the main form displays the results of the

GA execution, the initial symmetric adjacency matrix of the pseudo-wireframe model, the

fitness of each best individual in the generation, and the symmetric adjacency matrix of

the best solution obtained at the end of the GA execution. In the middle of the main form,

there is information about the number of GA executions up to the moment of obtaining

Symmetry 2025, 17, 771 21 of 33

the best solution, as well as the GA parameters that can be changed. In the right part of

the main form, there is a window with a 3D graphical representation of the GA execution,

while at the bottom, there is a diagram of the GA execution The application begins by

loading orthogonal projections, i.e., DXF files for each view, and forming symmetric adja-

cency matrices for each projection.

Figure 8. The main form of application for 3D reconstruction.

4.2. The Structure and Loading Process of Input Data

The input data consist of pre-generated matrices of orthogonal projections and arrays

of vertex coordinates for each projection. The data are stored in *.txt files for each projec-

tion, as shown in Table 3.

The first line contains the name of the projection (e.g., Front), followed by the dimen-

sion of the matrix AdjA in the format nA×nA, and then the adjacency matrix of the front

orthogonal projection. Next comes the array of vertex coordinates, and at the end, there is

an empty line. This pattern is repeated for the subsequent projections, i.e., AdjB, VB, AdjC

and VA, VB and VC.

Table 3. Sample input structure of projection data stored in plain text files.

Section Example Content

Projection name Front

Adjacency matrix size 9 × 9

Adjacency matrix (AdjA)

0 1 0 0 0 0 0 0 1

1 0 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0 0

0 1 1 0 1 1 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 1 1 0 1 0 0

0 0 0 0 0 1 0 1 0

0 0 0 0 0 0 1 0 1

1 0 0 0 0 0 0 1 0

Vertex coordinates (VA)

0 0

150 0

150 40

150 60

70 40

70 60

20 60

Symmetry 2025, 17, 771 22 of 33

20 25

0 10

4.3. Testing Parameters

The proposed solution has been tested on several real models, four of which will be

presented here.

The first, which is simpler, is shown as an example throughout this paper. The sec-

ond, more complex part, with 40 vertices and 168 edges in the pseudo-wireframe model,

is shown in Figure 9 as a solid model and in Figure 10 as a wireframe model. The edges

marked in red represent those that do not belong to the real model but to the set of all

valid solutions. Also, vertices marked in red are vertices that belong to the candidate set

but that do not belong to the vertices of a real 3D model. In Table 4, the geometric charac-

teristics of both models are provided.

Figure 9. Solid model of PR0004 test model.

Table 4. The geometric characteristics of tested models.

Model Name No. Edges 3D Wireframe
No. Vertices 3D

Wireframe

No. Edges 3D Real

Model

No. Vertices 3D

Real Model

PR0003 66 19 27 18

PR0004 168 40 60 32

Given that GA results can vary based on input parameters, five GA runs were con-

ducted with different parameter sets. Table 5 presents the parameter values for each run,

while Table 6 and Table 7 lists the names of the output parameters with experimental

results for PR0003 and PR0004, respectively.

Table 5. The parameters for the execution of GA.

Name of Parameter I II II IV V

Population size 100 200 300 400 500

Number of parents 80 80 240 320 420

Mutation in % 1 1 1 1 1

Number of generations 100 100 100 100 100

Symmetry 2025, 17, 771 23 of 33

Figure 10. Three-dimensional pseudo-wireframe model of PR0004 test model.

Table 6. Test output parameter list with obtained values for PR0003.

Name of Parameter I II II IV V

Fitness 1.1 1.1 1.1 1.1 /

Execution time/computational complexity in sec 2 2 3 4 /

Valid solution obtained (Yes/No) Yes Yes Yes Yes /

Solution with double edges No No No No /

No. of double edges / / / / /

No. of GA repetitions 1 1 1 1 /

Table 7. Test output parameter list with obtained values for PR0004.

Name of Parameter I II II IV V

Fitness 10.3 10.3 10.3 10.3 10.3

Execution time/computational complexity in sec 60 54 90 94 100

Valid solution obtained (Yes/No) Yes Yes Yes Yes Yes

Solution with double edges No No No No No

No. of double edges / / / / /

No. of GA repetitions 6 4 4 3 3

To evaluate the impact of different parameter settings, the GA was run with four

(PR0003) and five (PR0004) parameter configurations. The results are tabulated in Tables

6 and 7, and visualized in Figures 11–20. The primary objective was to assess the GA’s

ability to converge to valid solutions for complex shapes like PR0004, while restricting the

analysis to polyhedral shapes.

The second objective of the experimental testing of the proposed GA was to examine

its convergence capability toward valid solutions for geometric solids with cylindrical

surfaces. This presents a greater challenge, particularly for GAs [19]. Figure 21 illustrates

an example of a 3D solid model of PR0007 with cylindrical surfaces, while Figure 22 shows

the experimental results for I parameter group. The testing was conducted using the first

four configurations of GA parameters, and the results are presented in Table 8. Figure 23

illustrates a more complex, typical industrial part with cylindrical surfaces part tested

with the first three configurations of GA parameters, while Figure 24 shows the experi-

mental results for I parameter group. The testing results are presented in Table 9.

To examine the behavior of the proposed genetic algorithm (GA) under different evo-

lutionary parameter settings, a series of experimental runs was performed on two test

cases of increasing complexity—PR0003 and PR0004. Figures 11–20 provide a detailed

Symmetry 2025, 17, 771 24 of 33

visualization of the algorithm’s execution across five parameter groups for each model,

with particular focus on convergence characteristics, solution accuracy, and structural va-

lidity of the reconstructed wireframe models.

For the simpler polyhedral model PR0003, Figures 11 and 12 depict the GA perfor-

mance under parameter Groups I and II, respectively. In Figure 11, a steady convergence

trend is observed, with gradual fitness improvements stabilizing after approximately 50

generations. The resulting wireframe model adheres to the expected topological structure,

demonstrating that even conservative parameter settings can yield valid results. In con-

trast, Figure 12 reveals a steeper initial drop in fitness values under Group II, indicating

faster convergence. Despite the more aggressive parameter configuration, the final model

remains both geometrically and topologically consistent, confirming the robustness of the

GA framework in lower-complexity scenarios.

Further testing with Groups III and IV for PR0003, shown in Figures 13 and 14, re-

veals subtle yet meaningful differences in convergence dynamics. Figure 13 demonstrates

that Group III supports rapid early-stage exploration followed by stable convergence, pro-

ducing a structurally correct wireframe representation. Figure 14, using Group IV, leads

to slightly faster convergence, suggesting that fine-tuned parameter values can improve

efficiency without compromising solution quality. These results emphasize the im-

portance of parameter calibration, even when dealing with relatively simple geometric

forms.

The evaluation is extended to the more complex polyhedral model PR0004, where

the algorithm’s scalability is tested against increased topological density and geometric

intricacy. In Figure 15, which corresponds to Group I, the convergence curve progresses

more gradually, with fitness values improving steadily over time. The adjacency matrix

and final model visualization confirm the algorithm’s ability to resolve denser connectiv-

ity patterns. Figure 16, representing Group II, shows a more aggressive convergence pro-

file, with earlier stabilization of fitness values and successful reconstruction of the in-

tended 3D geometry, underscoring the algorithm’s adaptability to different optimization

pressures.

Figures 17 and 18 offer insight into the GA’s behavior under Groups III and IV for

the PR0004 case. Figure 17 illustrates a longer convergence trajectory, with fitness im-

provements extending across 80 generations, a reflection of the search space complexity.

Nonetheless, the final model is both topologically complete and geometrically accurate.

Figure 18 isolates the final reconstruction obtained with Group IV and clearly displays the

fidelity of the solution, even without the accompanying convergence plot. The preserva-

tion of structural proportions across all model layers attests to the reliability of the topo-

logical encoding and optimization procedure.

Finally, the outcomes associated with Group V and the fully reconstructed model are

presented in Figures 19 and 20. As shown in Figure 19, the algorithm exhibits continued

fitness refinement across an extended number of generations, suggesting a broader explo-

ration phase. Despite the higher number of iterations, the resulting solution remains ro-

bust, validating the algorithm’s effectiveness even under more exhaustive parameter re-

gimes. Figure 20 displays the final reconstructed geometry in isolation, emphasizing the

GA’s capacity to capture the full complexity of the PR0004 model and maintain structural

integrity throughout the optimization process.

Collectively, these figures provide strong empirical evidence of the proposed

method’s generalizability and resilience across a wide range of parameter settings and

model complexities. The consistent convergence behavior and reliable reconstruction out-

comes reinforce the applicability of the GA framework to real-world CAD and reverse

engineering tasks involving polyhedral geometry.

Symmetry 2025, 17, 771 25 of 33

Figure 11. GA execution-PR0003 I group.

Figure 12. GA execution-PR0003 II group.

Figure 13. GA execution-PR0003 III group.

Figure 14. GA execution-PR0003 IV group.

Symmetry 2025, 17, 771 26 of 33

Figure 15. GA execution-PR0004 I group.

Figure 16. GA execution-PR0004 II group.

Figure 17. GA execution-PR0004 III group.

Figure 18. GA execution-PR0004 IV group.

Symmetry 2025, 17, 771 27 of 33

Figure 19. GA execution-PR0004 V group.

Figure 20. PR0004 after execution of GA.

Table 8. Test output parameter list with obtained values for PR0007.

Name of Parameter I II II IV V

Fitness 2.4 2.4 2.4 2.4 /

Execution time/computational complexity in sec 2 2 3 4 /

Valid solution obtained (Yes/No) Yes Yes Yes Yes /

Solution with double edges No No No No /

No. of double edges / / / / /

No. of GA repetitions 1 1 1 1 /

In the subsequent phase of the experimental evaluation, the focus shifts toward more

complex models that incorporate curved surfaces and a combination of cylindrical and

rectangular geometries. The objective of this testing stage was to assess the genetic algo-

rithm’s (GA) ability to reconstruct 3D wireframe models for shapes that deviate signifi-

cantly from purely polyhedral forms. These cases increase the reconstruction challenge

and provide insight into the algorithm’s suitability for real-world industrial applications.

Figure 21 presents the 3D solid model of the PR0007 test case, which features a blend

of straight edges, rounded transitions, and a characteristic cutout at the base. This geom-

etry introduces a reconstruction challenge due to the need to preserve topological con-

sistency in the presence of local curvature and interrupted surfaces.

The execution of the GA for PR0007 is shown in Figure 22, where the convergence

curve demonstrates rapid early-stage fitness improvement, followed by stabilization. The

reconstructed wireframe model faithfully reproduces the primary geometric and topolog-

ical features of the target object, confirming that the proposed algorithm can handle

curved features without relying on additional heuristics.

Symmetry 2025, 17, 771 28 of 33

Figure 21. PR0007 3D solid model.

Figure 22. PR0007 results after execution of GA.

Table 9. Test output parameter list with obtained values for PR0005.

Name of parameter I II II IV V

Fitness 112.20 112.20 112.20 / /

Execution time/computational complexity in sec 60 86 94 / /

Valid solution obtained (Yes/No) Yes Yes Yes / /

Solution with double edges No No No / /

No. of double edges / / / / /

No. of GA repetitions 6 4 5 / /

Moving forward, Figure 23 depicts a more demanding 3D solid model, designated

PR0005, which includes complex curved contours, multi-layered structures, and non-ro-

tational symmetries. This model was specifically chosen for its resemblance to real-world

components commonly found in mechatronic and precision mechanical assemblies.

The results of applying the GA to PR0005 are illustrated in Figure 24, where the al-

gorithm successfully identifies key edge connections and generates a valid topological

mesh. Despite the model’s intricate morphology, the reconstruction maintains geometric

consistency, and the convergence curve indicates that the solution is reached within a rea-

sonable number of generations. This confirms the method’s applicability to technically

challenging components within engineering environments.

Symmetry 2025, 17, 771 29 of 33

Figure 23. PR0005 3D solid model.

Figure 24. PR0005 results after execution of GA.

Overall, the visual and quantitative results presented in Figures 11–24 confirm the

effectiveness and versatility of the proposed GA-based reconstruction framework across

a wide spectrum of geometric complexities. The method consistently produced topologi-

cally valid and geometrically accurate wireframe models, demonstrating strong potential

for integration into automated CAD pipelines and reverse engineering workflows in both

academic and industrial contexts.

5. Discussion

The experimental results demonstrate that the GA is highly effective in solving prob-

lems involving simple geometries such as PR0003 and also PR0007 with cylindrical sur-

faces. Even under the most constrained parameter settings, the algorithm consistently con-

verged to the correct solution within a few iterations. For instance, for the PR0003 model,

the GA found the exact solution in just two seconds. The same applies to PR0007, which

is a part with relatively simple cylindrical surface geometry.

During the testing of other models, it was noticed that this GA is very effective for

the models with a number of vertices between 15 and 25 and with a number of edges

between 20 and 35. In these intervals, the GA converges to the accurate solution in a single

run. During testing mutation was always at 10% rate. Since the results for PR0003 did not

change, testing with parameter group V was deemed unnecessary. For more complex

parts, such as PR0004, it is clear that an accurate solution is always obtained, but across

several runs, which leads to an increased runtime.

The execution time of the GA for complex parts is longer, which also depends on the

amount of computation, but this is not a problem regarding the characteristics of modern

computers. For example, for PR0004, the ADj matrix is 40 × 40, and intensive calculations

Symmetry 2025, 17, 771 30 of 33

are performed on it at all times. In this case, as well as in other more complex parts that

were tested, for the number of l vertices greater than 25, solutions are always obtained

where the geometric consistency is not violated and the solution does not go beyond the

set of solutions represented by the pseudo-wireframe model. Also, no new surfaces are

created, and there is no edge overlapping, meaning that individual candidate vertices re-

main in the solution because all constraints are satisfied and they do not create new shapes

in the model.

For typical industrial parts with cylindrical shape, such as the component shown in

Figure 23, the execution time is observed to be longer. However, the correct solution is

obtained after several GA iterations. This demonstrates that the proposed method effec-

tively handles both simpler and more complex models with cylindrical surfaces.

It should be noted that even the variation of mutation did not lead to convergence to

the exact solution, which is also the nature of GA, while for simpler models it converges

very quickly to the exact solution because the search space is smaller.

Considering the test results presented in Tables 5–7, and the relationship between the

complexity of the part being reconstructed and the GA’s execution time, where this time

encompasses all GA executions until a valid solution is obtained, it is clear that the pro-

posed GA is most efficient with the second group of parameters for simple and moder-

ately complex geometry parts. During intensive testing of the proposed algorithm, it was

also shown that for highly complex geometry parts, the best parameters are from groups

IV and V. In all tests conducted to date, the geometry of the part has been consistently and

accurately recognized, even for complex components; however, the number of GA execu-

tions reached up to eight times, with execution times extending up to 180 s. Given that an

accurate solution was consistently obtained, this represents an exceptionally favorable fi-

nal testing outcome.

In contrast to previous GA-based approaches—which typically rely on raster prepro-

cessing or predefined libraries of geometric primitives—the proposed method employs a

mathematically rigorous topological framework that supports the reconstruction of a

broader range of 3D models, including those containing curved and free-form elements.

By leveraging a connectivity-based representation rather than heuristic feature extraction,

the approach enhances model generality and eliminates dependence on prior shape clas-

sification. As summarized in Table 10, this results in improved scalability, increased ro-

bustness across diverse input data, and a significant reduction in preprocessing complex-

ity.

Table 10. Comparison with GA-based 3D reconstruction methods.

Study Input Type Shape Support Method Basis
Optimization

Target
Geometry Type

Independence
DXF (Vector)

Support
Topological

Model
Chen & Feng

[15]
Raster image

Prismatic +

curved
Contour extrac-

tion
Projection con-

sistency
✅ Yes No Full

Gorgani & Pak

[6]
2D drawings

Only prismatic

shapes
B-Rep recon-

struction
Face alignment No No Partial

Siddique & Za-

karia [17]
Raster image Simple shapes Shape features

Edge position,

face equaliza-

tion
No No No

This paper DXF (vector)
Prismatic +

Curved
Symmetric ma-

trices

Vertex to Ver-

tex–edge topol-

ogy
Yes Yes Full

Although some of the limitations of the proposed methodology were briefly outlined

in Section 3.1, they are revisited and elaborated here to ensure clarity and completeness.

Symmetry 2025, 17, 771 31 of 33

This dedicated discussion aims to contextualize the current scope of the model and high-

light avenues for future enhancement.

First, the method assumes that the input 2D engineering drawing is complete and

composed of exactly three orthographic projections—front, top, and left—conforming to

the ISO-E (European) projection standard, as illustrated in Figure 2. These views are ex-

pected to encapsulate all essential geometric information, including both visible and hid-

den edges. At the present stage, the framework does not support sectional views, auxiliary

projections, or drawings that are incomplete.

Second, the approach presumes that all orthographic views are rendered at a con-

sistent 1:1 scale, thereby enabling the direct use of vertex coordinates for 3D reconstruc-

tion. A global scaling factor may be optionally applied, but the model does not yet incor-

porate dimensioning metadata or tolerancing information embedded in annotations.

Third, although DXF files are advantageous for extracting basic geometric entities

such as lines and arcs, they lack topological information—i.e., they do not provide an ex-

plicit mapping of entity connectivity or view separation. Therefore, a custom segmenta-

tion procedure is required to distinguish between projections and reconstruct their inter-

nal structure.

Additionally, the method relies on the recognition of basic geometric primitives (e.g.,

LINE, ARC) to infer edge shapes. In its current form, the model does not support complex

freeform surfaces or non-cylindrical geometries. Interpretation of such features would re-

quire integrating advanced geometric representations and curvature analysis tools and

mathematical tools for curvature and surface analysis.

It is important to emphasize that these constraints do not compromise the core of the

methodology, which is fundamentally based on a binary vertex-to-vertex topological

model. The approach remains general and extensible, and these limitations may be ad-

dressed through future enhancements, such as the incorporation of geometric reasoning

modules or hybrid shape descriptors. Therefore, the challenges identified here also repre-

sent promising directions for future research and model refinement.

6. Conclusions

In this paper, a method for encoding 2D engineering drawings using symmetric con-

nectivity matrices is presented. These matrices significantly facilitate the formation of a

mathematical model and enable the problem of recognizing 3D models from 2D engineer-

ing drawings to be reduced to an integer linear programming problem. A GA has been

developed, successfully recognizing 3D models of both polyhedral shapes and models

with cylindrical surfaces. For testing purposes, a fully independent software platform was

created, covering the entire process from generating symmetric adjacency matrices from

orthogonal projections to part recognition. This platform includes real-time graphical vis-

ualization of the recognition process and allows testing of parts with various geometric

shapes without additional adjustments.

The advantage of the proposed model lies in its simplicity, as the problem of recog-

nizing a 3D wireframe model is reduced to the problem of linear integer programming.

The model does not necessarily require a DXF format as a starting point, as it is designed

to accept, with minor modifications, any other vector format used for engineering draw-

ings. So far, it has only been tested on polyhedral shapes, and on simpler cylindrical ones,

although theoretically, it should also work with all shapes since it is based on edges, in-

cluding curved edges that are not straight lines.

To the best of our knowledge, no previous work in the available literature has intro-

duced a 3D reconstruction model that combines symmetric connectivity matrices with

GA. Furthermore, studies [16–19] that utilize GA for geometry recognition generally

Symmetry 2025, 17, 771 32 of 33

achieve lower success rates in 3D reconstruction and are predominantly limited to poly-

hedral shapes.

However, one of its shortcomings is that it does not recognize surfaces but only the

wireframe model, and has not yet been tested on parts with highly complex geometry,

which, in addition to polyhedral shapes and cylindrical surfaces, also include other types

of surfaces.

Future research directions involve improving the GA process, potentially selecting

other crossover and mutation operators, redefining weight coefficients and methods for

penalizing poor individuals, and possibly hybridizing GA with other optimization algo-

rithms to achieve even better results with polyhedral shapes and cylindrical surfaces. Ad-

ditionally, intensive testing and possible modifications are required to recognize other

non-cylindrical surfaces.

This solution, as conceived, can serve as a foundation for the complete automation of

the 3D model recognition process from engineering drawings, or as an initial phase to-

ward the full integration of CAD/CAM activities.

In future work, we aim to expand the proposed methodology beyond wireframe re-

construction, with the goal of achieving fully automated generation of solid models di-

rectly from standard technical documentation. This advancement would facilitate the

practical integration of the method into industrial CAD environments, thereby enhancing

its applicability in real-world engineering workflows.

Moreover, the utilization of symmetric adjacency matrices establishes a geometry-

independent framework that enables the method to process both linear and nonlinear

edges with equal robustness. By prioritizing topological relationships over explicit surface

definitions, the approach circumvents limitations commonly associated with specific part

geometries. This abstraction not only improves the generalizability of the system but also

creates opportunities for further extension into complex design domains, including

freeform surfaces and non-standard projection views. Such developments would signifi-

cantly broaden the scope of the method and reinforce its relevance in advanced CAD and

reverse engineering applications.

Author Contributions: Conceptualization, P.M. and V.K.; methodology, A.Đ.; software, P.M. and

M.S.; validation, M.M., M.P. and D.P.; formal analysis, P.M.; investigation, V.K.; resources, M.M.

and M.P.; data curation, D.P.; writing—original draft preparation, P.M. and M.S.; writing—review

and editing, A.Đ.; visualization, M.P.; supervision, M.S.; project administration, D.P.; funding ac-

quisition, M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data are available upon reasonable request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Furferi, R.; Governi, L.; Palai, M.; Volpe, Y. From 2D Orthographic views to 3D Pseudo-Wireframe: An Automatic Procedure.

Int. J. Comput. Appl. 2010, 5, 18–24. https://doi.org/10.5120/918-1296.

2. Zhang, C.; Pinquié, R.; Polette, A.; Carasi, G.; De Charnace, H.; Pernot, J.P. Automatic 3D CAD models reconstruction from 2D

orthographic drawings. Comput. Graph. 2023, 114, 179–189, ISSN 0097-8493. https://doi.org/10.1016/j.cag.2023.05.021.

3. Idesawa, M. A system to generate a solid figure from three view. Bull. JSME 1973, 16, 216–225.

4. Wesley, M.A.; Markowsky, G. Fleshing out projections. IBM J. Res. Dev. 1981, 25, 934–954. https://doi.org/10.1147/rd.256.0934.

5. Yan, Q.; Chen, C.L.P.; Tang, Z. Efficient algorithm for the reconstruction of 3D objects from orthographic projections. Comput.

Aided Des./Comput.-Aided Des. 1994, 26, 699–717. https://doi.org/10.1016/0010-4485(94)90020-5.

6. Gorgani, H.H.; Pak, A.J.; Sadeghi, S. 3D Model Reconstruction from Two Orthographic Views using Fuzzy Surface Analysis.

Eur. J. Sustain. Dev. Res. 2019, 3, em0081. https://doi.org/10.29333/ejosdr/5726.

Symmetry 2025, 17, 771 33 of 33

7. Zhang, A.; Xue, Y.; Sun, X.; Hu, Y.; Luo, Y.; Yan-Guang, W.; Zhong, S.; Wang, J.; Tang, J.; Cai, G. Reconstruction of 3D

Curvilinear Wireframe Model from 2D Orthographic Views. In Computational Science—ICCS 2004; Lecture Notes in Computer

Science; Springer, Berlin/Heidelberg, Germany, 2004; pp. 404–411. https://doi.org/10.1007/978-3-540-24687-9_51.

8. Gong, J.; Zhang, G.; Zhang, H.; Sun, J. Reconstruction of 3D curvilinear wire-frame from three orthographic views. Comput.

Graph. 2006, 30, 213–224. https://doi.org/10.1016/j.cag.2006.01.027.

9. Lu, Z.; Guo, J.; Xiao, J.; Wang, Y.; Zhang, X.; Yan, D. Extracting Cycle-aware Feature Curve Networks from 3D Models. Comput.

Aided Des./Comput.-Aided Des. 2021, 131, 102949. https://doi.org/10.1016/j.cad.2020.102949.

10. Gong, J.; Zhang, H.; Zhang, G.; Sun, J. Solid reconstruction using recognition of quadric surfaces from orthographic views.

Comput. Aided Des./Comput.-Aided Des. 2006, 38, 821–835. https://doi.org/10.1016/j.cad.2006.04.009.

11. Gong, J.; Zhang, H.; Zhang, Y.; Sun, J. Converting hybrid wire-frames to B-rep models. In Proceedings of the 2007 ACM

Symposium on Solid and Physical Modeling, Beijing, China, 4–6 June 2007. https://doi.org/10.1145/1236246.1236286.

12. Varley, P. A new algorithm for finding faces in wireframes. Comput. Aided Des./Comput.-Aided Des. 2010, 42, 279–309.

https://doi.org/10.1016/j.cad.2009.11.008.

13. Çıçek, A.; Gülesın, M. Reconstruction of 3D models from 2D orthographic views using solid extrusion and revolution. J. Mater.

Process. Technol. 2004, 152, 291–298. https://doi.org/10.1016/j.jmatprotec.2004.04.368.

14. Cohen, M. 3D Reconstruction of Solid Models from Engineering Orthographic Views using Variational Geometry and

Composite Graphs. Comput.-Aided Des. Appl. 2007, 4, 159–167. https://doi.org/10.1080/16864360.2007.10738536.

15. Chen, K.; Feng, X. Solid model reconstruction from engineering paper drawings using Genetic Algorithms. Comput. Aided

Des./Comput.-Aided Des. 2003, 35, 1235–1248. https://doi.org/10.1016/s0010-4485(03)00039-3.

16. Bebis, G.; Louis, S.J.; Varol, Y.; Yfantis, A. Genetic object recognition using combinations of views. IEEE Trans. Evol. Comput.

2002, 6, 132–146. https://doi.org/10.1109/4235.996013.

17. Siddique, M.T.; Zakaria, M. 3D Reconstruction of geometry from 2D image using Genetic Algorithm. In Proceeding of the 2010

International Symposium on Information Technology, Kuala Lumpur, Malaysia, 15–17 June 2010; IEEE: New York, NY, USA,

2010; pp. 1–5. https://doi.org/10.1109/itsim.2010.5561294.

18. Gorgani, H.H.; Pak, A.J. A Genetic Algorithm based Optimization Method in 3D Solid Reconstruction from 2D Multi-View

Engineering Drawings. Appl. Comput. Mech. 2018, 49, 161–170. https://doi.org/10.22059/jcamech.2018.249623.229.

19. Autocad Online Help 2018; Autodesk Inc.: San Francisco, CA, USA, 2018.

20. Autocad 2018, DXF Reference; Autodesk Inc.: San Francisco, CA, USA, 2018.

21. Singiresu, S.R. Engineering Optimisation-Theory and Practice, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009.

22. Umbarkar, A.J.; Sheth, P.D. Crossover operators in genetic algorithms: A review. ICTACT J. Soft Comput. 2015, 6, 1083–1092.

23. Ngyen, H.D.; Yoshikara, I.; Yamamori, K.; Yasunaga, M. Greedy genetic algorithms for symmetric and assymetric TSP. IPSJ

Trans. Math. Model. Its Appl. 2002, 43, 165–175.

24. Wei, J.-D. Approaches to the Travelling Salesman Problem Using Evolutionary Computing Algorithms; InTech: Houston, TX, USA,

2006. https://doi.org/10.5772/5584.

25. Mitic, P.; Nedic, B. Multi-Hole Drilling Tool Path Optimization Using Genetic Algorithm. Int. J. Qual. Res. 2022, 16, 417–428.

https://doi.org/10.24874/IJQR16.02-06.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

