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APPLICATION OF AGENTS IN FMS: AN 
EDUCATIONAL APPROACH

Abstract: This paper explores the application of multi-agent 
systems (MAS) in an educational environment through the 
modeling and simulation of a flexible manufacturing system 
(FMS). The focus is on developing models and programming 
agents for managing CNC machines, a robot with a peripheral 
axis, and part manipulation. Students are guided through 
recommended exercises aimed at optimizing operations and 
handling parts. Using the Python programming language, 
students develop code that enables both simulation and real-
world application in laboratory conditions. Additionally, 
through RFID part identification and API communication, the 
system allows for automation and intelligent control of 
manufacturing processes. This approach fosters the development 
of Industry 4.0 concepts in education and enhances students' 
practical skills in the domain of digital manufacturing.

Keywords: Multi-agent systems, FMS, CNC, robotics, DNC, 
OPC UA, RFID, education, Industry 4.0

1. Introduction

In modern manufacturing systems, the 
concept of agents is increasingly taking 
center stage due to its ability to enable 
flexibility, autonomy, and intelligent 
management of complex processes. Agents 
are software entities that act according to 
defined objectives, capable of independently 
making decisions and executing actions based 
on data received from their environment. This 
approach offers numerous advantages in 
industrial applications, where complex tasks, 
variable working conditions, and the need for 
increased efficiency are frequently 
encountered.

Flexible manufacturing systems (FMS) are a 
key component of modern industrial plants, 
where agents are used to control and 
coordinate machines, robots, and transport 
systems, enabling timely adaptation to 
changes in production. In Industry 4.0, which 
emphasizes digitalization, interconnectivity, 

and data utilization, the role of agents 
becomes even more significant. Intelligent 
agents leverage artificial intelligence (AI) and 
machine learning (ML) techniques to process 
real-time data, make quick decisions, and 
improve processes in increasingly complex 
environments.

This paper examines the characteristics of 
agents and their application in FMS, 
emphasizing the development of intelligent 
agents capable of adapting to different 
conditions and tasks. Special attention is 
given to machine learning techniques, which 
enable agents to improve performance 
through experience, optimize processes, and 
reduce the need for human intervention.

1.1. Agent-Based Manufacturing 
Architectures

With the rapid expansion of computing 
technology, network and communication 
structures, information exchange, and sensor 
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development, conditions have been created 
for the development of agent-based control 
architectures. In most studies, including this 
one, knowledge and experiences related to 
agents have been utilized, with a particular 
focus on their attributes, such as autonomy, 
self-responsibility, and self-recovery, making 
these technologies fundamental to future 
manufacturing systems (van Dyke Parunak, 
1998).

An agent-based control architecture is 
characterized by a decentralized system 
structure with the accelerated growth of 
computer technology, synchronization, 
communication, and information exchange, 
which serve as the foundation for further 
advancements. The software system, agent-
based, is seen as a framework for 
computation and software development.

(Russell, S., & Norvig, P. , 2010) categorize 
agents into four types:

Simple reflex agents select 
actions based on basic perception 
without considering past 
observations.
Model-based reflex agents
incorporate a model of their 
environment, tracking changes over 
time.
Goal-based agents enhance 
control by introducing goals that 
define desirable situations.
Utility-based agents extend goal-
based agents by assigning a utility 
measure to different outcomes.

Since agent-based systems lack a universally 
accepted definition, there are generally two 
abstractions (Monostori, L., Váncza, J., & 
Kumara, S. R. T., 2006):

An agent is a computing system 
operating in a dynamic environment, 
capable of exhibiting autonomous 
and intelligent behavior.

An agent may have an environment 
that includes other agents, forming a 
multi-agent system (MAS).

According to Monostori, Váncza, & Kumara 
(2006), agents are characterized by the 
following key aspects:

Agents act on behalf of their 
designer or user to fulfill a specific 
purpose.
Agents are autonomous, meaning 
they control their internal state and 
behavior.
Agents demonstrate intelligence, 
ranging from fixed rule applications 
to reasoning, planning, and learning.
Agents can be heterogeneous.
Agents interact with their 
environment and with other agents 
in a community.
Ideally, agents are adaptive and 
capable of adjusting their behavior 
to environmental changes without 
intervention from their designer.

From these characteristics, it can be 
concluded that the fundamental property of 
an agent is its ability to make independent 
decisions and react to environmental changes. 
In many models, agents may not possess all 
these characteristics, as this depends on the 
nature and complexity of the system being 
modeled. The rules governing agent behavior 
can range from simple to highly complex, 
depending on the volume and type of 
information available for decision-making.

Agents exhibit built-in behaviors that enable 
them to make independent decisions; they are 
not passive but react to inputs from other 
agents or the environment to achieve 
predefined objectives. Each agent has clearly 
defined boundaries, distinguishing its 
attributes from shared system attributes. 
Agent behavior can be determined by simple 
behavioral rules or by highly complex 
adaptive responses. Over time, agents 
transition through different states, where the 
state of an agent at a given moment is defined 
by its attributes. The state of an agent-based 
model depends on the individual states of all 
agents in the system and the state of the 
environment.
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Agents engage in dynamic interactions with 
other agents, which causally define their 
behavior. They are characterized by built-in 
communication protocols for interacting with 
other agents. Agents can manage resources or 
acquire resources through interactions with 
other agents, further distinguishing them 
from one another. Multi-agent systems create 
a network of agents that collaborate to 
achieve shared goals.

The process of building an agent-based 
model typically follows these fundamental 
phases:

Formulating research questions
clearly defining the problem and 
objectives.
Hypothesis development
establishing hypotheses for specific 
processes and structures.
Defining model structure
creating a document describing the 

Model implementation
transforming the conceptual model 
into a mathematical or 
computational representation.
Analysis, testing, and validation
refining and verifying the model's 
accuracy.

In addition to these fundamental phases, other 
critical steps in agent-based modeling include 
defining agent behavior (from simple to 
complex), identifying agent behaviors, 
selecting the development platform and 
strategy, acquiring necessary data, validating 
agent behavior, and executing the model.
 
2. Agent Communication 

Languages

Agent-based models can be implemented 
using general-purpose programming 
languages and tools or within environments 
specifically designed for this type of 
modeling. Each of these software modeling 
approaches has distinct characteristics and 
methods for addressing problems. One key 
feature is communication, which requires 
appropriate languages and communication 
protocols such as:

ACL (Agent Communication 
Language)
KQML (Knowledge Query and 
Manipulation Language)
FIPA ACL (Foundation for 
Intelligent Physical Agents)

Additionally, general-purpose programming 
languages that support the development and 
implementation of agent architectures can 
also be used. The key characteristics of these 
languages are outlined in Table 1.

Table 1. Characteristics of Specialized Agent Communication Languages
Specialized Agent 
Communication 

Languages
Characteristics

ACL
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- General Purpose: Designed for communication between agents in distributed systems. 
- Inter-Agent Communication: Enables agents to exchange information, make requests, 
provide offers, or execute actions. 
- Standardized Performative Actions: Uses performatives such as "REQUEST," 
"INFORM," and "QUERY" to define communication intent. 
- Formal Semantics: Messages in ACL have a well-defined structure with clear 
semantics, ensuring comprehension of communication. 
- Flexibility: Supports various types of communication, including requests, responses, 
and negotiations.
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- Knowledge Exchange: Designed for knowledge sharing in distributed environments. 
- Abstract Communication Layer: Provides a high-level means of sending requests or 
information between agents without focusing on their internal implementation. 
- Performatives: Similar to ACL, it uses performatives such as "ASK," "TELL," and 
"ACHIEVE" to express intentions like querying or issuing commands. 
- Modularity: Supports communication independent of a specific application domain, 
offering mechanisms for negotiation, task delegation, and knowledge exchange. 
- Extensibility: Allows the integration of specialized protocols for different types of agent 
interactions.

FIPA 
ACL 
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- Standardized Agent Language: Developed by FIPA as a standard for agent 
communication. 
- Performatives and Dialogues: Uses performatives such as "INFORM," "REQUEST," 
and "CONFIRM" to structure agent interactions. 
- Well-Defined Semantics: Based on logical models (Beliefs, Desires, Intentions BDI). 
- Support for Complex Interactions: Enables agents to conduct multi-step dialogues, 
including queries, goal setting, and negotiations. 
- Compatibility with Different Environments: Designed to be flexible and adaptable for 
use in various agent-based systems and distributed environments.

Based on the previous information provided 
in Table 1, the similarities/differences of 
these languages are outlined.
ACL and KQML share similar characteristics 
in terms of performatives and enabling 
communication between agents, while FIPA 
ACL is a more advanced and standardized 
language with more precisely defined rules 
for agent communication, emphasizing 

interoperability and application in complex 
systems.
Comparing the languages ACL, KQML, and 
FIPA ACL with the Python programming 
language, as presented in Table 2, requires 
focusing on specific aspects, as Python is not 
a direct agent communication language but 
rather a general-purpose programming 
language.

Table 2. Comparison of Specialized Languages with a General-Purpose Language (Python)
ACL, KQML, FIPA ACL Python

Purpose

Specialized for inter-agent communication 
in multi-agent systems (MAS). Primarily 
used for exchanging information, making 
requests, and negotiating using 
performatives like "REQUEST" and 
"INFORM".

A general-purpose programming language used for 
a wide range of applications, including MAS 
development, backend programming, and data 
science.

Language 
Structure

These languages are highly abstract and 
structural, focusing on performatives and 
message semantics. Their sentences are 
short and have clearly defined components 
(sender, receiver, content, performative). 
These languages themselves do not define 
the logic of the agent's behavior, but rather 
the method of communication.
Example of a KQML message:

(ask :sender AgentA :receiver 
AgentB :content (temperature ?x))

Python is an imperative language used to express 
the behavior of agents, algorithms, and other 
functionalities. In Python, agents and their logic can 
be implemented, while communication messages 
such as ACL and KQML are just a part of the 
functionality.
-Python implements message sending using 
libraries such as pika for RabbitMQ1 or libraries for 
multi-agent systems.
-Python code for an agent might look like this:
def send_message(agent, message):

agent.receive(message)

                                                           
1 RabbitMQ is a software system for message exchange between different applications or 
system components, allowing applications to communicate with each other through message 
exchange without the need for a direct connection.
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ACL, KQML, FIPA ACL Python

Communication
Specifically developed for decentralized 
communication between agents.

Python does not have a built-in standard for agent 
communication but can implement communication 
protocols such as HTTP, TCP/IP, or specialized 
MAS libraries like Spade and Jade.

Role in Multi-
Agent Systems

These languages represent the core of 
communication between agents. The focus 
is on enabling flexible and understandable 
communication. They define how agents 
communicate, exchange information, and 
negotiate.

Python is a very flexible language that can be used 
to build a complete multi-agent system. While 
ACL, KQML, and FIPA ACL function as 
communication languages, Python can implement 
all aspects of agents, including logic, behavior, and 
communication between agents, using these 
languages or its own protocols.

Flexibility and 
Extensibility

These languages are more narrowly 
specialized and are used for specific 
interactions. While they are flexible within 
their domain, they do not support other 
programming paradigms, such as object-
oriented programming, procedural, or 
functional programming.

Python is a general-purpose programming language 
that supports a wide range of programming 
paradigms (procedural, object-oriented, functional). 
It can be used for all stages of agent development 
from behavior logic to communication and learning.

Libraries and 
Ecosystem

These languages do not have direct 
ecosystem support like Python. There are 
implementations that enable their use in 
specific systems.

Python has a rich ecosystem with numerous 
libraries, including tools for artificial intelligence, 
machine learning, multi-agent systems (e.g., Spade, 
Jade), as well as support for protocols that enable 
agent communication.

Based on the previous discussion, ACL, 
KQML, and FIPA ACL are specialized 
languages for agent communication in multi-
agent systems, while Python is a multi-
purpose programming language that enables 
the implementation of agents, their logic, and 
communication protocols, with the ability to 
use these languages or, on the other hand, 
develop its own communication tools.

The choice of the appropriate programming 
language is crucial for easier mastery of the 
basics and further progress. Learning about 
agents is a complex field that relies on the 
principles of artificial intelligence, distributed 
systems, and automation. Therefore, it is 
important to choose a language that strikes a 
balance between simplicity and power, so 
that beginners can effectively learn and apply 
concepts in real-world scenarios.

The programming language should be 
accessible, with extensive documentation and 
support for agents, but also flexible enough to 
implement different types of agents, such as 
autonomous, reactive, or intelligent agents. 
Furthermore, it is important that the chosen 
language is relevant for the industry and 
research projects in the field of artificial 
intelligence and Industry 4.0, so that the tools 

learned can be easily applied in a professional 
environment.

For these reasons, Python emerges as a 
logical choice for the first language in agent 
programming. The key features of Python are 
outlined in the previously mentioned Table 3. 
Due to all these factors, Python is an 
excellent choice for beginners in agent 
programming, as it allows for a gradual 
transition from simple tasks to more complex 
challenges.

2.1. Studying and Practicing Agent 
Programming

Studying and practicing agent programming 
for future programmers is becoming 
increasingly significant, especially in the 
context of Industry 4.0, which relies on the 
digitalization and automation of production 
processes. Multi-agent systems play a key 
role in this context because they enable 
decentralized management, autonomous 
decision-making, and adaptive behavior in 
complex environments. These systems 
consist of agents that can be physical entities, 
such as machines and robots, or software 
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entities that communicate, negotiate, and 
coordinate activities to achieve set goals.

In Industry 4.0, smart factories and flexible 
manufacturing systems require dynamic 
adaptability, and agents can enhance system 
performance through autonomous 
management, self-organization, and real-time 
data-driven learning. In practice, agents can 
manage the operation of CNC machines, 
industrial robots, logistics systems, and 
communication between these components. 
Programming agents requires an 
understanding of distributed systems, 
artificial intelligence (AI), and 
communication protocols like ACL, KQML, 
and FIPA-ACL, which are skills that are 
essential for working in modern industrial 
environments.

Practicing agent programming allows 
students to develop the necessary 
competencies to design and implement such 
systems, including the ability to design 
autonomous systems, integrate artificial 
intelligence, and optimize the operation of 
industrial systems. Additionally, practicing 
agent programming provides practical 
knowledge of tools such as Python, 
RabbitMQ, and other software tools, making 
those trained in this field more competitive in 
the labor market, which is increasingly 
oriented towards digital transformation and 
the implementation of Industry 4.0 concepts.

Agent-based architectures have been 
developed for various types and purposes in 
manufacturing

Table 3. Key Characteristics of Python Language
Python Characteristics Explanation

Simplicity and Readability
Python is known for its simple syntax, resembling natural language, 
making it ideal for beginners. This facilitates a quick understanding 
of basic programming concepts, including agent implementation.

Library Support

Python has a highly developed standard library and numerous 
additional libraries that support agent development. For example, 
libraries such as spaCy for natural language processing, TensorFlow 
and scikit-learn for machine learning, and Pykka for implementing 
the actor model make it easier to write complex agent-based systems.

Support for Agents
Python supports procedural, object-oriented, and functional 
programming, allowing users to explore different programming 
paradigms, which is beneficial for agent development.

User Community
Python has a vast community of users and developers, providing 
abundant resources, tutorials, forums, and libraries. Beginners can 
easily find answers and guidelines for agent development.

Integration with Distributed 
Systems

Python offers tools for easily setting up distributed systems, which is 
useful when working with agents in environments such as FMS 
(Flexible Manufacturing Systems). For instance, Python integrates 
seamlessly with RabbitMQ, enabling efficient message queue 
management.

Industry Adoption

Python is widely used in Industry 4.0 for applications related to 
automation, robotics, machine learning, and the Internet of Things 
(IoT). Python skills can be easily transferred to Industry 4.0 
applications, facilitating the learning and implementation of agents in 
real industrial systems.

Agents in FMS represent a key technology 
for managing and optimizing manufacturing 
processes. Agents are autonomous software 
entities that operate in dynamic environments 

and exhibit intelligent behavior, including 
decision-making, planning, and learning.

The benefits of using agents include 
increased flexibility, autonomy, and 
adaptability to environmental changes. These 
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systems enable decentralized management, 
reducing the need for a centralized control 
system and allowing for faster and more 
efficient responses to changes in the 
manufacturing process.

2.2. Future Vision of Agent-Based 
Manufacturing in FMS

The future of flexible manufacturing systems 
(FMS) based on agents promises numerous 
advantages and innovations in the industry. 
Here are some key points that could shape the 
future of agent-based FMS:

Increased Flexibility and Adaptability

Agents can quickly respond to changes in 
production requirements, adapting to 
different production orders and machine 
configurations, providing dynamic 
adaptability. They can make real-time 
decisions based on current conditions, 
reducing the need for human intervention and 
autonomously managing processes.

Increased Autonomy

Agents can take over more tasks that 
previously required human intervention, such 
as production planning, quality monitoring, 
and maintenance. Machines equipped with 
agents can detect and resolve problems 
without external service intervention.

Integration with the Internet of Things 
(IoT)

Integrating agents with IoT sensors enables 
continuous data collection and process 
optimization based on real-world conditions 
in the production environment. Real-time 
data analysis allows for failure prediction and 
preventive machine maintenance.

Advancement of Collaborative Robots 
(Cobots)

Agents enable collaborative robots to better 
understand and interact with human workers, 
improving safety and efficiency in shared 
workspaces. Cobots will communicate and 
share information with other agents and 

machines, leading to better coordination and 
synergy.

Artificial Intelligence and Machine 
Learning

Agents will leverage AI and machine 
learning to continuously improve 
performance, analyzing historical data and 
optimizing processes. By analyzing market 
trends, agents will be able to predict demand 
and adjust production accordingly.

Decentralized Control

Agent-based FMS allows for decentralized 
control, where each agent manages a specific 
aspect of the system, reducing the risk of 
system failures due to a central control 
malfunction. This decentralized structure 
makes the system more resilient to changes 
and disruptions, as agents can take over the 
functions of other agents when necessary.

Resource Optimization

Agents can optimize the use of resources 
such as energy, materials, and time, reducing 
costs and increasing efficiency. Precision 
control of production processes minimizes 
waste, contributing to sustainability and 
environmental protection. The future of 
agent-based FMS promises significant 
improvements in efficiency, flexibility, and 
autonomy in manufacturing systems. These 
technologies enable companies to respond 
faster to market changes, reduce costs, and 
enhance product quality, gaining a 
competitive advantage in the global market.

Agents in flexible manufacturing cells (FMC) 
play a crucial role in managing and 
optimizing production processes in the 
context of Industry 4.0. Industry 4.0, as a 
smart factory concept, integrates advanced 
technologies such as the Internet of Things 
(IoT), artificial intelligence (AI), and big data 
with traditional manufacturing processes.
This advancement is reflected in:

Autonomy and decentralization
Flexibility and adaptability
Optimization and efficiency
Predictive maintenance
Coordination and collaboration
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Improved decision-making

Through these capabilities, agents in FMC 
play a key role in realizing the vision of 
Industry 4.0, enabling smart, adaptive, and 
highly efficient manufacturing systems that 
can meet the challenges and demands of the 
modern market.

2.3. The Role of Agents in FMS

Agents in flexible manufacturing systems 
(FMS) play a crucial role in the Industry 4.0 
management model, which focuses on 
creating smart factories through the 
integration of digital and physical systems. 
Industry 4.0 introduces advanced 
technologies such as IoT, AI, and big data 
analytics into traditional manufacturing 

management aspects:

1. Interaction and IoT: Agents enable 
continuous communication between various 
machines, sensors, and devices within the 
manufacturing system. Using IoT, agents 
collect and share real-time data, ensuring
transparency and efficiency in resource 
management. Agents monitor operations in 
real-time, quickly detecting and resolving 
issues, reducing unplanned downtimes, and 
increasing overall productivity.

2. Artificial Intelligence and Analytics:
Agents utilize AI algorithms to analyze 
sensor data, predicting failures before they 
occur (predictive maintenance). AI-driven 
data analytics help optimize production 
processes by identifying bottlenecks, 
optimizing workflows, and minimizing 
waste.

3. Decentralized Decision-Making: Each 
agent makes independent decisions based on 
local data and global objectives, reducing the 
need for centralized control. A decentralized 
structure allows the system to scale 
efficiently by adding new agents and 
resources without major changes to the 
central management system.

4.  Collaboration and Interaction: Multi-
Agent Systems (MAS) collaborate to 
coordinate complex tasks (Wooldridge, 
2009). For instance, a transportation agent 
can coordinate with a production agent to 
ensure timely material delivery, reducing 
delays and improving efficiency. Resource 
management agents optimize the allocation of 
machines, personnel, and materials according 
to current production needs (Jennings & 
Wooldridge, 1998).

5. Flexibility and Adaptability: Agents can 
dynamically adjust production processes in 
real-time, responding to shifts in demand or 
resource availability.

Machine learning techniques enable agents to 
continuously improve their performance, 
adapting to new conditions and datasets.

6. Interoperability and Standardization:

Agents use standardized communication 
protocols, facilitating seamless integration of 
different systems and technologies within a 
smart factory. Integration with ERP 
(Enterprise Resource Planning) systems 
enables synchronization between 
manufacturing processes and business 
operations (Vazquez & Cecilio, 2013).

Agents in FMC significantly enhance 
production management within Industry 4.0. 
Through autonomy, flexibility, analytics, and 
collaboration, they enable intelligent and 
efficient manufacturing systems capable of 
adapting to rapidly changing market 
conditions and demands. This results in 
increased productivity, reduced costs, and 
improved product quality (Paulo et al., 2015).

2.4. Agents and Machine Learning 
Capabilities

Agents in manufacturing systems can possess 
learning capabilities, particularly through 
machine learning (ML). In intelligent agent 
systems, ML enables agents to analyze 
environmental data, adapt their behavior, and 
optimize decisions based on experience. This 
learning capability is crucial for the 
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development of advanced autonomous 
systems, such as those used in Industry 4.0, 
FMS, robotics, and other complex industrial 
systems. One of the fundamental questions 
that arise when studying agents is how they 
learn, in what way, and through which 
learning stages they progress:

1. Data Collection: Agents gather data from 
the environment using sensors, user 
interactions, or other sources.
2. Analysis and Learning: Using various ML 
algorithms (supervised learning, 
unsupervised learning, deep learning, etc.), 
agents analyze data, identify patterns, and 
derive insights for performance improvement.

3. Behavior Adaptation: Based on analysis, 
agents adjust future actions for better 
outcomes.
4. Continuous Improvement: As agents 
interact more with their environment, their 
learning ability enhances, leading to more 
precise and efficient operations.

Examples of agent applications and their 
impact on the process itself can be observed 
through:
- Process Optimization: Agents in FMC can 
learn how to optimize task allocation among 
CNC machines and robots.
- Failure Prediction: Learning agents can 
predict potential failures, enabling proactive 
maintenance and minimizing downtime.

Table 4. Classification of Agents in FMS
Division Agents in FMS

A
cc

or
d

in
g 

to
 t

he
 f

un
ct

io
n

Production 
agents

- Agent machines: Manage the operation of specific machines (eg 
CNC machines, 3D printers).
- Robot Agent: They control the work of industrial robots that 
perform tasks such as material handling, welding, assembly

Transport 
agents

- Internal logistics agent: They manage the transportation of 
materials and products within the factory (eg autonomous vehicles, 
conveyor belts).

Planning 
agents

- Production planning agent: They plan the production schedule, 
including the sequence of operations and the allocation of 
resources.
- Maintenance planning agent: They plan and coordinate preventive 
and corrective maintenance of machines and equipment.

Supervisory 
agents

- Quality control agent: They monitor product quality and identify 
defects.
- Safety Agent: They monitor the safety aspects of the production 
process and ensure compliance with safety standards.

A
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or
d
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g 
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f 
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Operational 
agents

- Act at a lower level of control and manage specific tasks and 
operations (eg control of machines, execution of production steps).

Tactical 
agents

- Make decisions at the intermediate level of control, such as 
optimization of production lines, scheduling of workers, and 
coordination between different operating agents.

Strategic 
agents

- Operate at a high level of control, managing long-term planning, 
optimization of resources at the plant-wide level, and making 
strategic decisions.
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Reactive 
agents

- They react to events in real time without prior planning. They are 
suitable for solving problems quickly and adapting to changes.

Proactive 
agents

- They plan their actions in advance based on the prediction of 
future events and goals. They are focused on optimization and 
efficiency.

Hybrid agents
- They combine reactive and proactive characteristics, adapting to 
the situation and combining quick response and long-term 
planning.

A
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ce Simple agents

- Perform basic tasks with minimal intelligence and interaction. 
They are suitable for routine and repetitive tasks.

Intelligent 
agents

- They use advanced algorithms for decision making, learning and 
optimization. They can use artificial intelligence and machine 
learning to adapt and improve performance.

A
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Specialized 
agents

- They are focused on specific tasks or processes in production (eg 
welding agents, assembly agents).

Generalized 
agents

- They can be used for different tasks and processes, adapting to 
different requirements and contexts.

A
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h
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en
vi
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nm

en
t Physical 

agents
- Directly manage physical devices and machines in a production 
environment.

Virtual agents
Manage information, data, and digital processes, such as 
production planning, data analysis, and resource optimization.

Machine, enabling proactive maintenance.

- Improving product quality: Through the 
analysis of output data, agents can learn how 
to enhance the quality of processing or 
assembly.
This flexibility and learning capability make 
agents particularly suitable for complex and 
dynamic environments, such as industrial 
systems. Machine Learning (ML) within 
FMS can significantly improve system 
efficiency and performance. Here are some 
examples of how ML is used in an FMS 
environment:

Production Scheduling Optimization

FMS agents utilize machine learning to 
optimize production schedules based on 
variables such as machine availability, 
processing time, or task priorities. Algorithms 
like genetic algorithms or reinforcement 
learning can be used to help agents learn how 

to efficiently allocate tasks to CNC machines 
or robots.

- Example: If a scheduling agent notices that 
one machine is frequently overloaded while 
another remains underutilized, it can adjust 
the schedule to distribute processing loads 
more evenly.

Predictive Maintenance of Machines

In FMS, ML models such as neural networks 
or unsupervised learning can analyze sensor 
data from CNC machines and robots to 
predict failures before they occur. These 
systems collect data such as vibrations, 
temperature, or machine operating hours, and 
agents learn patterns that indicate potential 
failures.
- Example: Based on changes in the vibration 
frequency of a CNC machine, an agent can 
predict the need for maintenance or 
replacement of a specific component or 
cutting tool.
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Product Quality Control

Agents use ML to analyze product quality 
data during or after processing. Classification 
algorithms can be applied to detect defects in 
parts during manufacturing. Cameras and 
sensors collect data, and agents learn to 
recognize deviations from standard quality.
- Example: Deep learning algorithms can 
analyze images of products during CNC 
machining, identifying micro-defects or 
surface irregularities that would otherwise go 
unnoticed.

Energy Resource Optimization

Machine learning can optimize energy 
consumption in FMS cells by predicting the 
required energy based on machine load and 
processing time. Supervised learning can be 
used to optimize energy resources, reducing 

- Example: Agents learn when it is optimal to 
reduce speed or put machines into standby 
mode when tasks are less demanding.

Intelligent Robot Navigation

Robots in FMS use ML algorithms for 
autonomous navigation and path 
optimization. Reinforcement learning 
algorithms allow robots to learn the best 
routes for transporting parts between CNC 
machines and storage areas, minimizing 
unnecessary time and energy losses.

Example: If a robotic arm moves between 
machines and storage, agents can adjust the 
path in real-time based on congestion or other
obstacles.

Adaptive Machine Programming

ML agents learn how to adapt CNC code 
(e.g., G-code) in real time to optimize 
machining processes for different materials or 
complex geometries, enabling more flexible 
and autonomous manufacturing.

- Example: When machining hard materials, 
an agent can adjust spindle speed or feed rate 
based on real-time feedback, optimizing 
machining quality and reducing tool wear.

Machine learning provides FMS systems with 
a high degree of flexibility, increases 
productivity, and enables adaptation to 
dynamic changes in industrial environments.

2.5. Student Exercises

Students can practice writing different types 
of agents in Python, as it is a flexible 
language with a rich set of libraries and tools 
for working with agents. Table 5. provides 
examples of several types of agents that 
students could implement in Python. 
Similarly, Table 6. presents more complex 
types of agents for exercises, such as MAS, 
negotiation agents, and planning agents. The 
methodological approach to modeling and
programming agents is given in Table 7.

Table 5. Types of Agents Students Can Implement in Python
Types of Agents Students Can Implement in Python
Agent Type Description Example Libraries
Simple 
Reflex 
Agents

These agents act based on current 
perception without considering 
history.

A robot that moves forward 
until it encounters an 
obstacle, then turns.

if-else structures, basic 
control flow in Python.

Model-
Based 
Reflex 
Agents

These agents use an internal model 
of the world to make decisions 
based on both current and past 
perceptions.

A robot navigating a maze 
using previous positions to 
avoid dead ends.

collections for data 
structures like deque or 
set for state tracking.

Goal-Based 
Agents

These agents have defined goals 
they try to achieve.

A robot searching for an exit 
from a maze using search 
algorithms like A* or 
Dijkstra.

heapq for priority 
queues, networkx for 
graph-based algorithms.
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Utility-
Based 
Agents

These agents make 
decisions based on the 
utility of different 
actions.

A robot selecting the most optimal 
path to a goal while considering 
factors like energy consumption, time, 
and safety.

numpy for numerical 
operations and utility 
calculations.

Learning 
Agents

These agents improve 
their performance 
through experience.

A robot using Q-learning or deep 
learning for navigation in a complex 
environment.

scikit-learn, tensorflow,
pytorch for implementing 
ML algorithms.

Table 6.
Challenging Agent Implementations
Agent Type Description Challenges Example Libraries

Multi-Agent 
Systems 
(MAS)

Systems involving 
multiple interacting 
and coordinating 
agents.

Synchronizing 
agents, agent 
communication, 
conflict avoidance.

A traffic control 
system where 
multiple agents 
(vehicles) 
coordinate 
movements to 
prevent collisions.

mesa for multi-agent 
modeling, 
multiprocessing for 
parallel execution.

Negotiation 
Agents

Agents that negotiate 
with each other to 
achieve common 
goals.

Developing 
negotiation strategies, 
implementing 
communication 
protocols.

Agents negotiating 
resource allocation 
in a production 
system.

pydispatch for inter-
agent communication.

Planning 
Agents

Agents that use 
complex algorithms 
to plan sequences of 
actions leading to 
goal achievement.

Implementing 
planning algorithms, 
optimizing plans.

A robot planning a 
sequence of actions 
to assemble a 
product.

pyeda for working 
with logical formulas, 
pddlpy for planning 
domain modeling.

Table 7. Methodological Approach to Exercises in Modeling Different Agent Structures
Agent Type Task

Simple Reflex Agents
Start with writing simple reflex agents to understand basic principles of 

state and action management.

Model-Based Reflex Agents
Extend the agent to use an internal world model, which is a natural step 

toward more complex agents.

Goal-Based Agents
Introduce goals and search algorithms so agents can plan their actions 

toward defined objectives.

Utility-Based Agents
Add the concept of utility to enable agents to make decisions that 

optimize specific criteria.

Learning Agents (Machine 
Learning)

Experiment with basic machine learning techniques to enable agents to 
learn from experience.

Multi-Agent Systems
Finally, transition to complex systems involving multiple agents that 

cooperate and communicate with each other.

3. Example of a Reflex Agent in 
FMC/FMS

3.1. Proposal for Getting Started

For a student who wants to start practicing, 
the approach given in Table 5. is 
recommended.

For each of these phases, there are numerous 
resources and libraries in Python that can 
help students gradually develop their skills 
and understanding of agent-based systems.
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Scenario: Managing Transport Between
Machines

to manage the robotic transport system (e.g., 
SCORBASE-4u) between CNC machines 
(e.g., PCTURN55 and PCMILL55). The 
reflex agent will respond to the machine's 
state and take actions based on simple rules.

Applied Rules:
If a machine has completed 
processing, the part needs to be 
transported to the next machine.
If a machine has not finished 
processing, the agent waits until 
processing is complete.

 

Pseudo-Code for the Reflex Agent in Python:

class ReflexAgent:
def __init__(self):

self.machine_status = {"PCTURN55": "busy", "PCMILL55":
"idle"} # Current status of machines

self.part_clamped = False # Track if the part is clamped or not

def perceive_environment(self):
# Get the current status of the machines (could be from sensors 

or API)
return self.machine_status

def make_decision(self, status):
# Simple reflex rules based on the current state of machines
if status["PCTURN55"] == "done" and self.part_clamped:

            self.release_part("PCTURN55")
            self.transport_part("PCTURN55", "PCMILL55")
            self.clamp_part("PCMILL55")

elif status["PCMILL55"] == "done" and self.part_clamped:
            self.release_part("PCMILL55")
            self.transport_part("PCMILL55", "PCTURN55")
            self.clamp_part("PCTURN55")

else:
            print("Both machines are busy. Waiting for a machine to 
finish.")

def transport_part(self, from_machine, to_machine):
# Perform the transport operation (simplified)
print(f"Transporting part from {from_machine} to 

{to_machine}.")
# Update machine statuses after transport
self.machine_status[from_machine] = "idle"
self.machine_status[to_machine] = "busy"

def clamp_part(self, machine):
# Simulate clamping the part in the machine
print(f"Clamping part in {machine}.")
self.part_clamped = True

def release_part(self, machine):
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# Simulate releasing the part from the machine
print(f"Releasing part from {machine}.")
self.part_clamped = False

# Instantiate and run the agent
agent = ReflexAgent()
current_status = agent.perceive_environment()
agent.make_decision(current_status)

This simple reflex agent reacts only to the 
current state of the machine without 
considering previous actions.

3.2. Explanation of the Reflex Agent's 
Operation 

The agent first perceives the current state of 
the machines ("busy" or "idle"), which falls 
into the domain of perception.
Based on the current state, the agent makes 
decisions. If a machine has completed its 
task, the agent transports the part to the next 
machine, which is considered a decision-
making process.
The agent then executes the transport step
and updates the status of the machines.

The limitations that an agent designer must 
consider when designing an agent include the 
fact that a reflex agent does not remember 
previous states and does not learn from 
experience. It reacts solely to the current 
situation, which can be a limiting factor in 
more complex scenarios, such as prediction 
or process optimization based on historical 
data.

In the given example of a reflex agent for 
managing transportation between CNC 
machines, the clamping and releasing of the 
workpiece are not directly addressed. This 
aspect is crucial in any manufacturing 
process and usually requires an additional 
step to control the clamping systems (vises, 
jaws, or hydraulic systems) on CNC 
machines or robots.

To complement this example, we can include 
functions for releasing and clamping the 
workpiece during transport. These operations 
would be part of a broader control system 
that includes CNC machine and robot 
management, ensuring that the agent properly 
secures and releases the workpiece before 
and after transport.

For these reasons, we add functions for:
Clamping the workpiece on the 
CNC machine before machining.
Releasing the workpiece before 
robot transport.

This is implemented as part of the program 
that is inserted into the previously written 
section of the reflex agent program.

Modified Reflex Agent Code with Clamping 
and Releasing Functions:

def clamp_part(self, machine):
# Simulate clamping the part in the machine
print(f"Clamping part in {machine}.")
self.part_clamped = True

def release_part(self, machine):
# Simulate releasing the part from the machine
print(f"Releasing part from {machine}.")
self.part_clamped = False

This extended version of the reflex agent 
incorporates clamping and releasing 
operations, ensuring the workpiece is handled 

properly during transportation between CNC 
machines.
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3.3. Clamping and Releasing Process

The function clamp_part() simulates 
clamping the workpiece on the CNC machine 
to enable proper machining.

The function release_part() simulates 
releasing the workpiece from the machine 
before the robot picks it up and transports it 
to another machine.

When the workpiece is moved to a new 
machine (e.g., PCMILL55), the agent 
simulates clamping the workpiece before 
starting any machining operation. After the 
machining is completed, the agent simulates 
releasing the workpiece from the current 
machine (e.g., PCTURN55) before the robot 
can pick it up and transport it further.

This reflex agent manages the robot that 
moves parts between CNC machines based 
on the current machine status. It represents a 
basic example of reactive behavior in 
FMC/FMS systems. The extended version of 
this example adds control over clamping and 
releasing the workpiece, giving the agent 
greater flexibility and more realistic 
production process management. These 
operations are essential to ensure that the 
robot can safely and efficiently transport the 
workpiece between CNC machines.

4. Conclusion

The development and implementation of 
agents in industrial environments, such as
Flexible Manufacturing Systems (FMC/FMS)
and Industry 4.0, represents a key technology

for achieving intelligent, adaptive, and 
automated systems. Agents, with their ability 
to autonomously make decisions and 
coordinate between different devices,
significantly contribute to increased 
efficiency, flexibility, and productivity in 
manufacturing. Establishing communication 
and synergy between CNC machines and 
robotic systems through agents enables faster 
adaptation to changes in production 
processes, reduces downtime, and improves 
resource management.

The methodology of agent programming 
through step-by-step exercises serves as a
fundamental approach in educating future 
professionals. The training process can begin 
with simple reflex agent examples, where 
agents react to specific conditions without 
memory or complex logic, such as making 
decisions based on machine status. Then, 
students progress to programming agents 
with more complex behaviors, such as goal-
oriented agents with basic adaptation 
capabilities. The next stage introduces 
communication protocols, allowing agents to
exchange information, which becomes the 
foundation for multi-agent systems with 
collaborative functions.

This gradual approach provides students with
the opportunity to systematically learn 
principles and tools needed for agent 
development, enabling them to acquire
essential competencies for complex industrial 
applications. This supports a comprehensive 
understanding and practical skills necessary
for Industry 4.0 environments.
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