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Abstract: The application of CAD/CAM technologies in modern production has revolu-

tionized manufacturing processes, leading to significant improvements in precision, effi-

ciency, and flexibility. These technologies enable the design and manufacturing of com-

plex geometries with high accuracy, reducing errors and material waste. CAD/CAM inte-

gration streamlines workflows, enhances productivity, and facilitates rapid prototyping, 

accelerating the time-to-market for new products. Additionally, it supports customization 

and scalability in production, allowing for cost-effective small-batch and large-scale man-

ufacturing. Without a 3D model of the product, it is not possible to use the advantages of 

applying advanced CAD/CAM technologies. Recognizing 3D models from engineering 

drawings is essential for modern production, especially for outsourcing companies in 

fluctuating market conditions, where the production process is organized with 2D work-

shop drawings on paper. This paper proposes a novel methodology for reconstructing 3D 

models from 2D engineering drawings, specifically those in DXF file format, leveraging a 

genetic algorithm. A core component of this approach is the representation of the 2D 

drawing as a symmetric adjacency matrix. This matrix serves as the foundational data 

structure for the genetic algorithm, enabling the evolutionary process to effectively opti-

mize the 3D reconstruction. The experimental evaluation, conducted on multiple engi-

neering drawing test cases (including both polyhedral and cylindrical geometries), 

demonstrated consistent convergence of the proposed GA-based method toward topolog-

ically valid and geometrically accurate 3D wireframe models. The approach achieved suc-

cessful reconstruction in all cases, with fitness scores ranging from 1.1 to 112.2 depending 

on model complexity, and average execution times from 2 to 100 seconds. These results 

confirm the method’s robustness, scalability, and applicability in real-world CAD envi-

ronments, while establishing a new direction for topology-driven 3D reconstruction using 

evolutionary computation. 
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1. Introduction 

The integration of computer-aided design and computer-aided manufacturing 

(CAD/CAM) technologies has profoundly transformed modern manufacturing by ena-

bling rapid prototyping, design precision, and flexible production. However, in many in-

dustrial environments, particularly those relying on legacy documentation, two-dimen-

sional (2D) workshop drawings remain the predominant format for technical communi-

cation. These drawings are often the only documentation available, especially in subcon-

tracting or archival scenarios, making the automatic reconstruction of three-dimensional 

(3D) models from 2D sources a critical challenge. 

The reconstruction of 3D models from 2D technical drawings is a key problem in 

CAD, reverse engineering, and model understanding. Orthographic projections, as stand-

ardized 2D representations, encode critical geometric and topological information of an 

object, yet lack depth and perspective, making the reconstruction process inherently un-

derdetermined and often ambiguous. 

Despite decades of research, the fully automated reconstruction of 3D models from 

2D orthographic drawings remains a technically demanding problem. The majority of ex-

isting approaches are either limited to specific object categories (e.g., polyhedral shapes), 

require supervised learning with annotated datasets, or rely heavily on manually defined 

features and heuristics. One critical limitation is the absence of topological data in stand-

ard formats such as Drawing Exchange Format (DXF), which only contain isolated geo-

metric entities (lines, arcs, circles) without information on how these entities are connected 

across views. This is particularly evident in the case of the DXF. Developed by Autodesk, 

DXF is an open, CAD-native file format originally created to enable interoperability be-

tween different CAD systems. In a DXF file, each geometric entity is represented by a 

structured ASCII or binary record, which facilitates programmatic extraction of coordi-

nates and primitive types but does not include explicit topological connectivity. 

Moreover, many methods do not generalize well to complex industrial parts that in-

clude curved surfaces, intersecting features, or non-standard projection layouts. Compu-

tational complexity is another barrier, as approaches based on exhaustive geometric 

matching or volumetric reconstruction often become infeasible for drawings with a high 

number of elements. Consequently, there is a clear need for reconstruction methods that 

can operate without prior knowledge of shape classes, while remaining computationally 

tractable and tolerant to incomplete or ambiguous input data. 

Automated 3D reconstruction from 2D orthographic projections has become increas-

ingly important due to its role in streamlining digital manufacturing workflows. Since 3D 

models serve as the foundation for CAM (such as AutoCAD Mechanical v24.0) software 

and the generation of CNC programs, their availability is essential for modern production 

systems. Manual reconstruction is time-consuming, error-prone, and incompatible with 

the demands of scalable, automated manufacturing environments. 

Recent studies have attempted to address these limitations through machine learning 

models, rule-based extraction, and graph-based interpretations. For example, Furferi et al. 

[1] employed a set of geometric rules for feature recognition, while Zhang et al. [2] pro-

posed a method based on shape matching and solid feature extraction. However, these 

approaches typically depend on either specific geometric constraints or extensive domain 

knowledge, which limits their flexibility. CNN-based techniques [3,4] have shown prom-

ise in object classification tasks but are not easily adaptable to wireframe reconstruction 

without labeled training datasets. 

Furthermore, although some researchers have explored the use of genetic algorithms 

(GA) for reconstruction tasks [5], these efforts are often restricted to prismatic objects or 

simplified scenarios with predefined projections. To the best of our knowledge, no exist-

ing study has formulated the reconstruction task using a symmetric topological 
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representation that abstracts the geometry into a generalized graph structure. This gap 

highlights the need for a new approach that combines topological abstraction and evolu-

tionary optimization to address the limitations of current methods in terms of generality, 

scalability, and independence from geometric priors. 

The primary purpose of this study is to develop a robust and generalizable method-

ology for reconstructing 3D wireframe models from 2D orthographic engineering draw-

ings in DXF format. Unlike existing methods that rely on geometry-specific rules or ex-

tensive training datasets, our approach seeks to abstract the reconstruction process by 

modeling the structural relationships within the drawing. This enables the proposed 

method to function independently of specific shape types and to be applicable to a broad 

range of industrial components, including those with curved or hybrid geometries. 

To address these challenges, this paper proposes a novel method that integrates ge-

ometric reasoning with a topological representation based on symmetric adjacency matri-

ces. This representation compactly encodes the relationships between vertices and edges, 

supporting efficient detection of geometric consistencies and inconsistencies across pro-

jections. The proposed method extracts geometric entities directly from DXF files and con-

structs a connectivity matrix that forms the basis for identifying spatial relations. A GA is 

then employed to search the solution space for a plausible 3D reconstruction that satisfies 

geometric constraints while aligning projections from multiple views. This hybrid strat-

egy enhances automation and robustness, particularly in reconstructing wireframe mod-

els from standard 2D technical drawings. 

The proposed approach is expected to achieve accurate and consistent reconstruction 

of 3D wireframe models from 2D technical drawings, even in cases where traditional 

methods fail due to geometric ambiguity or incomplete data. Through extensive testing 

on real-world engineering examples—including both polyhedral and cylindrical compo-

nents—the method is designed to demonstrate strong generalization capabilities, low 

computational overhead, and high structural fidelity. These outcomes would confirm the 

practical potential of the approach for integration into CAD/CAM workflows and digital 

twin environments. 

The remainder of this paper is organized as follows. Section 2 reviews the back-

ground and related work in 3D reconstruction from 2D drawings, focusing on existing 

methodologies and identifying research gaps. Section 3 presents the theoretical model, 

outlining the assumptions, mathematical formulation, and the complete workflow for 

wireframe reconstruction using symmetric adjacency matrices. Section 4 introduces the 

genetic algorithm developed for optimization, including chromosome representation, fit-

ness evaluation, and evolutionary operators. Section 5 discusses the experimental setup 

and presents results obtained on several real-world test cases, including polyhedral and 

cylindrical geometries. Section 6 concludes the paper with a summary of findings, identi-

fied limitations, and future research directions. 

2. Background and Related Work 

The reconstruction of 3D models from 2D technical drawings has been explored since 

the 1970s, primarily through two fundamental approaches: Boundary Representation (B-

Rep) and Constructive Solid Geometry (CSG). B-Rep describes objects by their boundaries 

(vertices, edges, and surfaces), while CSG relies on Boolean operations over basic geomet-

ric primitives. The first known algorithm for generating 3D models from orthographic 

projections was introduced in 1973 [2] and later formalized in subsequent works [3,4]. 

These early methods mainly focused on polyhedral object reconstruction, with a more 

efficient algorithm proposed in [5]. 

Previous studies on 3D model reconstruction from 2D drawings have explored a 

range of methodologies, including rule-based systems, graph-based representations, and 
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evolutionary computation. Zhang et al. [2] classify existing methods into three main 

groups: wireframe reconstruction, direct solid reconstruction, and machine learning-

based methods. This classification can be extended to include metaheuristic approaches 

such as GAs, which, despite their potential, remain relatively underexplored. A compre-

hensive review of modern methods is provided in [2]. 

Within the wireframe domain, Furferi et al. [1] developed a MATLAB v7. 10 algo-

rithm that utilizes vector drawings and vertex connectivity to construct 3D models. The 

authors in [6] applied fuzzy logic to analyze surface connectivity, while [7] addressed the 

construction of conic curves using Bézier interpolation. However, most methods struggle 

with curved edges and complex shapes. A decision tree approach is used in [8] to recog-

nize surfaces from all three projections, though the algorithm is complex due to multiple 

parallel analyses. 

Further developments include [9–12], which introduce a hybrid model linking verti-

ces, edges, and surfaces, later converted into B-Rep. Although informative, this method 

requires high computational resources due to surface relation identification in each view. 

Varley [12] applied shortest path algorithms on graphs to detect loops corresponding to 

surfaces. Others, such as [13,14], rely on extrusion and knowledge bases but are limited to 

simple forms and predefined geometries. 

Machine learning approaches—particularly convolutional and transformer neural 

networks—are becoming more prominent, yet a functional model for direct 3D recon-

struction from 2D drawings is still lacking [9], and thus this work does not explore that 

domain further. 

Among metaheuristic strategies, GAs show promise. Chen and Feng [15] were the 

first to apply GAs for reconstructing 3D models from imprecise 2D contours. Similar con-

cepts have been explored in [16–18], although these are largely limited to prismatic shapes 

and do not handle more complex surfaces. 

Based on the literature, three main challenges can be identified: high computational 

complexity, limited applicability to drawings with mixed geometries, and underutiliza-

tion of genetic algorithms. This paper introduces a novel method based on symmetric 

connectivity matrices, which efficiently encodes the topology of 2D entities extracted from 

DXF files and serves as the foundation for GA-based optimization. Our approach enables 

wireframe model reconstruction through graph-based traversal, independent of shape 

complexity, including lines, arcs, and curves. 

Unlike existing GA approaches that operate on contours or raster images, our 

method uses a graph-based representation with clearly defined topology. To the best of 

our knowledge, this is the first work to formulate wireframe reconstruction as a graph 

optimization problem addressed via evolutionary algorithms. The method demonstrates 

good performance and opens promising directions for further research. The proposed 

method not only enhances the efficiency of shape reconstruction but also emphasizes the 

inherent symmetry in structural representations of engineering geometries. 

3. Model Elements and Workflow for 3D Model Reconstruction from 

2D Engineering Drawings 

3.1. Initial Hypotheses and Assumptions 

This paper hypothesizes that representing 2D orthographic projections using sym-

metric adjacency matrices enables efficient, scalable, and accurate reconstruction of 3D 

wireframe models through evolutionary optimization. The central assumption is that the 

topological and geometric relationships inherent in 2D technical drawings can be com-

pactly encoded in symmetric matrices and interpreted as graph structures, forming a con-

sistent foundation for reconstructing 3D geometry. 
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The main contributions of this paper are: 

• A novel representation of 2D engineering drawings using symmetric adjacency ma-

trices. 

• A mathematical model that formalizes the 3D wireframe reconstruction problem as 

a binary integer optimization task. 

• Development and implementation of a customized genetic algorithm for solving this 

optimization problem 

• Experimental validation across both polyhedral and cylindrical geometries, demon-

strating the method’s generality and robustness, including cases with curved edges 

and varying levels of drawing complexity. 

Figure 1 shows a 3D model of a typical industrial machine part, designed in one of 

the software packages. 

 

Figure 1. Typical industrial machine part. 

For drawing creation, including the method of marking individual components of 

the drawing, certain conventions have been adopted over the past decades and regulated 

by appropriate standards [19]. The goal of adopting these conventions is to ensure that 

drawings provide unambiguous instructions for the manufacture of the depicted parts. 

These standards, whether international ISO standards or national standards, are inte-

grated into commercial software packages and offer multiple options for representing in-

dividual elements of machine parts in technical or workshop drawings. These options 

provide designers with some freedom when creating workshop drawings, making it prac-

tically impossible to incorporate all possibilities into an algorithm for identifying geomet-

ric information. Therefore, this research is based on the following assumptions: 

It is assumed that the 2D workshop drawing is complete and contains three ortho-

graphic projections made according to ISO-E or European projection layout: front view, 

top view, and left view, as shown in Figure 2. 

It is assumed that the 2D workshop drawing contains all the necessary information 

that clearly and unambiguously defines the shape of the machine part. Sections, details, 

partial views, etc., are not considered, meaning all edges, vertices, and hidden lines are 

shown in the corresponding projections (Figure 2). 

The dimensions of the 3D model can be directly obtained from the vertex coordinates, 

assuming they can be corrected with an appropriate scaling factor. For simplicity, this 

research assumes that the orthographic projections are created at a scale of 1:1. 

It is assumed that all three orthographic projections are created in accordance with 

the dimensional and geometric tolerances previously embedded in the 3D model. 
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DXF files, due to their binary or ASCII format, offer a significant advantage in entity 

recognition tasks, as highlighted in [20,21]. This format simplifies the identification of ge-

ometric entities such as lines, circles, points, and polylines within engineering drawings. 

When an object is provided with three projections in the DXF format, identifying the in-

dividual components (such as lines, circles, etc.) is a relatively straightforward process. 

However, the DXF format lacks topological data, meaning the file contains no logical se-

quence for the entities and no explicit information about their connectivity. In simpler 

terms, details about the spatial arrangement of projections and the edges associated with 

them are absent. Due to this limitation, a method to separate the drawing into three dis-

tinct views is required before proceeding with further analysis [6]. 

These assumptions simplify the input data for the process of the identification and 

conversion of geometric information, enabling its practical implementation. Without these 

assumptions, the process of identifying and recognizing geometric information would 

significantly exceed the scope of this research. 

 

Figure 2. Orthographic projections—engineering drawing of an industrial part. 

3.2. Workflow of 3D Reconstruction Process 

The flowchart presented in Figure 3 outlines the overall workflow of the proposed 

methodology, beginning with the parsing of DXF projections and culminating in the re-

construction process based on a GA. Each element of the flowchart corresponds to a spe-

cific sub-procedure, the details of which are elaborated in the subsequent sections. This 

modular structure ensures clarity and reproducibility, reflecting the systematic integra-

tion of geometric data processing and evolutionary optimization. 

The orthographic projections shown in Figure 4, which are analogous to the example 

found in [16] consist of different flat geometric shapes. These shapes can be lines, circular 

arcs and circles. Those geometric shapes represent entities that form contours as shown in 

Figure 4. Also, it should be noted that entities are defined by their starting and ending 

points and some other characteristics that depend on the type of the entity. 

In the example shown in Figure 4, which represents the front view of the part shown 

in Figure 1, there are a total of 9 points that form line entities. A line is an entity determined 

with the starting point (X1, Y1) and the ending point (X2, Y2), i.e., the coordinates of the 

starting and ending points in the Cartesian coordinate system. 

In addition to line entities, there are also entity circle, determined by the coordinate 

of the center (X, Y) in the Cartesian coordinate system, and the radius R and an Arc or 

circular arc, determined by the coordinate of the center (X, Y) in the Cartesian coordinate 

system and the radius R, as well as the initial and final angle of the circular arc expressed 

in degrees. 
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Figure 3. Flow diagram of 3D model reconstruction process. 

 

Figure 4. Entities of orthographic projection. 

Recognizing lines, circles, points, and polylines is fundamental to automated 3D 

model recognition, as they define surface boundaries. While entities recognition and po-

sitioning in DXF files are relatively simple and well documented in [16], our research ad-

dresses the more complex challenge of automatically establishing topological relation-

ships between vertices and edges. The following presents the structured pseudocode for 

the extraction of line entities from the entities section of a DXF file. A similar approach is 

used for processing circular arcs and other entity types (Algorithm 1). 

The procedure is organized into five key stages: 

• File selection: User selects a DXF file from disk. 

• Data initialization: The file is loaded and the ENTITIES section is located. 

• Parsing logic: LINE entities are scanned and decomposed into vertex coordinate 

pairs. 
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• Edge creation: Edges are constructed by linking each vertex pair. 

• Post-processing: Duplicate vertices are removed and the final vertex and edge arrays 

are produced. 

Algorithm 1 Extraction of line entities and graph construction from a DXF file.    

PROCEDURE ExtractLineEntities 

    INPUT: FilePath (string)–dxf file path 

    OUTPUT: VertexList (list of unique vertices), EdgeList (list of edges) 

    // 1. File selection 

    Open DXF file at FilePath 

    IF file cannot be opened THEN 

        RETURN error 

    // 2. Data initialization 

    Locate “ENTITIES” section in file 

    IF “ENTITIES” section not found THEN 

        RETURN error 

    Initialize empty list RawVertices 

    Initialize empty list EdgeList 

    // 3. Parsing logic 

    FOR each entity in “ENTITIES” section DO 

        IF entity type is “LINE” THEN 

            Read start point (X1, Y1) 

            Read end point (X2, Y2) 

     // 4. Edge creation 

            Add (X1, Y1) to RawVertices 

            Add (X2, Y2) to RawVertices 

            Add edge: ( (X1, Y1), (X2, Y2) ) to EdgeList 

        END IF 

    END FOR 

    // 5. Post-processing 

    VertexList ← Remove duplicate points from RawVertices 

    FOR each edge in EdgeList DO 

        Replace (X1, Y1) and (X2, Y2) with corresponding indices in VertexList 

    END FOR 

    RETURN VertexList, EdgeList 

END PROCEDURE 

3.3. Creating Orthographic Projection Matrices 

This section expands on how edges are formed from vertices based on their coordi-

nates, and how this relationship is mathematically represented to construct the adjacency 

matrix AdjA for the front view (Figure 4). 

Definition 1. Let: 

𝑃 = {𝑝1, 𝑝2, … , 𝑝3 }: A set VA of 𝑛 vertices in the front orthographic projection. Each vertex 

is represented as: 𝑝𝑖 = {𝑥𝑖 , 𝑦𝑗  }, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛} 

𝐸 = {𝑒1, 𝑒2, … , 𝑒3 }: A set EA of 𝑚 edges, where each edge 𝑒𝑘 connects two vertices 𝑝𝑖 and 

𝑝𝑗. Each edge is represented as: 𝑒𝑘 = {𝑝𝑖 , 𝑝𝑗  }, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, 𝑖 ≠ 𝑗 

Each entity is defined by a start point(, 𝑥𝑠, 𝑦𝑠), and an endpoint (𝑥𝑘, 𝑦𝑘). 

Edge is defined by start and end points. 
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If the start or end point does not exactly match a vertex in P, a proximity threshold ϵ > 0 to 

account for numerical inaccuracies can be applied: 𝑝𝑖 − (𝑥𝑠, 𝑦𝑠)‖ ≤ 𝜖 and  ‖𝑝𝑗 − (𝑥𝑒 , 𝑦𝑒)‖ ≤ 𝜖 

The adjacency matrix is defined as: 

𝐴𝑑𝑗𝐴 ∈ ℝ𝑛×𝑛,  𝐴𝑑𝑗𝐴[𝑖, 𝑗] = {
1, if (𝑝𝑖 , 𝑝𝑗) ∈ 𝐸

0, otherwise.
  

where indicates that an edge exists between vertices. It is important to notice that orthogonal pro-

jection can be represented as an undirected graph [16] and then the matrix 𝐴𝑑𝑗𝐴 is symmetric: 

𝐴𝑑𝑗𝐴[𝑖, 𝑗] = 𝐴𝑑𝑗𝐴[𝑗, 𝑖], ∀𝑖, 𝑗.  

Diagonal elements 𝐴𝑑𝑗𝐴[𝑖, 𝑖] = 0-no self-loops are considered as: 𝐴𝑑𝑗𝐴[𝑖, 𝑖] = 0, ∀𝑖. 

The adoption of symmetric adjacency matrices is driven by their capacity to com-

pactly encode topological relationships among vertices in a standardized and computa-

tionally efficient format. In contrast to edge lists or conventional graph-based representa-

tions, symmetric matrices inherently minimize redundancy—owing to their structural 

symmetry—and support efficient matrix operations, such as the computation of the Fro-

benius norm, which plays a critical role in the iterative optimization process governed by 

GA. Furthermore, this representation naturally corresponds to the undirected nature of 

edge relationships in engineering drawings, thereby preserving consistent connectivity 

across multiple orthographic projections. By abstracting geometric entities into binary 

topological relations, the proposed approach achieves a high level of generality, effec-

tively handling both linear and curved elements without introducing additional algorith-

mic complexity. 

The preceding definitions lay the groundwork for constructing the adjacency matrix 

representing the orthogonal projection. The construction of an adjacency matrix is a sim-

ple algorithm and for verifying the consistency of the matrix two important rules should 

be checked as follows: 

• Edge count: The total number of edges, i.e., 1’s in 𝐴𝑑𝑗𝐴  (excluding diagonal ele-

ments) should be equal 2m for m edges: ∑ 𝐴𝑑𝑗𝐴𝑖𝑗𝑖,𝑗 − ∑ 𝐴𝑑𝑗𝐴𝑖𝑖𝑖 = 2𝑚; 

• Symmetry: For undirected graph: 𝐴𝑑𝑗𝐴 = 𝐴𝑑𝑗𝐴𝑇. 

However, there is one difference in this study that is very important for the research 

presented. 

Figure 5 presents the orthogonal projection matrix for the front view shown in Figure 

4. As can be seen, vertices F4–F6 form an edge, but so do vertices F4–F7. The same applies 

to vertices F4–F2 and F4–F3. The formula for the number of edges would hold if vertices F4–

F3 and F4–F6 formed edges but F4–F7 and F4–F6 did not, and then it would be an undirected 

graph. However, the 3D model is unknown, and whether there is, for example, an edge 

F4–F7 can only be determined by considering hidden edges and a series of vertex relation-

ship tests and calculations, which is difficult to perform for more complex models. There-

fore, the assumption is introduced that the orthogonal projection matrix must include pro-

jections of all possible surfaces that the 3D model can have in a direction normal to the 

projection plane, which are defined for the example in Figure 4 by vertices 1-2-4-6-7-8-9, 

1-2-3-5-6-7-8-9, and 3-4-6-5. 
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Figure 5. Front orthogonal projection matrix. 

Following the previous discussion, new rules were introduced into the model. These 

rules establish a new coordinate, denoted as 𝑐 ∈ 𝑥, 𝑦, 𝑧, that find all points 𝑉𝑖 ∈ 𝑆 such that: 

𝑐𝑖 = 𝐶,  ∀𝑖 ∈ 𝐼, which states that if there are three or more points where one specific co-

ordinate remains constant, then any pair of these points can be connected by a valid edge, 

as follows: 

1. Let 𝑆 = 𝑉1, 𝑉2, … , 𝑉𝑛, where 𝑉𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) for 𝑖 = 1,2, … , 𝑛. 

2. For a specific coordinate 𝑐 ∈ 𝑥, 𝑦, 𝑧, find all points 𝑉𝑖 ∈ 𝑆 such that: 𝑐𝑖 = 𝐶,  ∀𝑖 ∈ 𝐼, 

where C is a constant. {1,2, , }I n   

3. If |𝐼| ≥ 3 then all points in the subset: 𝑆𝑐 = 𝑉𝑖: 𝑖 ∈ 𝐼 can form valid edges E. 

The number of valid edges now can be calculated using the formula for the binomial 

coefficient 

𝐸 = (
|𝐼|
2

) =
|𝐼|(|𝐼| − 1)

2
,    if |𝐼| ≥ 3,  

where each edge corresponds to a pair of points., i.e., representing several ways to select 

a pair of points from |𝐼|. Now, a completely defined way of forming a matrix of orthogo-

nal projections is given. In addition to the matrix shown in Figure 5, for each projection, a 

sequence of vertex coordinates is defined and shown in Table 1 for the example of the 

projection from Figure 4. In the same way, projection matrices and vertex coordinate ar-

rays are formed for the other two orthogonal projections. 

Table 1. Vertex coordinate array for front projection. 

  X Z 

F1 X1 Z1 

F2 X2 Z2 

F3 X3 Z3 

F4 X4 Z4 

F5 X5 Z5 

F6 X6 Z6 

F7 X7 Z7 

F8 X8 Z8 

F9 X9 Z9 

Now, three square adjacency matrices are defined, representing orthogonal projec-

tions 𝐴𝑑𝑗𝐴 is an 𝑛𝐴 × 𝑛𝐴 matrix, 𝐴𝑑𝑗𝐵 is an 𝑛𝐵 × 𝑛𝐵 matrix, 𝐴𝑑𝑗𝐶 is an 𝑛𝐶 × 𝑛𝐶  matrix.  Each 

matrix corresponding to the to the number of vertices in the respective projection. 
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For each orthogonal projection, a coordinate array is associated: 𝑉𝐴 =

𝑉𝐴1, 𝑉𝐴2, … , 𝑉𝐴𝑛𝐴
,    𝑉𝐵 = 𝑉𝐵1, 𝑉𝐵2, … , 𝑉𝐵𝑛𝐵

,    𝑉𝐶 = 𝑉𝐶1, 𝑉𝐶2, … , 𝑉𝐶𝑛𝐶
  where the length of each 

array (|𝑉𝐴| = 𝑛𝐴,    |𝑉𝐵| = 𝑛𝐵,    |𝑉𝐶| = 𝑛𝐶) corresponds to the dimension of the associated 

adjacency matrix. With these definitions, the symmetric adjacency matrix describes the 

connectivity (edges) of vertices in each projection and coordinate arrays provide the spa-

tial locations of the vertices in their respective views. Now, a 3D model is given with: 

𝑀 = {𝐴𝑑𝑗𝐴, 𝑉𝐴, 𝐴𝑑𝑗𝐵, 𝑉𝐵, 𝐴𝑑𝑗𝐶, 𝑉𝐶}  

This formulation sufficiently describes each orthogonal projection to proceed with 

the identification of candidate vertices and the formation of a pseudo-wireframe model. 

Table 2 provides a comparative overview of commonly used topology representa-

tions in 3D model reconstruction. This highlights the advantages of the proposed method 

over traditional edge-based, raster, and graph-matching approaches. 

Table 2. Comparative overview of topology representations in 3D reconstruction methods. 

Representation 

Method 
Input Structure 

Geometry Inde-

pendence 

Supports Curved 

edges 
Suitability for GA Complexity Level 

Edge list 
List of connected 

points 
❌ Limited No Medium Medium 

B-Rep/CSG 
Surfaces and oper-

ations 
No Partial No High 

Image-based/Ras-

ter methods 

Pixel-based shape 

data 
No No No Medium/High 

Graph matching Labeled graphs Partial With conditions Yes High 

Symmetric adja-

cency matrix (This 

paper) 

Binary vertex–ver-

tex topology 
Yes 

Partial, to be tested 

for complex curves 
Optimized Low/Structured 

As seen in Table 2, the symmetric adjacency matrix offers an optimal balance of gen-

erality, simplicity, and GA compatibility, making it a robust foundation for 3D reconstruc-

tion from engineering drawings. 

The following pseudocode presents the process of converting a DXF file into a sym-

metric adjacency matrix, encapsulating the previously described methodology in a clear, 

step-by-step format (Algorithm 2). 

Algorithm 2 Generation of a symmetric adjacency matrix from DXF orthographic projec-

tions. 

Pipeline for converting DXF data into a symmetric adjacency matrix 

Input: DXF file containing 2D orthographic projections (front, top, left) 

Output: Symmetric adjacency matrices for each projection 

Import and parse the DXF file (ASCII format) 

Segment the drawing into three orthographic views based on spatial grouping 

For each view: 

1. Identify geometric entities: LINE, ARC, CIRCLE 

2. Extract start and end points for each entity 

3. Create vertex list by grouping nearby points (with tolerance ε) 

4. Generate edge list by mapping entities to vertex pairs 

5. Build adjacency matrix: set Adj[i][j] = 1 if an edge connects vertex i and j 

Ensure symmetry: enforce Adj[i][j] = Adj[j][i] 

Validate: check consistency rules (number of edges, symmetry, no self-loops) 
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3.4. Generation of Candidate Vertices and a Pseudo Wireframe Model 

The formation of a pseudo-wireframe model was initially described and formalized 

in [3,4], with an additional method presented in [5]. In this paper, a new method for form-

ing a pseudo wireframe model will be presented. The initial step involves defining all 

potential vertices for the pseudo-wireframe model, which entails several sub steps. The 

goal is to identify all potential 3D vertices 𝑉𝑖
3𝐷 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) that are consistent across all 

three orthogonal projections. This is achieved by verifying compatibility between the pro-

jection based on the given coordinates. Based on the discussions in Section 3.3, a step-by-

step procedure for generating candidate vertices is provided: 

1. Iterate over all combinations: For each combination of indices (i,j,k), 𝑖 ∈

1,2, … , 𝑛𝐴,    𝑗 ∈ 1,2, … , 𝑛𝐵,    𝑘 ∈ 1,2, … , 𝑛𝐶 evaluates the following condition: 

2. Compatibility check: A vertex (x,y,z)) is a candidate if the following conditions are 

met: 

|𝑥𝐴𝑖 − 𝑥𝐵𝑗| = 0 

|𝑦𝐵𝑗 − 𝑥𝐶𝑘| = 0 

|𝑦𝐴𝑖 − 𝑦𝐶𝑘| = 0 

 

3. Generate candidate vertex: If the conditions hold, compute the candidate vertex as 

𝑥 = 𝑥𝐴𝑖, 𝑦 = 𝑦𝐵𝑗, 𝑧 = 𝑦𝐶𝑘. 

4. Store candidate: Add the candidate vertex 𝑉3𝐷 = (𝑥, 𝑦, 𝑧) to the result set: 𝑉candidates
3𝐷  

5. Output: The final result is the set of all valid candidate vertices: 𝑉candidates
3𝐷 =

𝑉1
3𝐷, 𝑉2

3𝐷, … , 𝑉𝑚
3𝐷, where  𝑚 ≤ 𝑛𝐴 ⋅ 𝑛𝐵 ⋅ 𝑛𝐶 depends on the number of valid combina-

tions. 

Following the logic that an orthogonal projection is represented by a symmetric ad-

jacency matrix and a set of vertex coordinates, the same applies to the pseudo-wireframe 

3D model. Therefore, it is necessary to define the matrix Adj as the symmetric adjacency 

matrix of edges in the 3D model. The procedure is relatively simple and evaluates whether 

an edge exists between two vertices in a 3D model based on their adjacency in the spatial 

symmetric adjacency matrix and their projections in the three orthogonal views. An edge 

is considered to exist within a 3D model if and only if its representation is present in all 

orthogonal projections. The visual representation of an edge in these projections can vary, 

appearing as either a line or a point. This variability is determined by the edge’s spatial 

orientation relative to the coordinate planes—specifically, whether it is orthogonal or par-

allel to them. Generally, if an edge is neither orthogonal nor parallel to any coordinate 

plane, it will manifest as a line in all three projections. 

For each pair of candidate vertices (𝑣𝑖 , 𝑣𝑗) , their corresponding Adj[i][j] is deter-

mined as follows: 

1. Map Vertices to Projections: Project vertices 𝑣𝑖 and 𝑣𝑗 onto the orthogonal planes: 

𝑃1 = (𝑥𝑖 , 𝑧𝑖) ∧ 𝑃2 = (𝑥𝑗 , 𝑧𝑗) for xz plane 

𝑃3 = (𝑥𝑖 , 𝑦𝑖) ∧ 𝑃4 = (𝑥𝑗 , 𝑦𝑗) for xy plane 

𝑃5 = (𝑦𝑖 , 𝑧𝑖) ∧ 𝑃6 = (𝑦𝑗 , 𝑧𝑗) for yz plane 

 

Using these projections, locate the corresponding indices in the projection vertex arrays: 
𝐼1 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃1, 𝑉𝐴), 𝐼2 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃2, 𝑉𝐴) 

 𝐼3 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃3, 𝑉𝐵), 𝐼4 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃4, 𝑉𝐵) 

𝐼5 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃5, 𝑉𝐵),  𝐼6 = 𝐼𝑛𝑑𝑒𝑥𝑂𝑓(𝑃6, 𝑉𝐵) 

 

2. Edge existence check in projections: Evaluate whether edges exist between the pro-

jected vertices in their respective adjacency matrices: 
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𝐸𝐴 = (AdjA[𝐼1][𝐼2] > 0) ∨ ((𝐼1 = 𝐼2) ∧ (AdjA[𝐼1][𝐼2] = 0)) 

𝐸𝐵 = (AdjB[𝐼3][𝐼4] > 0) ∨ ((𝐼3 = 𝐼4) ∧ (AdjB[𝐼3][𝐼4] = 0)) 

𝐸𝐶 = (AdjC[𝐼5][𝐼6] > 0) ∨ ((𝐼5 = 𝐼6) ∧ (AdjC[𝐼5][𝐼6] = 0)) 

 

3. Spatial edge update: Update the spatial symmetric adjacency matrix Adj for the edge 

[i][j] 

𝐸𝐴 ∧ 𝐸𝐵 ∧ 𝐸𝐶 ⇒ 𝐴𝑑𝑗[𝑖][𝑗] = 1  

 ¬(𝐸𝐴 ∧ 𝐸𝐵 ∧ 𝐸𝐶) ⇒ 𝐴𝑑𝑗[𝑖][𝑗] = 0 
 

The 3D model is now represented by 𝑀 = {𝐴𝑑𝑗, 𝑉 candidates
3𝐷 }, which defines all possible 

solutions of the pseudo-wireframe model. Figures 6 and 7 illustrate the reconstruction 

process for the part shown in Figure 1. Figure 6 presents the symmetric adjacency matrix 

AdjA, while Figure 7 shows all possible 3D models generated from this matrix and the 

corresponding candidate vertices. Figure 7a shows a pseudo-wireframe 3D model that 

encompasses three valid reconstruction candidates, as their geometries are consistent with 

the input projections. Among them, the model in Figure 7d is the one intended for recon-

struction, while the models shown in Figure 7b,c are also geometrically valid solutions; 

however, they do not represent the target 3D reconstruction and must therefore be dis-

carded during the process. 

 

Figure 6. Example of adjacency matrix of pseudo-wireframe mode. 

 

Figure 7. Example of pseudo wireframe model with all possible 3D models : (a) pseudo-wireframe 

model with ambiguous geometry; (b), (c), and (d) represent different valid interpretations of the 

3D model reconstructed from the same projection data. 

Pseudo wireframe model (a) 

Valid 3D model (c) 

Valid 3D model (d) 

Valid 3D model (b) 
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Human designers often approach engineering drawings by attempting to mentally 

reconstruct the 3D object through identification of geometric relationships across multiple 

views. This process typically involves a sequence of intuitive evaluations and repeated 

adjustments, which continues until a coherent 3D representation is formed in their minds 

[6]. 

The process of 3D wireframe model reconstruction can be defined as a process of 

adding or removing candidate vertices and their corresponding edges while respecting 

constraints related to geometric consistency until a solution is obtained that satisfies pre-

defined criteria. This defined process of 3D wireframe model reconstruction represents a 

standard optimization problem, for the realization of which it is necessary to define a 

mathematical model that should be independent of the optimization method. 

3.5. Mathematical Formulation of the Proposed Model 

Input variables 

1. Orthogonal projection symmetric adjacency matrices and their dimensions: 

• 𝐴𝑑𝑗𝐴 ∈ {0,1}𝑛𝐴𝑥𝑛𝐴 adjacency matrix for the front projection; 

• 𝐴𝑑𝑗𝐵 ∈ {0,1}𝑛𝐵𝑥𝑛𝐵 adjacency matrix for the top projection; 

• 𝐴𝑑𝑗C ∈ {0,1}𝑛C𝑥𝑛C adjacency matrix for the left projection. 

2. Vertex coordinates of projections: 

• 𝑉𝐴 = {(𝑥𝑖
𝐴, 𝑧𝑖

𝐴)}
𝑖=1
𝑛𝐴  coordinates of vertices in front projection; 

• 𝑉B = {(𝑥𝑖
B, y𝑖

B)}
𝑖=1

𝑛B
 coordinates of vertices in top projection; 

• 𝑉𝐶 = {(𝑦𝑖
𝐶 , 𝑧𝑖

𝐶)}
𝑖=1
𝑛𝐶  coordinates of vertices in left projection. 

1. Coordinate vertex set and connectivity: 

• VK = {(𝑥𝑖
𝐾 , 𝑦𝑖

𝐾 , 𝑧𝑖
𝐾)}

𝑖=1
𝑁𝐾  3D candidate vertex coordinates; 

• 𝐴𝑑𝑗 ∈ {0,1}𝑁𝐾𝑥𝑁𝐾 symmetric adjacency matrix for pseudo wireframe model. 

2. Bounds on the number of vertices: 

• 𝑛 ≤ 𝑁 ≤ 𝑁𝐾, 𝑛 = 𝑚𝑎𝑥(𝑛𝐴, 𝑛𝐵, 𝑛𝐶). 

3. Target number of edges: 

• Marked as T where T is derived from Adj. 

Control variables of the mathematical model 

In addition to the observed model’s input variables, it is necessary to define a vector 

of control variables, that is, variables that describe the optimization objectives stated. 

𝑥𝑖 ∈ {0,1}, 𝑖 = 1,2, . . . , 𝑁𝐾 (1) 

where 𝑥𝑖—vertex inclusion indicator is a binary variable indicating whether vertex i is 

included in the 3D model 

𝑒𝑖𝑗 ∈ {0,1}, 𝑖, 𝑗 = 1,2, . . . , 𝑁𝐾 (2) 

where 𝑒𝑖𝑗—edge inclusion indicator is a binary variable indicating whether edge (i, j) is 

included in the 3D model 

𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗) ∈ {0,1}, 𝑖, 𝑗 = 1,2, . . . , 𝑁𝐾 (3) 

where 𝐴𝑑𝑗𝑐𝑢𝑟𝑟 —reduced symmetric adjacency matrix is a binary variable representing 

the current 3D model using 𝑥𝑖 and 𝑒𝑖𝑗. 

The objective function 

The objective function of the mathematical model represents the criteria of optimiza-

tion. As mentioned earlier the goal is to measure the difference between current 3D model 

and the target 3D model where target 3D model is represented with orthogonal projec-

tions. However, determining this difference is not sufficient, and even has a smaller 
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impact on the optimization result, because orthogonal projections encompass all possible 

model solutions that are geometrically consistent. Therefore, in addition to measuring the 

difference between projections, it is necessary to introduce an additional parameter into 

the objective function. Figure 7 clearly shows that the solutions differ in the number of 

edges, although all edges are displayed in a pseudo-wireframe model. The target number 

of edges cannot be the number of edges of the pseudo-wireframe model because valid 

models have fewer edges. It is necessary to determine the difference between the number 

of edges of 𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗) and the target number of edges that the model to be recog-

nized has. This can be achieved with the following procedure: 

1. Identify the vertex with the highest weight (most edges) in Adj; 

2. Set all entries in the corresponding row and column of that vertex 0 in Adj; 

3. Adj=𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗); 

4. Repeat steps 1-3 until each row and column in Adj has either 0 or 3 non-zero entries 

but without violating geometric consistency; 

5. The sum off all 1-values in Adj after processing is the target number of edges T. 

When there is more than one goal to achieve during the optimization process, there 

are several ways to define an objective function [21] without entering in space of multi-

objective optimization. Finally, objective function 𝐹(𝑥, 𝑒) can be written as: 

𝑚𝑖𝑛 (𝐹(𝑥, 𝑒)) = 𝑚𝑖𝑛 (𝜔1 ∙ 𝐹𝑁(𝑥, 𝑒) + 𝜔2 ∙ (𝐹𝑇(𝑥, 𝑒) × 𝑝)) (4) 

𝐹𝑁(𝑥, 𝑒) = ‖𝐴𝑑𝑗𝐴 − 𝑃𝑟𝑜𝑗𝐴(𝑥, 𝑒)‖𝐹
2 + ‖𝐴𝑑𝑗𝐵 − 𝑃𝑟𝑜𝑗𝐵(𝑥, 𝑒)‖𝐹

2 + ‖𝐴𝑑𝑗𝐶 − 𝑃𝑟𝑜𝑗𝐶(𝑥, 𝑒)‖𝐹
2  (5) 

𝐹𝑇(𝑥, 𝑒) = (𝐸(𝑥, 𝑒) − 𝑇)2 (6) 

where 𝐹𝑁(𝑥, 𝑒) is the Frobenius norm between goal projections adjacency matrices and 

projection adjacency matrices of orthogonal projections of current 3D model ProjA, ProjB, 

ProjC. 𝐹𝑇(𝑥, 𝑒) is the difference between the total number of edges of a current 3D model 

and the target number of edges, 𝜔1 , and 𝜔2  are weighting coefficients that determine 

weights for the two objectives in the overall objective function. Vector p
ur

 is a penalty vec-

tor and will be explained later. 

Constraints of a mathematical model 

The vertex–edge consistency constraint ensures that an edge 𝑒𝑖𝑗 can only exist if both 

of its corresponding vertices i and j are included in the model. This is critical for maintain-

ing logical consistency in the graph structure of the 3D model. 

𝑒𝑖𝑗 ≤ 𝑥𝑖 , 𝑒𝑖𝑗 ≤ 𝑥𝑗 , ∀𝑖, 𝑗. (7) 

This constraint ensures that edges cannot “float” without being connected to valid 

vertices. In other words, if a vertex is excluded from the model, all edges connected to that 

vertex must also be excluded. This maintains the integrity of the graph structure during 

the iterative procedure. 

The geometric consistency constraint prevents the removal of vertices and their as-

sociated edges if the result violates the required geometric structure during the iterative 

procedure. Specifically, it is required that the symmetric adjacency matrix 𝐴𝑑𝑗𝑐𝑢𝑟𝑟(𝑥𝑖 , 𝑒𝑖𝑗) 

after removing a vertex (and its corresponding edges) must have a non-zero-sum, ensur-

ing that at least some connections remain. 

,

0ij i j

i j

e x x    
(8) 

The minimum and maximum vertices constraint ensures that the reconstructed 3D 

model contains only vertices within the permissible range defined by the input data. This 

constraint is expressed as: 
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i

n x N
=

   (9) 

The edge connectivity constraint ensures that if an edge ( 1)ije =  exists, then both ver-

tices 𝑥𝑖 and 𝑥𝑗 are present. This adds a lower bound on the sum 𝑥𝑖 + 𝑥𝑗, reinforcing that 

both vertices must exist for the edge to be valid. 

2 , , .i j ijx x e i j+     (10) 

3.6. Introduction to the Proposed GA for 3D Wireframe Model Reconstruction 

An acceptable 3D wireframe model can be defined as a selected subset of vertices 

derived from a larger set, structured to represent a 3D object while adhering to the con-

straints specified in a corresponding integer programming formulation. Genetic algo-

rithms (GAs), as modern metaheuristic optimization techniques, are particularly well 

suited for addressing such problems due to their strong capability to converge toward a 

global optimum with high probability in most cases [22]. 

It is important to emphasize that the performance of a GA is significantly influenced 

by the choice of crossover and mutation operators [23]. However, for the model under 

consideration, the most critical component is the penalization of candidate solutions based 

on their validity. Only feasible solutions, as defined by the problem’s constraints, are ac-

cepted in the model, and further explanation will be provided in subsequent sections. 

Numerous variants of genetic operators exist in the literature, many of which can be 

tailored to accommodate specific characteristics of the problem at hand, thereby enhanc-

ing the adaptability of the GA. Since the general functioning of GAs is well established 

and extensively documented, this work provides only brief definitions of the fundamental 

GA components, contextualized within the proposed model. 

In this model, a gene corresponds to a vertex (denoted as xix_ixi) and serves as the 

basic unit of encoded information. An individual or chromosome is a combination of such 

genes, representing a candidate 3D wireframe model. A population refers to the collection 

of all such individuals, i.e., the full set of acceptable 3D wireframe configurations. 

Parents are two feasible 3D wireframe models that participate in reproduction to gen-

erate new candidate models. The fitness function evaluates the quality of each model; in 

this context, it is based on the discrepancy between the orthogonal projections derived 

from the engineering drawing and those generated from the candidate model, along with 

the difference in the number of edges. This is formally defined in Equation (4) of the math-

ematical model. 

The crossover operator is responsible for combining two parent solutions (analogous 

to tool paths) to produce a new offspring. The mutation operator, on the other hand, mod-

ifies one or more genes within a single individual with the aim of introducing variability 

and potentially discovering superior solutions. The specific implementation of these ge-

netic operators, as applied in the proposed model, will be detailed in later sections. 

3.7. Chromosome Representation and Decoding: Initial Population 

The initial phase of any genetic algorithm involves selecting a suitable encoding 

scheme to represent candidate solutions. Choosing the right representation is paramount, 

as it impacts every subsequent stage of the GA’s execution. In our framework, this entails 

encoding each chromosome as a binary vector, with the specifics dictated by the underly-

ing model. The approach is based on a binary chromosome representation where each 

gene corresponds to a vertex in the model, and the total number of genes equals the di-

mension of the symmetric adjacency matrix. A gene’s value indicates the inclusion (1) or 

exclusion (0) of a vertex in the reconstructed model. Each vertex is assigned a weight based 
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on the number of edges connected to it. Typically, vertices in most mechanical parts have 

a maximum of three edges, but the pseudo-wireframe model may include vertices with 

higher connectivity (e.g., four, five, or more edges). 

The reconstruction process differentiates between acceptable and valid individuals. 

Acceptable individuals are those maintaining geometric consistency, making them suita-

ble for the initial population. Valid individuals are obtained through the evolutionary 

process, where crossover and mutation operators improve the population by refining ge-

ometric and structural consistency. Geometric consistency is maintained by ensuring that 

the sum of all elements in the symmetric adjacency matrix is not zero after the removal of 

any vertex or its edges. 

The chromosome is decoded into the current symmetric adjacency matrix, reflecting 

the connectivity of the vertices included in the current individual. This matrix is compared 

with the original adjacency matrix to measure projection consistency and edge count. 

The initial population includes chromosomes that do not violate geometric con-

sistency. During the evolutionary process, vertices with higher weights are more likely to 

be excluded, provided their removal does not disrupt the model’s structural integrity. The 

optimization ensures convergence to a valid model. For a model with 19 vertices (as 

shown in Figure 7), the chromosome is represented as a binary vector (11). 

x = [1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0] (11) 

w = [3, 3, 4, 3, 4, 4, 3, 6, 4, 4, 3, 3, 4, 3, 4, 3, 3, 3, 3] (12) 

The weights are calculated based on the adjacency matrix Adj (Figure 6), resulting in 

the weight vector 
ur

 (12). Each gene is not only defined by its binary value but also by 

its position within the chromosome and its associated entry in the adjacency matrix. Be-

yond its value, a gene is further specified by an index denoting its position within the 

chromosome and its corresponding entry in the connectivity matrix. Gene selection, for 

creating a chromosome, specifically the inclusion of vertex ij in the model, is entirely sto-

chastic taking into account only the constraint given in (9), rendering the example pro-

vided in (11) incompatible with any valid solution in the beginning of the evolution pro-

cess. The initial population is formed as an array of chromosomes, without the implemen-

tation of other constraints except (9). 

3.8. Fitness Calculation: Penalization of Acceptable Chromosomes 

The fitness function plays a central role in steering the GA toward geometrically valid 

and topologically optimal 3D reconstructions. It integrates a projection consistency com-

ponent—quantified using the Frobenius norm—with a penalty term that accounts for de-

viations from the expected number of edges. Each chromosome is assessed according to 

these dual criteria, and only individuals that satisfy predefined geometric constraints are 

retained as valid solutions. This fitness evaluation framework promotes convergence to-

ward a unique, structurally coherent configuration, thereby ensuring topological con-

sistency across projections within a finite number of evolutionary iterations. 

The fitness function evaluates the quality of a chromosome in the GA, guiding the 

evolutionary process toward reconstructing the 3D wireframe model. It is defined with 

Equation (4), where: 

• 𝐹𝑁(𝑥, 𝑒): Frobenius norm-based projection consistency measure, evaluating how well 

the reconstructed model matches the initial orthogonal projections. 

• 𝐹𝑇(𝑥, 𝑒): Edge count consistency measure, assessing the difference between the cur-

rent number of edges and the target edge count. 

• 𝜔1 and 𝜔2: Weighting coefficients balancing the importance of 𝐹𝑁 and 𝐹𝑇. In the con-

text of the observed model 𝜔1 = 0.3 and 𝜔2 = 0.7. 
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• p
ur

: Penalty vector, calculated as the product of the binary chromosome x  and the 

weight vector 
ur

, which represents the number of edges connected to each vertex. 

The penalty mechanism is implemented through the penalty vector p
ur

 discourages 

chromosomes with vertices that have excessive edge weights (w > 3). Each gene 𝑥i is pe-

nalized with a factor proportional10 if 3 i iw w  . This ensures that vertices with high con-

nectivity do not dominate the solution, as they often represent unrealistic or invalid struc-

tures in the context of the model. A lower fitness value indicates a better individual. Poorly 

penalized chromosomes are less likely to be selected as parents, preventing them from 

evolving further. This introduces a sort of genetic engineering into the algorithm by fo-

cusing the evolutionary process on improving acceptable solutions into valid ones. 

Example of fitness evaluation: 

x = [1,0,1,1,0,1,1,1,0,0,1,1,1,1,0,0,1,1,0] 

w = [3,3,4,3,4,4,3,6,4,4,3,3,4,3,4,3,3,3,3] 
 

The penalty vector p
ur

 is computed by multiplying x and 𝜛 followed by penalizing 

genes with 3iw   

p = [3,0,40,3,0,40,3,60,0,0,3,3,40,3,0,0,3,3,0  

• 𝐹𝑁(𝑥, 𝑒) = 0.2 (normalized projection consistency for example); 

• 𝐹𝑇(𝑥, 𝑒) = 0.1 (normalized edge count difference for example); 

• 𝜔1 = 0.5 and 𝜔2 = 0.5. 

( , ) 0.5 0.2 0.5 20.2 10.2F x e =  +  =   

Computing and summing elements of p gives up ( , ) 20.2Tp F x e =  

Final fitness: ( , ) 0.5 0.2 0.5 20.2 10.2F x e =  +  =  

Chromosomes with penalized vertices 
3 5 8(e.g., w , w , w6 , w ) contribute to higher fit-

ness values. The algorithm favors chromosomes with lower weights, as they are closer to 

valid configurations. 

3.9. Selection of Parents, Crossover, and Mutation Operator 

In our GA framework, a pair of feasible 3D wireframe models (“parents”) is chosen 

to generate a new candidate solution. Parent selection is achieved by ranking models ac-

cording to their fitness values; those with the lowest fitness scores are marked as parents 

and advanced to the crossover pool. This selection cycle repeats until the predefined num-

ber of parent pairs—determined by the algorithm’s population size—has been reached. 

Crossover then combines genetic information from two parent chromosomes to pro-

duce offspring. Each child inherits a mixture of binary-encoded genes from both parents, 

and specialized crossover operators (e.g., one-point, two-point, uniform) appropriate for 

binary strings are applied to effect this exchange. A concise review of the most widely 

used crossover techniques can be found in [23–25]. For the observed model, single-point 

crossover is chosen. The operation of single-point crossover is illustrated by the following 

example: 

• Parent 1: 𝑥1 = [1,0,1,1,0,1,1,0,0,1]; 

• Parent 2: 𝑥2 = [0,1,0,0,1,0,1,1,1,0]. 

A random crossover point is selected. For this example, let the crossover point be 

after the 5th gene (index 5). The chromosomes are split into two segments: 

• Parent 1: [1,0,1,1,0]∣[1,1,0,0,1]; 
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• Parent 2: [0,1,0,0,1]∣[0,1,1,1,0]. 

The offspring are generated by swapping the segments: 

• Offspring 1: [1,0,1,1,0] + [0,1,1,1,0] = [1,0,1,1,0,0,1,1,1,0]; 

• Offspring 2: [0,1,0,0,1] + [1,1,0,0,1] = [0,1,0,0,1,1,1,0,0,1]. 

Each gene in the chromosome corresponds to a vertex in the model. The value 11 

means the vertex is included, and 0 means it is excluded. The crossover combines the 

structural characteristics of both parents. For instance: 

• Offspring 1 inherits the first half of Parent 1 and the second half of Parent 2. 

• Offspring 2 inherits the first half of Parent 2 and the second half of Parent 1. 

After generating offspring, their fitness is evaluated using the fitness function, where 

penalties p
ur

  are applied if vertices with high edge weights are included. Single-point 

crossover creates new combinations of genes, promoting diversity in the population. In 

the 3D model reconstruction problem, Parent 1 and Parent 2 might represent partial solu-

tions that preserve different structural features of the model. By combining their chromo-

somes, offspring may inherit valid structural properties from both, leading to improved 

fitness and closer approximations to the target model. 

The mutation operator chosen is an inversion operator. It is a mutation mechanism 

used in GA to introduce variability into the population. It works by flipping the value of 

a randomly selected gene in a chromosome. 

• If the gene’s value is 1, it is changed to 0, and vice versa. 

• The operation is triggered based on a predefined mutation rate, ensuring controlled 

and rare alterations to preserve promising solutions while exploring new ones. 

This operator prevents premature convergence by injecting diversity into the popu-

lation and helps the algorithm explore new areas of the solution space. In the context of 

3D model reconstruction, inversion can add or remove vertices from the model, refining 

the population towards geometrically consistent and valid solutions. 

A known limitation of GA is its tendency to converge toward a local optimum, which 

may not necessarily yield a valid 3D model reconstruction. This is compounded by the 

fact that the GA’s execution is typically constrained by a predefined number of genera-

tions. Furthermore, given that the symmetric adjacency matrix encoding the 3D model’s 

edges encompasses all potentially valid solutions, it becomes imperative to establish sup-

plementary termination criteria for the recognition process. Specifically, the reconstructed 

3D model must exhibit geometric consistency, ensuring the absence of edge overlaps and 

the uniqueness of the solution. Consequently, an iterative GA execution is required until 

a single, geometrically sound solution is achieved, devoid of any edge ambiguities. 

3.10. Pseudo Code of Proposed GA 

The genetic algorithm implementation requires four primary configuration parame-

ters: (1) population cardinality, (2) quantity of parent individuals selected for reproduc-

tion, (3) probability of genetic mutation, and (4) maximum evolutionary cycles. The com-

putational process begins by instantiating the initial population and evaluating each can-

didate solution’s fitness. Through iterative generational advancement, the algorithm per-

forms selective breeding using single-point crossover operations, introduces random mu-

tations, and continuously monitors for topological validity until convergence criteria are 

satisfied (Algorithm 3). 
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Algorithm 3 Evolutionary reconstruction framework.  

PseudoCode Evolutionary Reconstruction Framework 

Parameters: 

  - POP_SIZE : Integer  (Population cardinality) 

  - NUM_PARENTS : Integer  (Reproductive pool size) 

  - MUT_RATE : Float ∈ [0,1]  (Variation probability) 

  - MAX_GEN : Integer  (Termination condition) 

1. INITIALIZATION: 

   population = GENERATE_RANDOM_POPULATION(POP_SIZE) 

   EVALUATE_FITNESS(population) 

   current_gen = 1 

2. GENERATIONAL LOOP: 

   WHILE current_gen ≤ MAX_GEN: 

      selected_parents = BestFitness(population, NUM_PARENTS) 

      offspring = EMPTY_SET()       

      WHILE SIZE(offspring) < (POP_SIZE-NUM_PARENTS): 

         parent1, parent2 = SELECT_PAIR(selected_parents) 

         child = SINGLE_POINT_RECOMBINATION(parent1, parent2) 

         IF RANDOM() < MUT_RATE: 

            child = APPLY_MUTATION(child)          

         ADD_TO_SET(offspring, child)       

      population = COMBINE(selected_parents, offspring) 

      EVALUATE_FITNESS(population) 

      current_gen += 1       

      IF VALID_SOLUTION_EXISTS(population) AND  

         NOT HAS_EDGE_CONFLICTS(population): 

         BREAK 

3. TERMINATION: 

   RETURN BEST_SOLUTION(population) 

4. Experimental Results 

The mathematical model provided in Section 2 is realized through application in 

which the previously presented GA is implemented and is written in the object-oriented 

programming language Delphi. It is independent executable software platform and in the 

following paragraph, a brief overview of the main screen and the functionality of the ap-

plication is provided. 

4.1. Brief Overview of the Software Platform 

Figure 8 presents the application’s initial screen. In the middle of the main form there 

are command buttons for the following: 

• Data entry (loading orthogonal symmetric projection matrices and vertex arrays); 

• Executing the GA; 

• Closing the application. 

The left side of the input form displays the GA execution results, while the bottom 

half visualizes the GA process. The left half of the main form displays the results of the 

GA execution, the initial symmetric adjacency matrix of the pseudo-wireframe model, the 

fitness of each best individual in the generation, and the symmetric adjacency matrix of 

the best solution obtained at the end of the GA execution. In the middle of the main form, 

there is information about the number of GA executions up to the moment of obtaining 
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the best solution, as well as the GA parameters that can be changed. In the right part of 

the main form, there is a window with a 3D graphical representation of the GA execution, 

while at the bottom, there is a diagram of the GA execution The application begins by 

loading orthogonal projections, i.e., DXF files for each view, and forming symmetric adja-

cency matrices for each projection. 

 

Figure 8. The main form of application for 3D reconstruction. 

4.2. The Structure and Loading Process of Input Data 

The input data consist of pre-generated matrices of orthogonal projections and arrays 

of vertex coordinates for each projection. The data are stored in *.txt files for each projec-

tion, as shown in Table 3. 

The first line contains the name of the projection (e.g., Front), followed by the dimen-

sion of the matrix AdjA in the format nA×nA, and then the adjacency matrix of the front 

orthogonal projection. Next comes the array of vertex coordinates, and at the end, there is 

an empty line. This pattern is repeated for the subsequent projections, i.e., AdjB, VB, AdjC 

and VA, VB and VC. 

Table 3. Sample input structure of projection data stored in plain text files. 

Section Example Content 

Projection name Front 

Adjacency matrix size 9 × 9 

Adjacency matrix (AdjA) 

0 1 0 0 0 0 0 0 1 

1 0 1 1 0 0 0 0 0 

0 1 1 1 0 0 0 0 0 

0 1 1 0 1 1 0 0 0 

0 0 0 1 0 1 0 0 0 

0 0 0 1 1 0 1 0 0 

0 0 0 0 0 1 0 1 0 

0 0 0 0 0 0 1 0 1 

1 0 0 0 0 0 0 1 0 

Vertex coordinates (VA) 

0 0 

150 0 

150 40 

150 60 

70 40 

70 60 

20 60 
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20 25 

0 10 

4.3. Testing Parameters 

The proposed solution has been tested on several real models, four of which will be 

presented here. 

The first, which is simpler, is shown as an example throughout this paper. The sec-

ond, more complex part, with 40 vertices and 168 edges in the pseudo-wireframe model, 

is shown in Figure 9 as a solid model and in Figure 10 as a wireframe model. The edges 

marked in red represent those that do not belong to the real model but to the set of all 

valid solutions. Also, vertices marked in red are vertices that belong to the candidate set 

but that do not belong to the vertices of a real 3D model. In Table 4, the geometric charac-

teristics of both models are provided. 

 

Figure 9. Solid model of PR0004 test model. 

Table 4. The geometric characteristics of tested models. 

Model Name No. Edges 3D Wireframe 
No. Vertices 3D 

Wireframe 

No. Edges 3D Real 

Model 

No. Vertices 3D 

Real Model 

PR0003 66 19 27 18 

PR0004 168 40 60 32 

Given that GA results can vary based on input parameters, five GA runs were con-

ducted with different parameter sets. Table 5 presents the parameter values for each run, 

while Table 6 and Table 7 lists the names of the output parameters with experimental 

results for PR0003 and PR0004, respectively. 

Table 5. The parameters for the execution of GA. 

Name of Parameter I II II IV V 

Population size 100 200 300 400 500 

Number of parents 80 80 240 320 420 

Mutation in % 1 1 1 1 1 

Number of generations 100 100 100 100 100 



Symmetry 2025, 17, 771 23 of 33 
 

 

 

Figure 10. Three-dimensional pseudo-wireframe model of PR0004 test model. 

Table 6. Test output parameter list with obtained values for PR0003. 

Name of Parameter I II II IV V 

Fitness 1.1 1.1 1.1 1.1 / 

Execution time/computational complexity in sec 2 2 3 4 / 

Valid solution obtained (Yes/No) Yes Yes Yes Yes / 

Solution with double edges No No No No / 

No. of double edges / / / / / 

No. of GA repetitions 1 1 1 1 / 

Table 7. Test output parameter list with obtained values for PR0004. 

Name of Parameter I II II IV V 

Fitness 10.3 10.3 10.3 10.3 10.3 

Execution time/computational complexity in sec 60 54 90 94 100 

Valid solution obtained (Yes/No) Yes Yes Yes Yes Yes 

Solution with double edges No No No No No 

No. of double edges / / / / / 

No. of GA repetitions 6 4 4 3 3 

To evaluate the impact of different parameter settings, the GA was run with four 

(PR0003) and five (PR0004) parameter configurations. The results are tabulated in Tables 

6 and 7, and visualized in Figures 11–20. The primary objective was to assess the GA’s 

ability to converge to valid solutions for complex shapes like PR0004, while restricting the 

analysis to polyhedral shapes. 

The second objective of the experimental testing of the proposed GA was to examine 

its convergence capability toward valid solutions for geometric solids with cylindrical 

surfaces. This presents a greater challenge, particularly for GAs [19]. Figure 21 illustrates 

an example of a 3D solid model of PR0007 with cylindrical surfaces, while Figure 22 shows 

the experimental results for I parameter group. The testing was conducted using the first 

four configurations of GA parameters, and the results are presented in Table 8. Figure 23 

illustrates a more complex, typical industrial part with cylindrical surfaces part tested 

with the first three configurations of GA parameters, while Figure 24 shows the experi-

mental results for I parameter group. The testing results are presented in Table 9. 

To examine the behavior of the proposed genetic algorithm (GA) under different evo-

lutionary parameter settings, a series of experimental runs was performed on two test 

cases of increasing complexity—PR0003 and PR0004. Figures 11–20 provide a detailed 
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visualization of the algorithm’s execution across five parameter groups for each model, 

with particular focus on convergence characteristics, solution accuracy, and structural va-

lidity of the reconstructed wireframe models. 

For the simpler polyhedral model PR0003, Figures 11 and 12 depict the GA perfor-

mance under parameter Groups I and II, respectively. In Figure 11, a steady convergence 

trend is observed, with gradual fitness improvements stabilizing after approximately 50 

generations. The resulting wireframe model adheres to the expected topological structure, 

demonstrating that even conservative parameter settings can yield valid results. In con-

trast, Figure 12 reveals a steeper initial drop in fitness values under Group II, indicating 

faster convergence. Despite the more aggressive parameter configuration, the final model 

remains both geometrically and topologically consistent, confirming the robustness of the 

GA framework in lower-complexity scenarios. 

Further testing with Groups III and IV for PR0003, shown in Figures 13 and 14, re-

veals subtle yet meaningful differences in convergence dynamics. Figure 13 demonstrates 

that Group III supports rapid early-stage exploration followed by stable convergence, pro-

ducing a structurally correct wireframe representation. Figure 14, using Group IV, leads 

to slightly faster convergence, suggesting that fine-tuned parameter values can improve 

efficiency without compromising solution quality. These results emphasize the im-

portance of parameter calibration, even when dealing with relatively simple geometric 

forms. 

The evaluation is extended to the more complex polyhedral model PR0004, where 

the algorithm’s scalability is tested against increased topological density and geometric 

intricacy. In Figure 15, which corresponds to Group I, the convergence curve progresses 

more gradually, with fitness values improving steadily over time. The adjacency matrix 

and final model visualization confirm the algorithm’s ability to resolve denser connectiv-

ity patterns. Figure 16, representing Group II, shows a more aggressive convergence pro-

file, with earlier stabilization of fitness values and successful reconstruction of the in-

tended 3D geometry, underscoring the algorithm’s adaptability to different optimization 

pressures. 

Figures 17 and 18 offer insight into the GA’s behavior under Groups III and IV for 

the PR0004 case. Figure 17 illustrates a longer convergence trajectory, with fitness im-

provements extending across 80 generations, a reflection of the search space complexity. 

Nonetheless, the final model is both topologically complete and geometrically accurate. 

Figure 18 isolates the final reconstruction obtained with Group IV and clearly displays the 

fidelity of the solution, even without the accompanying convergence plot. The preserva-

tion of structural proportions across all model layers attests to the reliability of the topo-

logical encoding and optimization procedure. 

Finally, the outcomes associated with Group V and the fully reconstructed model are 

presented in Figures 19 and 20. As shown in Figure 19, the algorithm exhibits continued 

fitness refinement across an extended number of generations, suggesting a broader explo-

ration phase. Despite the higher number of iterations, the resulting solution remains ro-

bust, validating the algorithm’s effectiveness even under more exhaustive parameter re-

gimes. Figure 20 displays the final reconstructed geometry in isolation, emphasizing the 

GA’s capacity to capture the full complexity of the PR0004 model and maintain structural 

integrity throughout the optimization process. 

Collectively, these figures provide strong empirical evidence of the proposed 

method’s generalizability and resilience across a wide range of parameter settings and 

model complexities. The consistent convergence behavior and reliable reconstruction out-

comes reinforce the applicability of the GA framework to real-world CAD and reverse 

engineering tasks involving polyhedral geometry. 
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Figure 11. GA execution-PR0003 I group. 

 

Figure 12. GA execution-PR0003 II group. 

 

Figure 13. GA execution-PR0003 III group. 

 

Figure 14. GA execution-PR0003 IV group. 
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Figure 15. GA execution-PR0004 I group. 

 

Figure 16. GA execution-PR0004 II group. 

 

Figure 17. GA execution-PR0004 III group. 

 

Figure 18. GA execution-PR0004 IV group. 
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Figure 19. GA execution-PR0004 V group. 

 

Figure 20. PR0004 after execution of GA. 

Table 8. Test output parameter list with obtained values for PR0007. 

Name of Parameter I II II IV V 

Fitness 2.4 2.4 2.4 2.4 / 

Execution time/computational complexity in sec 2 2 3 4 / 

Valid solution obtained (Yes/No) Yes Yes Yes Yes / 

Solution with double edges No No No No / 

No. of double edges / / / / / 

No. of GA repetitions 1 1 1 1 / 

In the subsequent phase of the experimental evaluation, the focus shifts toward more 

complex models that incorporate curved surfaces and a combination of cylindrical and 

rectangular geometries. The objective of this testing stage was to assess the genetic algo-

rithm’s (GA) ability to reconstruct 3D wireframe models for shapes that deviate signifi-

cantly from purely polyhedral forms. These cases increase the reconstruction challenge 

and provide insight into the algorithm’s suitability for real-world industrial applications. 

Figure 21 presents the 3D solid model of the PR0007 test case, which features a blend 

of straight edges, rounded transitions, and a characteristic cutout at the base. This geom-

etry introduces a reconstruction challenge due to the need to preserve topological con-

sistency in the presence of local curvature and interrupted surfaces. 

The execution of the GA for PR0007 is shown in Figure 22, where the convergence 

curve demonstrates rapid early-stage fitness improvement, followed by stabilization. The 

reconstructed wireframe model faithfully reproduces the primary geometric and topolog-

ical features of the target object, confirming that the proposed algorithm can handle 

curved features without relying on additional heuristics. 
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Figure 21. PR0007 3D solid model. 

 

Figure 22. PR0007 results after execution of GA. 

Table 9. Test output parameter list with obtained values for PR0005. 

Name of parameter I II II IV V 

Fitness 112.20 112.20 112.20 / / 

Execution time/computational complexity in sec 60 86 94 / / 

Valid solution obtained (Yes/No) Yes Yes Yes / / 

Solution with double edges No No No / / 

No. of double edges / / / / / 

No. of GA repetitions 6 4 5 / / 

Moving forward, Figure 23 depicts a more demanding 3D solid model, designated 

PR0005, which includes complex curved contours, multi-layered structures, and non-ro-

tational symmetries. This model was specifically chosen for its resemblance to real-world 

components commonly found in mechatronic and precision mechanical assemblies. 

The results of applying the GA to PR0005 are illustrated in Figure 24, where the al-

gorithm successfully identifies key edge connections and generates a valid topological 

mesh. Despite the model’s intricate morphology, the reconstruction maintains geometric 

consistency, and the convergence curve indicates that the solution is reached within a rea-

sonable number of generations. This confirms the method’s applicability to technically 

challenging components within engineering environments. 
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Figure 23. PR0005 3D solid model. 

 

Figure 24. PR0005 results after execution of GA. 

Overall, the visual and quantitative results presented in Figures 11–24 confirm the 

effectiveness and versatility of the proposed GA-based reconstruction framework across 

a wide spectrum of geometric complexities. The method consistently produced topologi-

cally valid and geometrically accurate wireframe models, demonstrating strong potential 

for integration into automated CAD pipelines and reverse engineering workflows in both 

academic and industrial contexts. 

5. Discussion 

The experimental results demonstrate that the GA is highly effective in solving prob-

lems involving simple geometries such as PR0003 and also PR0007 with cylindrical sur-

faces. Even under the most constrained parameter settings, the algorithm consistently con-

verged to the correct solution within a few iterations. For instance, for the PR0003 model, 

the GA found the exact solution in just two seconds. The same applies to PR0007, which 

is a part with relatively simple cylindrical surface geometry. 

During the testing of other models, it was noticed that this GA is very effective for 

the models with a number of vertices between 15 and 25 and with a number of edges 

between 20 and 35. In these intervals, the GA converges to the accurate solution in a single 

run. During testing mutation was always at 10% rate. Since the results for PR0003 did not 

change, testing with parameter group V was deemed unnecessary. For more complex 

parts, such as PR0004, it is clear that an accurate solution is always obtained, but across 

several runs, which leads to an increased runtime. 

The execution time of the GA for complex parts is longer, which also depends on the 

amount of computation, but this is not a problem regarding the characteristics of modern 

computers. For example, for PR0004, the ADj matrix is 40 × 40, and intensive calculations 
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are performed on it at all times. In this case, as well as in other more complex parts that 

were tested, for the number of l vertices greater than 25, solutions are always obtained 

where the geometric consistency is not violated and the solution does not go beyond the 

set of solutions represented by the pseudo-wireframe model. Also, no new surfaces are 

created, and there is no edge overlapping, meaning that individual candidate vertices re-

main in the solution because all constraints are satisfied and they do not create new shapes 

in the model. 

For typical industrial parts with cylindrical shape, such as the component shown in 

Figure 23, the execution time is observed to be longer. However, the correct solution is 

obtained after several GA iterations. This demonstrates that the proposed method effec-

tively handles both simpler and more complex models with cylindrical surfaces. 

It should be noted that even the variation of mutation did not lead to convergence to 

the exact solution, which is also the nature of GA, while for simpler models it converges 

very quickly to the exact solution because the search space is smaller. 

Considering the test results presented in Tables 5–7, and the relationship between the 

complexity of the part being reconstructed and the GA’s execution time, where this time 

encompasses all GA executions until a valid solution is obtained, it is clear that the pro-

posed GA is most efficient with the second group of parameters for simple and moder-

ately complex geometry parts. During intensive testing of the proposed algorithm, it was 

also shown that for highly complex geometry parts, the best parameters are from groups 

IV and V. In all tests conducted to date, the geometry of the part has been consistently and 

accurately recognized, even for complex components; however, the number of GA execu-

tions reached up to eight times, with execution times extending up to 180 s. Given that an 

accurate solution was consistently obtained, this represents an exceptionally favorable fi-

nal testing outcome. 

In contrast to previous GA-based approaches—which typically rely on raster prepro-

cessing or predefined libraries of geometric primitives—the proposed method employs a 

mathematically rigorous topological framework that supports the reconstruction of a 

broader range of 3D models, including those containing curved and free-form elements. 

By leveraging a connectivity-based representation rather than heuristic feature extraction, 

the approach enhances model generality and eliminates dependence on prior shape clas-

sification. As summarized in Table 10, this results in improved scalability, increased ro-

bustness across diverse input data, and a significant reduction in preprocessing complex-

ity. 

Table 10. Comparison with GA-based 3D reconstruction methods. 

Study Input Type Shape Support Method Basis 
Optimization 

Target 
Geometry Type 

Independence 
DXF (Vector) 

Support 
Topological 

Model 
Chen & Feng 

[15] 
Raster image 

Prismatic + 

curved 
Contour extrac-

tion 
Projection con-

sistency 
✅ Yes No Full 

Gorgani & Pak 

[6] 
2D drawings 

Only prismatic 

shapes 
B-Rep recon-

struction 
Face alignment No No Partial 

Siddique & Za-

karia [17] 
Raster image Simple shapes Shape features 

Edge position, 

face equaliza-

tion 
No No No 

This paper DXF (vector) 
Prismatic + 

Curved 
Symmetric ma-

trices 

Vertex to Ver-

tex–edge topol-

ogy 
Yes Yes Full 

Although some of the limitations of the proposed methodology were briefly outlined 

in Section 3.1, they are revisited and elaborated here to ensure clarity and completeness. 
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This dedicated discussion aims to contextualize the current scope of the model and high-

light avenues for future enhancement. 

First, the method assumes that the input 2D engineering drawing is complete and 

composed of exactly three orthographic projections—front, top, and left—conforming to 

the ISO-E (European) projection standard, as illustrated in Figure 2. These views are ex-

pected to encapsulate all essential geometric information, including both visible and hid-

den edges. At the present stage, the framework does not support sectional views, auxiliary 

projections, or drawings that are incomplete. 

Second, the approach presumes that all orthographic views are rendered at a con-

sistent 1:1 scale, thereby enabling the direct use of vertex coordinates for 3D reconstruc-

tion. A global scaling factor may be optionally applied, but the model does not yet incor-

porate dimensioning metadata or tolerancing information embedded in annotations. 

Third, although DXF files are advantageous for extracting basic geometric entities 

such as lines and arcs, they lack topological information—i.e., they do not provide an ex-

plicit mapping of entity connectivity or view separation. Therefore, a custom segmenta-

tion procedure is required to distinguish between projections and reconstruct their inter-

nal structure. 

Additionally, the method relies on the recognition of basic geometric primitives (e.g., 

LINE, ARC) to infer edge shapes. In its current form, the model does not support complex 

freeform surfaces or non-cylindrical geometries. Interpretation of such features would re-

quire integrating advanced geometric representations and curvature analysis tools and 

mathematical tools for curvature and surface analysis. 

It is important to emphasize that these constraints do not compromise the core of the 

methodology, which is fundamentally based on a binary vertex-to-vertex topological 

model. The approach remains general and extensible, and these limitations may be ad-

dressed through future enhancements, such as the incorporation of geometric reasoning 

modules or hybrid shape descriptors. Therefore, the challenges identified here also repre-

sent promising directions for future research and model refinement. 

6. Conclusions 

In this paper, a method for encoding 2D engineering drawings using symmetric con-

nectivity matrices is presented. These matrices significantly facilitate the formation of a 

mathematical model and enable the problem of recognizing 3D models from 2D engineer-

ing drawings to be reduced to an integer linear programming problem. A GA has been 

developed, successfully recognizing 3D models of both polyhedral shapes and models 

with cylindrical surfaces. For testing purposes, a fully independent software platform was 

created, covering the entire process from generating symmetric adjacency matrices from 

orthogonal projections to part recognition. This platform includes real-time graphical vis-

ualization of the recognition process and allows testing of parts with various geometric 

shapes without additional adjustments. 

The advantage of the proposed model lies in its simplicity, as the problem of recog-

nizing a 3D wireframe model is reduced to the problem of linear integer programming. 

The model does not necessarily require a DXF format as a starting point, as it is designed 

to accept, with minor modifications, any other vector format used for engineering draw-

ings. So far, it has only been tested on polyhedral shapes, and on simpler cylindrical ones, 

although theoretically, it should also work with all shapes since it is based on edges, in-

cluding curved edges that are not straight lines. 

To the best of our knowledge, no previous work in the available literature has intro-

duced a 3D reconstruction model that combines symmetric connectivity matrices with 

GA. Furthermore, studies [16–19] that utilize GA for geometry recognition generally 
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achieve lower success rates in 3D reconstruction and are predominantly limited to poly-

hedral shapes. 

However, one of its shortcomings is that it does not recognize surfaces but only the 

wireframe model, and has not yet been tested on parts with highly complex geometry, 

which, in addition to polyhedral shapes and cylindrical surfaces, also include other types 

of surfaces. 

Future research directions involve improving the GA process, potentially selecting 

other crossover and mutation operators, redefining weight coefficients and methods for 

penalizing poor individuals, and possibly hybridizing GA with other optimization algo-

rithms to achieve even better results with polyhedral shapes and cylindrical surfaces. Ad-

ditionally, intensive testing and possible modifications are required to recognize other 

non-cylindrical surfaces. 

This solution, as conceived, can serve as a foundation for the complete automation of 

the 3D model recognition process from engineering drawings, or as an initial phase to-

ward the full integration of CAD/CAM activities. 

In future work, we aim to expand the proposed methodology beyond wireframe re-

construction, with the goal of achieving fully automated generation of solid models di-

rectly from standard technical documentation. This advancement would facilitate the 

practical integration of the method into industrial CAD environments, thereby enhancing 

its applicability in real-world engineering workflows. 

Moreover, the utilization of symmetric adjacency matrices establishes a geometry-

independent framework that enables the method to process both linear and nonlinear 

edges with equal robustness. By prioritizing topological relationships over explicit surface 

definitions, the approach circumvents limitations commonly associated with specific part 

geometries. This abstraction not only improves the generalizability of the system but also 

creates opportunities for further extension into complex design domains, including 

freeform surfaces and non-standard projection views. Such developments would signifi-

cantly broaden the scope of the method and reinforce its relevance in advanced CAD and 

reverse engineering applications. 
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