
Festival kvaliteta 2025
ISBN 978-86-6335-122-6

1
Corresponding author: Gligorije Mirkov
Email: gmirkov@sbb.rs

Gligorije Mirkov 1

Research paper

DOI 10.24874/QF.25.077

APPLICATION OF AGENTS IN FMS: AN
EDUCATIONAL APPROACH

Abstract: This paper explores the application of multi-agent
systems (MAS) in an educational environment through the
modeling and simulation of a flexible manufacturing system
(FMS). The focus is on developing models and programming
agents for managing CNC machines, a robot with a peripheral
axis, and part manipulation. Students are guided through
recommended exercises aimed at optimizing operations and
handling parts. Using the Python programming language,
students develop code that enables both simulation and real-
world application in laboratory conditions. Additionally,
through RFID part identification and API communication, the
system allows for automation and intelligent control of
manufacturing processes. This approach fosters the development
of Industry 4.0 concepts in education and enhances students'
practical skills in the domain of digital manufacturing.

Keywords: Multi-agent systems, FMS, CNC, robotics, DNC,
OPC UA, RFID, education, Industry 4.0

1. Introduction

In modern manufacturing systems, the
concept of agents is increasingly taking
center stage due to its ability to enable
flexibility, autonomy, and intelligent
management of complex processes. Agents
are software entities that act according to
defined objectives, capable of independently
making decisions and executing actions based
on data received from their environment. This
approach offers numerous advantages in
industrial applications, where complex tasks,
variable working conditions, and the need for
increased efficiency are frequently
encountered.

Flexible manufacturing systems (FMS) are a
key component of modern industrial plants,
where agents are used to control and
coordinate machines, robots, and transport
systems, enabling timely adaptation to
changes in production. In Industry 4.0, which
emphasizes digitalization, interconnectivity,

and data utilization, the role of agents
becomes even more significant. Intelligent
agents leverage artificial intelligence (AI) and
machine learning (ML) techniques to process
real-time data, make quick decisions, and
improve processes in increasingly complex
environments.

This paper examines the characteristics of
agents and their application in FMS,
emphasizing the development of intelligent
agents capable of adapting to different
conditions and tasks. Special attention is
given to machine learning techniques, which
enable agents to improve performance
through experience, optimize processes, and
reduce the need for human intervention.

1.1. Agent-Based Manufacturing
Architectures

With the rapid expansion of computing
technology, network and communication
structures, information exchange, and sensor

415

development, conditions have been created
for the development of agent-based control
architectures. In most studies, including this
one, knowledge and experiences related to
agents have been utilized, with a particular
focus on their attributes, such as autonomy,
self-responsibility, and self-recovery, making
these technologies fundamental to future
manufacturing systems (van Dyke Parunak,
1998).

An agent-based control architecture is
characterized by a decentralized system
structure with the accelerated growth of
computer technology, synchronization,
communication, and information exchange,
which serve as the foundation for further
advancements. The software system, agent-
based, is seen as a framework for
computation and software development.

(Russell, S., & Norvig, P. , 2010) categorize
agents into four types:

Simple reflex agents select
actions based on basic perception
without considering past
observations.
Model-based reflex agents
incorporate a model of their
environment, tracking changes over
time.
Goal-based agents enhance
control by introducing goals that
define desirable situations.
Utility-based agents extend goal-
based agents by assigning a utility
measure to different outcomes.

Since agent-based systems lack a universally
accepted definition, there are generally two
abstractions (Monostori, L., Váncza, J., &
Kumara, S. R. T., 2006):

An agent is a computing system
operating in a dynamic environment,
capable of exhibiting autonomous
and intelligent behavior.

An agent may have an environment
that includes other agents, forming a
multi-agent system (MAS).

According to Monostori, Váncza, & Kumara
(2006), agents are characterized by the
following key aspects:

Agents act on behalf of their
designer or user to fulfill a specific
purpose.
Agents are autonomous, meaning
they control their internal state and
behavior.
Agents demonstrate intelligence,
ranging from fixed rule applications
to reasoning, planning, and learning.
Agents can be heterogeneous.
Agents interact with their
environment and with other agents
in a community.
Ideally, agents are adaptive and
capable of adjusting their behavior
to environmental changes without
intervention from their designer.

From these characteristics, it can be
concluded that the fundamental property of
an agent is its ability to make independent
decisions and react to environmental changes.
In many models, agents may not possess all
these characteristics, as this depends on the
nature and complexity of the system being
modeled. The rules governing agent behavior
can range from simple to highly complex,
depending on the volume and type of
information available for decision-making.

Agents exhibit built-in behaviors that enable
them to make independent decisions; they are
not passive but react to inputs from other
agents or the environment to achieve
predefined objectives. Each agent has clearly
defined boundaries, distinguishing its
attributes from shared system attributes.
Agent behavior can be determined by simple
behavioral rules or by highly complex
adaptive responses. Over time, agents
transition through different states, where the
state of an agent at a given moment is defined
by its attributes. The state of an agent-based
model depends on the individual states of all
agents in the system and the state of the
environment.

416

Agents engage in dynamic interactions with
other agents, which causally define their
behavior. They are characterized by built-in
communication protocols for interacting with
other agents. Agents can manage resources or
acquire resources through interactions with
other agents, further distinguishing them
from one another. Multi-agent systems create
a network of agents that collaborate to
achieve shared goals.

The process of building an agent-based
model typically follows these fundamental
phases:

Formulating research questions
clearly defining the problem and
objectives.
Hypothesis development
establishing hypotheses for specific
processes and structures.
Defining model structure
creating a document describing the

Model implementation
transforming the conceptual model
into a mathematical or
computational representation.
Analysis, testing, and validation
refining and verifying the model's
accuracy.

In addition to these fundamental phases, other
critical steps in agent-based modeling include
defining agent behavior (from simple to
complex), identifying agent behaviors,
selecting the development platform and
strategy, acquiring necessary data, validating
agent behavior, and executing the model.

2. Agent Communication

Languages

Agent-based models can be implemented
using general-purpose programming
languages and tools or within environments
specifically designed for this type of
modeling. Each of these software modeling
approaches has distinct characteristics and
methods for addressing problems. One key
feature is communication, which requires
appropriate languages and communication
protocols such as:

ACL (Agent Communication
Language)
KQML (Knowledge Query and
Manipulation Language)
FIPA ACL (Foundation for
Intelligent Physical Agents)

Additionally, general-purpose programming
languages that support the development and
implementation of agent architectures can
also be used. The key characteristics of these
languages are outlined in Table 1.

Table 1. Characteristics of Specialized Agent Communication Languages
Specialized Agent
Communication

Languages
Characteristics

ACL

(A
ge

nt
C

om
m

un
ic

at
io

n
L

an
gu

ag
e)

- General Purpose: Designed for communication between agents in distributed systems.
- Inter-Agent Communication: Enables agents to exchange information, make requests,
provide offers, or execute actions.
- Standardized Performative Actions: Uses performatives such as "REQUEST,"
"INFORM," and "QUERY" to define communication intent.
- Formal Semantics: Messages in ACL have a well-defined structure with clear
semantics, ensuring comprehension of communication.
- Flexibility: Supports various types of communication, including requests, responses,
and negotiations.

417

KQML

(K
no

w
le

dg
e

Q
ue

ry

an
d

M
an

ip
ul

at
io

n
L

an
gu

ag
e)

- Knowledge Exchange: Designed for knowledge sharing in distributed environments.
- Abstract Communication Layer: Provides a high-level means of sending requests or
information between agents without focusing on their internal implementation.
- Performatives: Similar to ACL, it uses performatives such as "ASK," "TELL," and
"ACHIEVE" to express intentions like querying or issuing commands.
- Modularity: Supports communication independent of a specific application domain,
offering mechanisms for negotiation, task delegation, and knowledge exchange.
- Extensibility: Allows the integration of specialized protocols for different types of agent
interactions.

FIPA
ACL

(F
ou

nd
at

io
n

fo
r

In
te

lli
ge

nt
 P

hy
si

ca
l

A
ge

nt
s

-A
C

L
)

- Standardized Agent Language: Developed by FIPA as a standard for agent
communication.
- Performatives and Dialogues: Uses performatives such as "INFORM," "REQUEST,"
and "CONFIRM" to structure agent interactions.
- Well-Defined Semantics: Based on logical models (Beliefs, Desires, Intentions BDI).
- Support for Complex Interactions: Enables agents to conduct multi-step dialogues,
including queries, goal setting, and negotiations.
- Compatibility with Different Environments: Designed to be flexible and adaptable for
use in various agent-based systems and distributed environments.

Based on the previous information provided
in Table 1, the similarities/differences of
these languages are outlined.
ACL and KQML share similar characteristics
in terms of performatives and enabling
communication between agents, while FIPA
ACL is a more advanced and standardized
language with more precisely defined rules
for agent communication, emphasizing

interoperability and application in complex
systems.
Comparing the languages ACL, KQML, and
FIPA ACL with the Python programming
language, as presented in Table 2, requires
focusing on specific aspects, as Python is not
a direct agent communication language but
rather a general-purpose programming
language.

Table 2. Comparison of Specialized Languages with a General-Purpose Language (Python)
ACL, KQML, FIPA ACL Python

Purpose

Specialized for inter-agent communication
in multi-agent systems (MAS). Primarily
used for exchanging information, making
requests, and negotiating using
performatives like "REQUEST" and
"INFORM".

A general-purpose programming language used for
a wide range of applications, including MAS
development, backend programming, and data
science.

Language
Structure

These languages are highly abstract and
structural, focusing on performatives and
message semantics. Their sentences are
short and have clearly defined components
(sender, receiver, content, performative).
These languages themselves do not define
the logic of the agent's behavior, but rather
the method of communication.
Example of a KQML message:

(ask :sender AgentA :receiver
AgentB :content (temperature ?x))

Python is an imperative language used to express
the behavior of agents, algorithms, and other
functionalities. In Python, agents and their logic can
be implemented, while communication messages
such as ACL and KQML are just a part of the
functionality.
-Python implements message sending using
libraries such as pika for RabbitMQ1 or libraries for
multi-agent systems.
-Python code for an agent might look like this:
def send_message(agent, message):

agent.receive(message)

1 RabbitMQ is a software system for message exchange between different applications or
system components, allowing applications to communicate with each other through message
exchange without the need for a direct connection.

418

ACL, KQML, FIPA ACL Python

Communication
Specifically developed for decentralized
communication between agents.

Python does not have a built-in standard for agent
communication but can implement communication
protocols such as HTTP, TCP/IP, or specialized
MAS libraries like Spade and Jade.

Role in Multi-
Agent Systems

These languages represent the core of
communication between agents. The focus
is on enabling flexible and understandable
communication. They define how agents
communicate, exchange information, and
negotiate.

Python is a very flexible language that can be used
to build a complete multi-agent system. While
ACL, KQML, and FIPA ACL function as
communication languages, Python can implement
all aspects of agents, including logic, behavior, and
communication between agents, using these
languages or its own protocols.

Flexibility and
Extensibility

These languages are more narrowly
specialized and are used for specific
interactions. While they are flexible within
their domain, they do not support other
programming paradigms, such as object-
oriented programming, procedural, or
functional programming.

Python is a general-purpose programming language
that supports a wide range of programming
paradigms (procedural, object-oriented, functional).
It can be used for all stages of agent development
from behavior logic to communication and learning.

Libraries and
Ecosystem

These languages do not have direct
ecosystem support like Python. There are
implementations that enable their use in
specific systems.

Python has a rich ecosystem with numerous
libraries, including tools for artificial intelligence,
machine learning, multi-agent systems (e.g., Spade,
Jade), as well as support for protocols that enable
agent communication.

Based on the previous discussion, ACL,
KQML, and FIPA ACL are specialized
languages for agent communication in multi-
agent systems, while Python is a multi-
purpose programming language that enables
the implementation of agents, their logic, and
communication protocols, with the ability to
use these languages or, on the other hand,
develop its own communication tools.

The choice of the appropriate programming
language is crucial for easier mastery of the
basics and further progress. Learning about
agents is a complex field that relies on the
principles of artificial intelligence, distributed
systems, and automation. Therefore, it is
important to choose a language that strikes a
balance between simplicity and power, so
that beginners can effectively learn and apply
concepts in real-world scenarios.

The programming language should be
accessible, with extensive documentation and
support for agents, but also flexible enough to
implement different types of agents, such as
autonomous, reactive, or intelligent agents.
Furthermore, it is important that the chosen
language is relevant for the industry and
research projects in the field of artificial
intelligence and Industry 4.0, so that the tools

learned can be easily applied in a professional
environment.

For these reasons, Python emerges as a
logical choice for the first language in agent
programming. The key features of Python are
outlined in the previously mentioned Table 3.
Due to all these factors, Python is an
excellent choice for beginners in agent
programming, as it allows for a gradual
transition from simple tasks to more complex
challenges.

2.1. Studying and Practicing Agent
Programming

Studying and practicing agent programming
for future programmers is becoming
increasingly significant, especially in the
context of Industry 4.0, which relies on the
digitalization and automation of production
processes. Multi-agent systems play a key
role in this context because they enable
decentralized management, autonomous
decision-making, and adaptive behavior in
complex environments. These systems
consist of agents that can be physical entities,
such as machines and robots, or software

419

entities that communicate, negotiate, and
coordinate activities to achieve set goals.

In Industry 4.0, smart factories and flexible
manufacturing systems require dynamic
adaptability, and agents can enhance system
performance through autonomous
management, self-organization, and real-time
data-driven learning. In practice, agents can
manage the operation of CNC machines,
industrial robots, logistics systems, and
communication between these components.
Programming agents requires an
understanding of distributed systems,
artificial intelligence (AI), and
communication protocols like ACL, KQML,
and FIPA-ACL, which are skills that are
essential for working in modern industrial
environments.

Practicing agent programming allows
students to develop the necessary
competencies to design and implement such
systems, including the ability to design
autonomous systems, integrate artificial
intelligence, and optimize the operation of
industrial systems. Additionally, practicing
agent programming provides practical
knowledge of tools such as Python,
RabbitMQ, and other software tools, making
those trained in this field more competitive in
the labor market, which is increasingly
oriented towards digital transformation and
the implementation of Industry 4.0 concepts.

Agent-based architectures have been
developed for various types and purposes in
manufacturing

Table 3. Key Characteristics of Python Language
Python Characteristics Explanation

Simplicity and Readability
Python is known for its simple syntax, resembling natural language,
making it ideal for beginners. This facilitates a quick understanding
of basic programming concepts, including agent implementation.

Library Support

Python has a highly developed standard library and numerous
additional libraries that support agent development. For example,
libraries such as spaCy for natural language processing, TensorFlow
and scikit-learn for machine learning, and Pykka for implementing
the actor model make it easier to write complex agent-based systems.

Support for Agents
Python supports procedural, object-oriented, and functional
programming, allowing users to explore different programming
paradigms, which is beneficial for agent development.

User Community
Python has a vast community of users and developers, providing
abundant resources, tutorials, forums, and libraries. Beginners can
easily find answers and guidelines for agent development.

Integration with Distributed
Systems

Python offers tools for easily setting up distributed systems, which is
useful when working with agents in environments such as FMS
(Flexible Manufacturing Systems). For instance, Python integrates
seamlessly with RabbitMQ, enabling efficient message queue
management.

Industry Adoption

Python is widely used in Industry 4.0 for applications related to
automation, robotics, machine learning, and the Internet of Things
(IoT). Python skills can be easily transferred to Industry 4.0
applications, facilitating the learning and implementation of agents in
real industrial systems.

Agents in FMS represent a key technology
for managing and optimizing manufacturing
processes. Agents are autonomous software
entities that operate in dynamic environments

and exhibit intelligent behavior, including
decision-making, planning, and learning.

The benefits of using agents include
increased flexibility, autonomy, and
adaptability to environmental changes. These

420

systems enable decentralized management,
reducing the need for a centralized control
system and allowing for faster and more
efficient responses to changes in the
manufacturing process.

2.2. Future Vision of Agent-Based
Manufacturing in FMS

The future of flexible manufacturing systems
(FMS) based on agents promises numerous
advantages and innovations in the industry.
Here are some key points that could shape the
future of agent-based FMS:

Increased Flexibility and Adaptability

Agents can quickly respond to changes in
production requirements, adapting to
different production orders and machine
configurations, providing dynamic
adaptability. They can make real-time
decisions based on current conditions,
reducing the need for human intervention and
autonomously managing processes.

Increased Autonomy

Agents can take over more tasks that
previously required human intervention, such
as production planning, quality monitoring,
and maintenance. Machines equipped with
agents can detect and resolve problems
without external service intervention.

Integration with the Internet of Things
(IoT)

Integrating agents with IoT sensors enables
continuous data collection and process
optimization based on real-world conditions
in the production environment. Real-time
data analysis allows for failure prediction and
preventive machine maintenance.

Advancement of Collaborative Robots
(Cobots)

Agents enable collaborative robots to better
understand and interact with human workers,
improving safety and efficiency in shared
workspaces. Cobots will communicate and
share information with other agents and

machines, leading to better coordination and
synergy.

Artificial Intelligence and Machine
Learning

Agents will leverage AI and machine
learning to continuously improve
performance, analyzing historical data and
optimizing processes. By analyzing market
trends, agents will be able to predict demand
and adjust production accordingly.

Decentralized Control

Agent-based FMS allows for decentralized
control, where each agent manages a specific
aspect of the system, reducing the risk of
system failures due to a central control
malfunction. This decentralized structure
makes the system more resilient to changes
and disruptions, as agents can take over the
functions of other agents when necessary.

Resource Optimization

Agents can optimize the use of resources
such as energy, materials, and time, reducing
costs and increasing efficiency. Precision
control of production processes minimizes
waste, contributing to sustainability and
environmental protection. The future of
agent-based FMS promises significant
improvements in efficiency, flexibility, and
autonomy in manufacturing systems. These
technologies enable companies to respond
faster to market changes, reduce costs, and
enhance product quality, gaining a
competitive advantage in the global market.

Agents in flexible manufacturing cells (FMC)
play a crucial role in managing and
optimizing production processes in the
context of Industry 4.0. Industry 4.0, as a
smart factory concept, integrates advanced
technologies such as the Internet of Things
(IoT), artificial intelligence (AI), and big data
with traditional manufacturing processes.
This advancement is reflected in:

Autonomy and decentralization
Flexibility and adaptability
Optimization and efficiency
Predictive maintenance
Coordination and collaboration

421

Improved decision-making

Through these capabilities, agents in FMC
play a key role in realizing the vision of
Industry 4.0, enabling smart, adaptive, and
highly efficient manufacturing systems that
can meet the challenges and demands of the
modern market.

2.3. The Role of Agents in FMS

Agents in flexible manufacturing systems
(FMS) play a crucial role in the Industry 4.0
management model, which focuses on
creating smart factories through the
integration of digital and physical systems.
Industry 4.0 introduces advanced
technologies such as IoT, AI, and big data
analytics into traditional manufacturing

management aspects:

1. Interaction and IoT: Agents enable
continuous communication between various
machines, sensors, and devices within the
manufacturing system. Using IoT, agents
collect and share real-time data, ensuring
transparency and efficiency in resource
management. Agents monitor operations in
real-time, quickly detecting and resolving
issues, reducing unplanned downtimes, and
increasing overall productivity.

2. Artificial Intelligence and Analytics:
Agents utilize AI algorithms to analyze
sensor data, predicting failures before they
occur (predictive maintenance). AI-driven
data analytics help optimize production
processes by identifying bottlenecks,
optimizing workflows, and minimizing
waste.

3. Decentralized Decision-Making: Each
agent makes independent decisions based on
local data and global objectives, reducing the
need for centralized control. A decentralized
structure allows the system to scale
efficiently by adding new agents and
resources without major changes to the
central management system.

4. Collaboration and Interaction: Multi-
Agent Systems (MAS) collaborate to
coordinate complex tasks (Wooldridge,
2009). For instance, a transportation agent
can coordinate with a production agent to
ensure timely material delivery, reducing
delays and improving efficiency. Resource
management agents optimize the allocation of
machines, personnel, and materials according
to current production needs (Jennings &
Wooldridge, 1998).

5. Flexibility and Adaptability: Agents can
dynamically adjust production processes in
real-time, responding to shifts in demand or
resource availability.

Machine learning techniques enable agents to
continuously improve their performance,
adapting to new conditions and datasets.

6. Interoperability and Standardization:

Agents use standardized communication
protocols, facilitating seamless integration of
different systems and technologies within a
smart factory. Integration with ERP
(Enterprise Resource Planning) systems
enables synchronization between
manufacturing processes and business
operations (Vazquez & Cecilio, 2013).

Agents in FMC significantly enhance
production management within Industry 4.0.
Through autonomy, flexibility, analytics, and
collaboration, they enable intelligent and
efficient manufacturing systems capable of
adapting to rapidly changing market
conditions and demands. This results in
increased productivity, reduced costs, and
improved product quality (Paulo et al., 2015).

2.4. Agents and Machine Learning
Capabilities

Agents in manufacturing systems can possess
learning capabilities, particularly through
machine learning (ML). In intelligent agent
systems, ML enables agents to analyze
environmental data, adapt their behavior, and
optimize decisions based on experience. This
learning capability is crucial for the

422

development of advanced autonomous
systems, such as those used in Industry 4.0,
FMS, robotics, and other complex industrial
systems. One of the fundamental questions
that arise when studying agents is how they
learn, in what way, and through which
learning stages they progress:

1. Data Collection: Agents gather data from
the environment using sensors, user
interactions, or other sources.
2. Analysis and Learning: Using various ML
algorithms (supervised learning,
unsupervised learning, deep learning, etc.),
agents analyze data, identify patterns, and
derive insights for performance improvement.

3. Behavior Adaptation: Based on analysis,
agents adjust future actions for better
outcomes.
4. Continuous Improvement: As agents
interact more with their environment, their
learning ability enhances, leading to more
precise and efficient operations.

Examples of agent applications and their
impact on the process itself can be observed
through:
- Process Optimization: Agents in FMC can
learn how to optimize task allocation among
CNC machines and robots.
- Failure Prediction: Learning agents can
predict potential failures, enabling proactive
maintenance and minimizing downtime.

Table 4. Classification of Agents in FMS
Division Agents in FMS

A
cc

or
d

in
g

to
 t

he
 f

un
ct

io
n

Production
agents

- Agent machines: Manage the operation of specific machines (eg
CNC machines, 3D printers).
- Robot Agent: They control the work of industrial robots that
perform tasks such as material handling, welding, assembly

Transport
agents

- Internal logistics agent: They manage the transportation of
materials and products within the factory (eg autonomous vehicles,
conveyor belts).

Planning
agents

- Production planning agent: They plan the production schedule,
including the sequence of operations and the allocation of
resources.
- Maintenance planning agent: They plan and coordinate preventive
and corrective maintenance of machines and equipment.

Supervisory
agents

- Quality control agent: They monitor product quality and identify
defects.
- Safety Agent: They monitor the safety aspects of the production
process and ensure compliance with safety standards.

A
cc

or
d

in
g

to
 t

he
 le

ve
l o

f
co

nt
ro

l

Operational
agents

- Act at a lower level of control and manage specific tasks and
operations (eg control of machines, execution of production steps).

Tactical
agents

- Make decisions at the intermediate level of control, such as
optimization of production lines, scheduling of workers, and
coordination between different operating agents.

Strategic
agents

- Operate at a high level of control, managing long-term planning,
optimization of resources at the plant-wide level, and making
strategic decisions.

423

A
cc

or
d

in
g

to
 t

he
 w

ay
 o

f
in

te
ra

ct
io

n

Reactive
agents

- They react to events in real time without prior planning. They are
suitable for solving problems quickly and adapting to changes.

Proactive
agents

- They plan their actions in advance based on the prediction of
future events and goals. They are focused on optimization and
efficiency.

Hybrid agents
- They combine reactive and proactive characteristics, adapting to
the situation and combining quick response and long-term
planning.

A
cc

or
d

in
g

to

th
e

le
ve

l o
f

in
te

ll
ig

en
ce Simple agents

- Perform basic tasks with minimal intelligence and interaction.
They are suitable for routine and repetitive tasks.

Intelligent
agents

- They use advanced algorithms for decision making, learning and
optimization. They can use artificial intelligence and machine
learning to adapt and improve performance.

A
cc

or
d

in
g

to

ap
p

lic
at

io
n

d
om

ai
ns

Specialized
agents

- They are focused on specific tasks or processes in production (eg
welding agents, assembly agents).

Generalized
agents

- They can be used for different tasks and processes, adapting to
different requirements and contexts.

A
cc

or
d

in
g

to

th
e

in
te

ra
ct

io
n

w
it

h
 t

he

en
vi

ro
nm

en
t Physical

agents
- Directly manage physical devices and machines in a production
environment.

Virtual agents
Manage information, data, and digital processes, such as
production planning, data analysis, and resource optimization.

Machine, enabling proactive maintenance.

- Improving product quality: Through the
analysis of output data, agents can learn how
to enhance the quality of processing or
assembly.
This flexibility and learning capability make
agents particularly suitable for complex and
dynamic environments, such as industrial
systems. Machine Learning (ML) within
FMS can significantly improve system
efficiency and performance. Here are some
examples of how ML is used in an FMS
environment:

Production Scheduling Optimization

FMS agents utilize machine learning to
optimize production schedules based on
variables such as machine availability,
processing time, or task priorities. Algorithms
like genetic algorithms or reinforcement
learning can be used to help agents learn how

to efficiently allocate tasks to CNC machines
or robots.

- Example: If a scheduling agent notices that
one machine is frequently overloaded while
another remains underutilized, it can adjust
the schedule to distribute processing loads
more evenly.

Predictive Maintenance of Machines

In FMS, ML models such as neural networks
or unsupervised learning can analyze sensor
data from CNC machines and robots to
predict failures before they occur. These
systems collect data such as vibrations,
temperature, or machine operating hours, and
agents learn patterns that indicate potential
failures.
- Example: Based on changes in the vibration
frequency of a CNC machine, an agent can
predict the need for maintenance or
replacement of a specific component or
cutting tool.

424

Product Quality Control

Agents use ML to analyze product quality
data during or after processing. Classification
algorithms can be applied to detect defects in
parts during manufacturing. Cameras and
sensors collect data, and agents learn to
recognize deviations from standard quality.
- Example: Deep learning algorithms can
analyze images of products during CNC
machining, identifying micro-defects or
surface irregularities that would otherwise go
unnoticed.

Energy Resource Optimization

Machine learning can optimize energy
consumption in FMS cells by predicting the
required energy based on machine load and
processing time. Supervised learning can be
used to optimize energy resources, reducing

- Example: Agents learn when it is optimal to
reduce speed or put machines into standby
mode when tasks are less demanding.

Intelligent Robot Navigation

Robots in FMS use ML algorithms for
autonomous navigation and path
optimization. Reinforcement learning
algorithms allow robots to learn the best
routes for transporting parts between CNC
machines and storage areas, minimizing
unnecessary time and energy losses.

Example: If a robotic arm moves between
machines and storage, agents can adjust the
path in real-time based on congestion or other
obstacles.

Adaptive Machine Programming

ML agents learn how to adapt CNC code
(e.g., G-code) in real time to optimize
machining processes for different materials or
complex geometries, enabling more flexible
and autonomous manufacturing.

- Example: When machining hard materials,
an agent can adjust spindle speed or feed rate
based on real-time feedback, optimizing
machining quality and reducing tool wear.

Machine learning provides FMS systems with
a high degree of flexibility, increases
productivity, and enables adaptation to
dynamic changes in industrial environments.

2.5. Student Exercises

Students can practice writing different types
of agents in Python, as it is a flexible
language with a rich set of libraries and tools
for working with agents. Table 5. provides
examples of several types of agents that
students could implement in Python.
Similarly, Table 6. presents more complex
types of agents for exercises, such as MAS,
negotiation agents, and planning agents. The
methodological approach to modeling and
programming agents is given in Table 7.

Table 5. Types of Agents Students Can Implement in Python
Types of Agents Students Can Implement in Python
Agent Type Description Example Libraries
Simple
Reflex
Agents

These agents act based on current
perception without considering
history.

A robot that moves forward
until it encounters an
obstacle, then turns.

if-else structures, basic
control flow in Python.

Model-
Based
Reflex
Agents

These agents use an internal model
of the world to make decisions
based on both current and past
perceptions.

A robot navigating a maze
using previous positions to
avoid dead ends.

collections for data
structures like deque or
set for state tracking.

Goal-Based
Agents

These agents have defined goals
they try to achieve.

A robot searching for an exit
from a maze using search
algorithms like A* or
Dijkstra.

heapq for priority
queues, networkx for
graph-based algorithms.

425

Utility-
Based
Agents

These agents make
decisions based on the
utility of different
actions.

A robot selecting the most optimal
path to a goal while considering
factors like energy consumption, time,
and safety.

numpy for numerical
operations and utility
calculations.

Learning
Agents

These agents improve
their performance
through experience.

A robot using Q-learning or deep
learning for navigation in a complex
environment.

scikit-learn, tensorflow,
pytorch for implementing
ML algorithms.

Table 6.
Challenging Agent Implementations
Agent Type Description Challenges Example Libraries

Multi-Agent
Systems
(MAS)

Systems involving
multiple interacting
and coordinating
agents.

Synchronizing
agents, agent
communication,
conflict avoidance.

A traffic control
system where
multiple agents
(vehicles)
coordinate
movements to
prevent collisions.

mesa for multi-agent
modeling,
multiprocessing for
parallel execution.

Negotiation
Agents

Agents that negotiate
with each other to
achieve common
goals.

Developing
negotiation strategies,
implementing
communication
protocols.

Agents negotiating
resource allocation
in a production
system.

pydispatch for inter-
agent communication.

Planning
Agents

Agents that use
complex algorithms
to plan sequences of
actions leading to
goal achievement.

Implementing
planning algorithms,
optimizing plans.

A robot planning a
sequence of actions
to assemble a
product.

pyeda for working
with logical formulas,
pddlpy for planning
domain modeling.

Table 7. Methodological Approach to Exercises in Modeling Different Agent Structures
Agent Type Task

Simple Reflex Agents
Start with writing simple reflex agents to understand basic principles of

state and action management.

Model-Based Reflex Agents
Extend the agent to use an internal world model, which is a natural step

toward more complex agents.

Goal-Based Agents
Introduce goals and search algorithms so agents can plan their actions

toward defined objectives.

Utility-Based Agents
Add the concept of utility to enable agents to make decisions that

optimize specific criteria.

Learning Agents (Machine
Learning)

Experiment with basic machine learning techniques to enable agents to
learn from experience.

Multi-Agent Systems
Finally, transition to complex systems involving multiple agents that

cooperate and communicate with each other.

3. Example of a Reflex Agent in
FMC/FMS

3.1. Proposal for Getting Started

For a student who wants to start practicing,
the approach given in Table 5. is
recommended.

For each of these phases, there are numerous
resources and libraries in Python that can
help students gradually develop their skills
and understanding of agent-based systems.

426

Scenario: Managing Transport Between
Machines

to manage the robotic transport system (e.g.,
SCORBASE-4u) between CNC machines
(e.g., PCTURN55 and PCMILL55). The
reflex agent will respond to the machine's
state and take actions based on simple rules.

Applied Rules:
If a machine has completed
processing, the part needs to be
transported to the next machine.
If a machine has not finished
processing, the agent waits until
processing is complete.

Pseudo-Code for the Reflex Agent in Python:

class ReflexAgent:
def __init__(self):

self.machine_status = {"PCTURN55": "busy", "PCMILL55":
"idle"} # Current status of machines

self.part_clamped = False # Track if the part is clamped or not

def perceive_environment(self):
Get the current status of the machines (could be from sensors

or API)
return self.machine_status

def make_decision(self, status):
Simple reflex rules based on the current state of machines
if status["PCTURN55"] == "done" and self.part_clamped:

 self.release_part("PCTURN55")
 self.transport_part("PCTURN55", "PCMILL55")
 self.clamp_part("PCMILL55")

elif status["PCMILL55"] == "done" and self.part_clamped:
 self.release_part("PCMILL55")
 self.transport_part("PCMILL55", "PCTURN55")
 self.clamp_part("PCTURN55")

else:
 print("Both machines are busy. Waiting for a machine to
finish.")

def transport_part(self, from_machine, to_machine):
Perform the transport operation (simplified)
print(f"Transporting part from {from_machine} to

{to_machine}.")
Update machine statuses after transport
self.machine_status[from_machine] = "idle"
self.machine_status[to_machine] = "busy"

def clamp_part(self, machine):
Simulate clamping the part in the machine
print(f"Clamping part in {machine}.")
self.part_clamped = True

def release_part(self, machine):

427

Simulate releasing the part from the machine
print(f"Releasing part from {machine}.")
self.part_clamped = False

Instantiate and run the agent
agent = ReflexAgent()
current_status = agent.perceive_environment()
agent.make_decision(current_status)

This simple reflex agent reacts only to the
current state of the machine without
considering previous actions.

3.2. Explanation of the Reflex Agent's
Operation

The agent first perceives the current state of
the machines ("busy" or "idle"), which falls
into the domain of perception.
Based on the current state, the agent makes
decisions. If a machine has completed its
task, the agent transports the part to the next
machine, which is considered a decision-
making process.
The agent then executes the transport step
and updates the status of the machines.

The limitations that an agent designer must
consider when designing an agent include the
fact that a reflex agent does not remember
previous states and does not learn from
experience. It reacts solely to the current
situation, which can be a limiting factor in
more complex scenarios, such as prediction
or process optimization based on historical
data.

In the given example of a reflex agent for
managing transportation between CNC
machines, the clamping and releasing of the
workpiece are not directly addressed. This
aspect is crucial in any manufacturing
process and usually requires an additional
step to control the clamping systems (vises,
jaws, or hydraulic systems) on CNC
machines or robots.

To complement this example, we can include
functions for releasing and clamping the
workpiece during transport. These operations
would be part of a broader control system
that includes CNC machine and robot
management, ensuring that the agent properly
secures and releases the workpiece before
and after transport.

For these reasons, we add functions for:
Clamping the workpiece on the
CNC machine before machining.
Releasing the workpiece before
robot transport.

This is implemented as part of the program
that is inserted into the previously written
section of the reflex agent program.

Modified Reflex Agent Code with Clamping
and Releasing Functions:

def clamp_part(self, machine):
Simulate clamping the part in the machine
print(f"Clamping part in {machine}.")
self.part_clamped = True

def release_part(self, machine):
Simulate releasing the part from the machine
print(f"Releasing part from {machine}.")
self.part_clamped = False

This extended version of the reflex agent
incorporates clamping and releasing
operations, ensuring the workpiece is handled

properly during transportation between CNC
machines.

428

3.3. Clamping and Releasing Process

The function clamp_part() simulates
clamping the workpiece on the CNC machine
to enable proper machining.

The function release_part() simulates
releasing the workpiece from the machine
before the robot picks it up and transports it
to another machine.

When the workpiece is moved to a new
machine (e.g., PCMILL55), the agent
simulates clamping the workpiece before
starting any machining operation. After the
machining is completed, the agent simulates
releasing the workpiece from the current
machine (e.g., PCTURN55) before the robot
can pick it up and transport it further.

This reflex agent manages the robot that
moves parts between CNC machines based
on the current machine status. It represents a
basic example of reactive behavior in
FMC/FMS systems. The extended version of
this example adds control over clamping and
releasing the workpiece, giving the agent
greater flexibility and more realistic
production process management. These
operations are essential to ensure that the
robot can safely and efficiently transport the
workpiece between CNC machines.

4. Conclusion

The development and implementation of
agents in industrial environments, such as
Flexible Manufacturing Systems (FMC/FMS)
and Industry 4.0, represents a key technology

for achieving intelligent, adaptive, and
automated systems. Agents, with their ability
to autonomously make decisions and
coordinate between different devices,
significantly contribute to increased
efficiency, flexibility, and productivity in
manufacturing. Establishing communication
and synergy between CNC machines and
robotic systems through agents enables faster
adaptation to changes in production
processes, reduces downtime, and improves
resource management.

The methodology of agent programming
through step-by-step exercises serves as a
fundamental approach in educating future
professionals. The training process can begin
with simple reflex agent examples, where
agents react to specific conditions without
memory or complex logic, such as making
decisions based on machine status. Then,
students progress to programming agents
with more complex behaviors, such as goal-
oriented agents with basic adaptation
capabilities. The next stage introduces
communication protocols, allowing agents to
exchange information, which becomes the
foundation for multi-agent systems with
collaborative functions.

This gradual approach provides students with
the opportunity to systematically learn
principles and tools needed for agent
development, enabling them to acquire
essential competencies for complex industrial
applications. This supports a comprehensive
understanding and practical skills necessary
for Industry 4.0 environments.

Reference:

Jennings, N., & Wooldridge, M. (1998). Applications of Intelligent Agents. In N. M. Jennings,
Agent Technology. Berlin, Heidelberg: Springer. doi:doi.org/10.1007/978-3-662-03678-5_1

Monostori, L., Váncza, J., & Kumara, S. R. T. (2006). Agent-based systems for manufacturing.
. CIRP Annals, 55(2), 697-720.

Paulo, L., Armando, W. C., & Stamatis, K. (2015, September). Industrial Automation based on
Cy .
doi:10.1016/j.compind.2015.08.004

429

Russell, S., & Norvig, P. . (2010). Artificial Intelligence: A Modern Approach (3rd ed.).
Prentice Hall.

van Dyke Parunak, H. (1998). Industrial and practical applications of DAI. In Multiagent
Systems. MIT Press., 377-421.

Vazquez, F., & Cecilio, J. . (2013). Integration of multi-agent systems and manufacturing
execution systems for decision making in production planning. . International Journal of
Computer Integrated Manufacturing, 26(10), 890-902.

Wooldridge, M. (2009). An Introduction to MultiAgent Systems, 2nd Edition. Willy.
doi:ISBN: 978-0-470-51946-2

Gligorije Mirkov
Belgrade,
Republic of Serbia
gmirkov@sbb.rs
ORCID 0000-0002-1153-0045

University of Kragujevac, Faculty
of Engineering Sciences
Kragujevac,
Republic of Serbia
miladin@kg.ac.rs
ORCID 0000-0002-2681-0875

430

