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Abstract: In the era of open data and open science, it is important that, before announcing
their new results, authors consider all previous studies and ensure that they have competi-
tive material worth publishing. To save time, it is popular to replace the exhaustive search
of online databases with the utilization of generative Artificial Intelligence (AI). However,
especially for problems in niche domains, generative AI results may not be precise enough
and sometimes can even be misleading. A typical example is P||Cmax, an important schedul-
ing problem studied mainly in a wider context of parallel machine scheduling. As there is
an uncovered symmetry between P||Cmax and other similar optimization problems, it is not
easy for generative AI tools to include all relevant results into search. Therefore, to provide
the necessary background data to support researchers and generative AI learning, we criti-
cally discuss comparisons between algorithms for P||Cmax that have been presented in the
literature. Thus, we summarize and categorize the "state-of-the-art" methods, benchmark
test instances, and compare methodologies, all over a long time period. We aim to establish
a framework for fair performance evaluation of algorithms for P||Cmax, and according to
the presented systematic literature review, we uncovered that it does not exist. We believe
that this framework could be of wider importance, as the identified principles apply to a
plethora of combinatorial optimization problems.

Keywords: combinatorial optimization algorithms; experimental evaluation; scheduling
independent jobs on parallel machines; problem instances; systematic literature review

1. Introduction
Nowadays, artificial Intelligence (AI) and Machine Learning (ML) are an integral

part of the intelligent core of almost any business. Disruptive technologies, such as gen-
erative AI, Blockchain (BC), the metaverse, etc., are becoming more and more pervasive.
Thus, there is a growing need for the involvement of supercomputers for processing huge
datasets in real time. Consequently, it is equally important to optimize the utilization of
high-performance computing resources, cloud computing, and massively parallel mul-
tiprocessor systems. Even on a smaller scale, in mobile computing, there is still a need
for efficiently solving scheduling problems. A recently developed systematic difficulty
estimation framework [1] could provide an opportunity for a fair comparison of algorithms.
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To detect the most efficient optimization algorithm and its required execution time, the
framework needs a sufficiently large database containing algorithms and the results of their
usage. Numerous optimization algorithms exist for scheduling problems, but there are
not nearly enough problem instances on which the algorithms were tested. Accurate and
exhaustive comparisons among algorithms in the literature could help enrich the database
of instances illustrating algorithms’ performance. This database could also be useful for
researchers who develop new optimization algorithms to adequately compare algorithms
and establish the value of their findings and results.

Nowadays, researchers commonly use generative AI instead of exhaustive searching of
online databases. Unfortunately, generative AI results may be imprecise or even misleading,
especially for problems in niche domains. As a case study to describe the challenges that
arise when comparing different optimization algorithms, we focus on the problem of
scheduling a set of independent tasks (jobs) on a set of identical parallel machines, with
the goal of minimizing the time required by the last machine to complete its assigned
jobs. This time is referred to as makespan, and the problem is denoted by P||Cmax [2,3].
P||Cmax is an important scheduling problem studied mainly in a wider context of parallel
machine scheduling. Solving the P||Cmax problem efficiently is crucial in various real-world
scenarios, such as manufacturing processes, data processing, and distributed computing.
Researchers and practitioners use various algorithms and optimization techniques to
address the complexities associated with this scheduling problem.

In the 1970s, several optimization algorithms were developed and several equivalent
notations were introduced [2,4]. Although the proper notations exist, there has been incon-
sistent use of acronyms, like Identical Parallel Machines Scheduling (IPMS) or just shortly
PMS. The same holds for naming conventions. For example, identical parallel machines
scheduling problems with the objective function of minimizing makespan (Cmax) [5], the
problem of static scheduling of independent tasks on homogeneous multiprocessors [6],
and static homogeneous multi processor scheduling problem (MPSP) [7].

The naming conventions also differ depending on the community of researchers using
the problem. In the Operations Research community literature, the P||Cmax problem is
often named IPMS [8]. In the AI community, it is often called the Multi-Way Number
Partitioning (MWNP) problem [9]. However, MWNP has a different formulation and is an
isomorphic problem to P||Cmax. The second isomorphic problem to P||Cmax is Min-Max
(one-dimensional) Bin Packing Problem (MMBPP). In this variant of Bin Packing Problem
(BPP), the number of bins is fixed and the goal is to find a minimum bin capacity that
accommodates all items. The problem can also be found under different names, from only
a special variant of BPP [10] to BPP-2 [11]. However, this is exactly the same problem as
P||Cmax, actually the variant with a fixed number of machines (Pm||Cmax), because there is
no practical difference between the variants for reasonably big values of m.

By identifying the equivalence between similar optimization problems, P||Cmax,
MWNP, MMBPP, multiple Knapsack problem, multiple subset sum, etc. [12], we have
uncovered a valuable symmetry that has been leveraged in P||Cmax optimization algo-
rithms. Additionally, in combinatorial optimization problems, symmetries can lead to
redundant computations as symmetric solutions are essentially equivalent. The search
involving symmetric solutions should be avoided by implementing symmetry-breaking
constraints in such a way that symmetric solutions are efficiently eliminated from the
search space. It is relatively easy to overcome the difficulties related to naming or symmetry
and to identify research papers that focus on the P||Cmax problem through the exhaus-
tive time-consuming search of online databases. It is much more difficult is to obtain the
non-confounding results using generative AI, to establish the taxonomy of optimization
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algorithms, and to standardize problem instances that were generated. Our goal is to
contribute toward resolving this difficulty.

In the preparation for this paper, we decided to search for exact, heuristic, and meta-
heuristic algorithms. As it has been proven that the P||Cmax problem is strongly NP-
hard [2], it can be assumed that there always exists a problem instance that is hard to solve
regardless of the algorithm choice. At the same time, a special case related to this problem
is where the machine number that is equal to 2 is “the easiest hard problem” [13]. Therefore,
comparisons need to be experimental and to include a wide range of problem instances.

Different optimization algorithms do not have the same performance on all problem
instances. One group of instances might be easy for one optimization algorithm, but
difficult for the other and vice versa [14]. It could be said that one optimization algorithm
is better if it is able to efficiently solve a wider range of problem instances. In a recent
study [15], the issues arising in choosing a group of instances for algorithm comparisons
and how to generate problem instances were discussed. To provide a fair comparison of
algorithms it is very important that experimental settings are identical or that analogies
could be established and all the assumptions could be replicated. Thus, it is very important
to publicly share the problem instances, or give precise instructions on how to generate
them including to provide the values of parameters, like random seed.

Currently, no universal standard exists on how to compare the algorithms working
on P||Cmax problem. Various problem instances were proposed over time, but there is no
universal standard set of benchmark instances that everyone could use. We performed
a Systematic Literature Review of Optimization Algorithms for the P||Cmax problem to
illustrate that an in-depth analysis of the performance comparison is actually missing.
A good algorithm comparison framework is necessary to uncover their strengths and
weaknesses. While we have encountered research papers across various avenues that
address the literature surrounding this specified problem, there seems to be a lack of
comprehensive synthesis that brings together all the mentioned components (methods,
problem instances, comparisons) and builds upon the entirety of existing knowledge. This
presents an opportunity to foster a more cohesive understanding of this domain that would
allow researchers to assess their contributions easily and in a consistent manner.

The contributions of this paper are as follows.

• Report the results of a systematic literature review (SLR) conducted to identify, ex-
tract, evaluate, and synthesize the studies on the P||Cmax optimization algorithms.
Summarize and categorize existing methods;

• Standardize the problem instances that the majority of algorithms were tested on;
• Uncover a comparison methodology for a fair algorithm performance evaluation.

Having in mind the cited guidelines about the organization of systematic literature
review papers and the above mentioned goals and contributions, the paper roadmap is
based on the following. The main goal is to provide a good framework for the evalua-
tion/comparison of various types of optimization algorithms. It is necessary to present the
characteristics of all the algorithms and available instances before analyzing the described
evaluation mechanisms and providing the recommendations for their upgrading.

Therefore, the remainder of this paper is structured as follows: Section 2 provides
a background on the P||Cmax problem, solutions, and conducted SLR. Section 3 presents
SLR methodology, research questions (RQs), and a high-level overview of the selected
studies. The taxonomy of solution methods for the P||Cmax problem and a summary of
findings on the extracted studies are presented in Section 4. It contains the classification
of methods, description of main characteristics for each class, brief explanation of each
considered algorithm, and the existing similarities between them. In Section 5, the use of
problem instances over time is discussed. We review the most commonly used sets, identify
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their strengths and weaknesses, and perform their classification. In addition, we propose
standardization criteria, select a representative set of standardized instances, and generate
an open access repository to store these and any newly proposed benchmark instances.
Algorithm comparisons are explored in Section 6. We explain the general methodology for
comparing optimization algorithms and how it applies to the comparison of algorithms for
the P||Cmax problem. We review the comparisons presented in the literature and illustrate
the resulting ranking of algorithms. Section 7 provides an in-depth analysis, based on
the results and study limitations, which draws a roadmap for future research. Our main
findings and avenues for future work are summarized in Section 8.

2. P||Cmax Background
Herein we focus on the P||Cmax problem that was first introduced in 1959 [16] as

“Scheduling Many Processors Which Are Exactly Alike to Finish All Tasks as Soon as
Possible”. A formal definition of the class of scheduling problems was introduced two
decades later in [4] using the three-field notation α|β|γ to systematically classify scheduling
problems. In the three-field notation, α specifies machine environment, β indicates job
characteristics, and γ defines optimality criteria. For the P||Cmax, we substitute α with
P indicating that machines are identical and work in parallel, β is left empty as jobs are
independent, and γ is substituted with Cmax as the objective is to minimize the maximum
completion time (makespan). In [2], a more suitable and mathematically more formal
definition for the P||Cmax problem is introduced. Here, we present combinatorial and
mathematical programming formulations of P||Cmax, to introduce a notation that is used
systematically and consistently throughout the manuscript.

Definition 1 (Combinatorial formulation of P||Cmax). For a given set M = {1, . . . , m} of
m ∈ N identical parallel machines, i.e., processors, and a set J = {1, . . . , n} of n ∈ N independent
jobs, i.e., tasks with positive processing times p = (p1, . . . , pn), the goal is to assign each job to
exactly one machine in such a way that the latest machine completion time Cmax = maxi∈M Ci, is
minimized, where Ci is the sum of processing times of jobs assigned to machine i.

Definition 2 (ILP formulation of P||Cmax [17]). For a given instance (J, p, M), P||Cmax can
be defined in terms of ILP as:

min Cmax (1)

s.t. ∑
i∈M

xij = 1, j ∈ J, (2)

∑
j∈J

pjxij ≤ Cmax, i ∈ M, (3)

xij ∈ {0, 1}, i ∈ M, j ∈ J, (4)

where binary variable xij indicates whether job j is assigned to machine i.

A solution of P||Cmax actually represents the m-partition of the set J. Usually, pro-
cessing times are natural numbers, but in the literature, these values can sometimes be
represented as positive real numbers. The optimal value for Cmax is usually denoted by
C∗

max. The proof that P||Cmax is NP-hard can be found in [2]. It is possible to verify that
even P2||Cmax (m = 2) is NP-hard [3,18].

To identify the progress in the development of solution algorithms, as well as to clearly
classify the SLR studies, we preliminary divide optimization algorithms that have been
applied to the P||Cmax problem, loosely following [19], into three categories:

1. Exact (E)—provide guarantees of optimality;
2. Heuristic (H)—include constructive, improvement, and approximation algorithms;
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3. Metaheuristic (MH)—include general solution frameworks, possibly hybrid algorithms.

More details about the methods in each category and the background of their develop-
ments are provided in Section 4.

Table 1 shows what period each SLR study covers, whether it was a P||Cmax specific
survey, which category of optimization algorithms is in the focus of each SLR study, or if any
instances (not available—N/A or partially—P) and comparison methods (not available—
N/A or partially—P) were covered. “Partially” means that the focus of the SLR was not
on presenting which instances and comparison methods exist in the literature, but just
mentioning both as a side note. Bolded characteristics signify that SLR covers what we
need.

Neither of the SLR studies in the literature specify a period in which the SLR study
was covered. Therefore, the table contains the period from the first P||Cmax-related cited
reference up to the date the SLR study was published. As expected, not all SLR studies
covered all the optimization algorithms. Some of the important methods to solve the
P||Cmax problem are found in [8,20], but majority of methods are scattered throughout
other SLR studies. Overwhelmingly, the SLR studies covered a larger group of scheduling
problems and devoted a section to discuss the methods that were applied to the P||Cmax

problem. Several SLR studies that focused on the P||Cmax problem exhaustively covered
only a specific group of methods. Currently, there is no SLR study that discusses all
methods and all instances that could be found in the literature. Therefore, in Section 5, we
explain which groups of instances were widely used and which were unique in the sense
that they were used in a few studies and never again. In addition, we collected various sets
of test instances, analyze their usability, and made them accessible for the wider research
community. The majority of the SLR studies focused on comparing algorithms using Worst
Time Complexity (WTC), Worst Space Complexity (WSC), and/or Approximation Ratio
(AR). Only a few SLR studies describe algorithm comparison involving results obtained by
solving problem instances. To close the gap, Section 6 of our proposed SLR contains not
only a detailed description of the existing comparison mechanisms, but also an explanation
of a fair performance evaluation framework.
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Table 1. Systematic Literature Review Studies.

Paper Time Period P||Cmax Specific Methods Instances
Used

Comparisons
Explained

[21] 1959–1970 no H P P
[22] 1959–1974 no E, H N/A P
[23] 1959–1977 no H N/A N/A
[4] 1959–1979 no H N/A P
[24] 1966–1981 yes H N/A P
[18] 1966–1981 no E, H N/A P
[25] 1966–1982 no H N/A P
[26] 1966–1987 no E, H P P
[27] 1969–1987 no H N/A P
[28] 1969–1987 no E N/A P
[29] 1966–1993 no H, MH N/A P
[30] 1959–1994 no E, H P P
[31] 1959–1997 no E, H N/A N/A
[32] 1959–1998 no E, H N/A P
[33] 1959–1999 no E, H N/A P
[34] 1966–2001 no E, H, MH N/A P
[7] 1959–2003 no MH P P
[35] 1959–2004 no H N/A N/A
[36] 1966–2004 no E, H, MH N/A P
[20] 1966–2008 no E, H, MH P P
[37] 1959–2009 no E, H, MH N/A P
[38] 1959–2012 no E, H, MH N/A P
[39] 1966–2013 no E, H, MH P P
[40] 1969–2014 yes E P P
[8] 1959–2017 no E, H, MH P P
[41] 1961–2017 yes H P P
[42] 1959–2018 yes E, H P P
[43] 1982–2022 no E N/A N/A
[44] 1959–2022 no E, H P P

Proposed SLR 1959–2024 yes All All All

The proposed SLR focuses on the P||Cmax problem and all the methods published
since the 1950s as there is no SLR that covers them all systematically. Moreover, we include
an explanation of all instances and compare methodologies used in the literature. In the
next section, we present our SLR methodology.

3. Systematic Literature Review Mapping Methodology
SLRs are the best way to understand the background for developing rigorous research

projects. Thus, in many scientific fields there exist standards and guidelines for performing
the SLR. The operations research literature provides a taxonomy of SLRs [45] and our
SLR fits into the tutorial being selective towards the P||Cmax problem. Additionally, it is
an attempt to understand how to compare optimization algorithms, and how it fits into
a broad, comprehensive, computational review. As the optimization community does
not have an established SLR standard, we used the methodology based on standards
established in closely related fields of software engineering [46]. In this section, we show
the SLR methodology by explaining the following:

• Objectives and research questions;
• Search strategy;
• Search criteria;
• Inclusion and exclusion criteria;
• Search and selection procedure;
• Data extraction and synthesis;
• Important characteristics of selected primary studies.
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3.1. Objectives and Research Questions

We planned the review process by refining the research objectives into a set of research
questions. Our objectives to summarize and categorize the “state-of-the-art” methods,
benchmark test instances, and comparison methodology could be accomplished through
the following questions:

• RQ1. What are the main characteristics of P||Cmax optimization methods?
• RQ2. What are the characteristics of problem instances that methods were tested on?
• RQ3. What are the characteristics of comparison methodologies used for performance

evaluation of optimization methods identified in RQ1?
• RQ4: Based on RQ3, could a fair algorithm’s performance evaluation be defined?

In order to facilitate answering every question, a taxonomy-like characterization of
the answers has been identified for the first three questions, and the answer to RQ4 is given
in the discussion in Section 7.

3.2. Search Strategy

We utilized the PennState LionSearch tool, Copyright © 2021 The Pennsylvania State
University, 201 Old Main, University Park, PA 16802, to explore the available manuscripts.
LionSearch is an integrated search engine of books, journal papers, conference papers, and
other publications integrated from around 103 databases. It includes specialized databases
and search engines for operation research, optimization, and applied mathematics dis-
ciplines. The tool is provided and maintained by the Pennsylvania State University’s
Library.

We set up the following parameters for our search strategy: We looked for peer-
reviewed articles written in the English language in the following categories: Journal
Article, Book Chapter, Conference Proceedings, and Book/eBook. The detailed specification
of the search domains included computer science, engineering, mathematics, and general
sciences. The search was applied to the full text to ensure that the relevant study’s keywords
were not missed in the title or abstract. The time period was not specified to ensure that all
publications receive the chance to be selected.

3.3. Search Criteria

The search criteria had to include the keywords that were explained in Section 2.
Therefore, our query was composed of two strings in the conjunctive normal form. The first
should provide general context, while the second string specifies precise terms of interest.
An example of a search conducted in the LionSearch is as follows:

((Parallel machine scheduling) OR (Identical Machine Scheduling) OR (Scheduling Problems) OR (indepen-

dent tasks identical parallel machines) OR (independent jobs identical parallel machines) OR (independent tasks

identical parallel processors) OR (independent jobs identical parallel processors)) AND ((P||Cmax) OR (PCmax))

3.4. Inclusion and Exclusion Criteria

The initially retrieved studies from the electronic databases were assessed using the
inclusion and exclusion criteria, explained in this subsection.

Inclusion criteria:

• IC1: the language is English;
• IC2: it is relevant to the P||Cmax problem;
• IC3: it is an empirical research paper, a technical report, a proof of concept, a journal

article, a thesis, or a conference paper;
• IC4: it cites or is cited by any of the recognized research studies.

Exclusion criteria:
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• EC1: study’s focus is not explicitly on scheduling problems related to P||Cmax;
• EC2: the study does not address the optimization;
• EC3: the study does not meet all the inclusion criteria.

All studies that satisfied at least one exclusion criterion were not taken into consideration.

3.5. Search and Selection Procedure

The search was initialized in August 2023 and finalized in December 2024. In the first
step, the search returned 3482 results. The majority of these materials contained just a
reference to P||Cmax, did not focus on optimization algorithms/instances, or considered
a variant that is not relevant. In Step 2, the selection of relevant results was performed
and we ended up with a set of 236 documents. The most important component of the
selection procedure happened to be the last inclusion criterion. Step 3, was devoted to
reading all 236 manuscripts. The full text of each document was reviewed thoroughly by
at least two team members. We had weekly meetings to discuss progress and review the
findings. During the thorough reading we identified 100 more papers using a snowballing
method. That is, we followed which papers cite the relevant papers and identifed papers
that are cited by relevant papers. This resulted in 336 papers to assess quality upon.

In the last step, to assess the methodological quality of the primary studies selected
for this review, the following quality criteria was adopted:

• QC1: Does the research clearly address any theoretical aspect? (1 or 0);
• QC2: Does the research clearly explain a method? (1 or 0);
• QC3: Are the findings clearly stated? (1 or 0);
• QC4: Based on the findings, is the research valuable? (1 or 0) .

A quality score of 2 was set as the threshold to accept the study for this review. After
applying the quality criteria, 261 papers were selected as the primary studies.

3.6. Data Extraction and Synthesis

The data extraction process was conducted by analyzing the selected 261 primary
studies. We utilized a predefined extraction form to record the full details of the studies
under review and to list the specifics which we could leverage to address motivation,
background, and research questions.

3.7. Important Characteristics of the Selected Primary Studies

First, we classified the studies used in this paper according to the type of publication
shown in Figure 1.



Symmetry 2025, 1, 0 9 of 70

1958
1960

1962
1964

1966
1968

1970
1972

1974
1976

1978
1980

1982
1984

1986
1988

1990
1992

1994
1996

1998
2000

2002
2004

2006
2008

2010
2012

2014
2016

2018
2020

2022
2024

Year

Jo
ur

na
l

C
on

fe
re

nc
e

B
oo

k
R

ep
or

t
T

he
si

s

855 42 4 3 6 3 63 5 5 5 54357 443 3 3221 1 2 4 4 34481 3 6 22 221 1 21 141 11 1

132 2 2 3252 121 21 31 3 222 12 1 21

111 1 1 1 1 111 21 1211 1

1 11111

21 1 2 2 111 2 1 1Thesis

Report

Book

Conference

Journal

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
of

p
u

b
lic

at
io

n
sPublications

Figure 1. Publication types of selected primary studies.

The figure contains (dotted line) the distribution of studies per year, with their number
(maximum 10) indicated on the right side. For each type, the number of studies is written
in the circle of the corresponding color.

As shown in Figure 1, the publication years of these references are between 1959 and
2024, with a mean year of 2000.40 and a standard deviation of 15.30. This points to a
concentration of references that occur between the year 2000 and the present, with the early
2000s marking a significant surge. The interquartile range falls between 1987 and 2012,
indicating a recent focus in the literature.

The majority of the studies, 172 of 261, are journal papers published in the journals
from the following fields: discrete and applied mathematics, operations research, and
industrial and transportation engineering. Other than clearly identifying the fields, we
were not able to extract a useful pattern about the most popular venues for these types
of publications. There is a considerate, but significantly smaller number of conference
papers, 49 of 261, while books, research reports, and theses appear just sporadically. This
distribution reflects a heavy reliance on peer-reviewed journals while also incorporating a
variety of other publication types to ensure a comprehensive literature review.

Regarding the impact of publication types, citation counts for these references exhibit
considerable variability. The mean number of citations is 455.90, but this is heavily skewed
due to a few references receiving high citation numbers, as high as 19,154. The median
citation count is much lower at 38, and the interquartile range spans from 10 to 170.50. This
indicates that while many references have decent citation counts, there are a few highly
influential works significantly affecting the average. The variability underscores the impact
of a small number of seminal references. In particular, books were cited 3302.53 times on
average (maximum 19155). Journal papers had an average citation count of 288.87 (maxi-
mum 7905), and conference papers were cited 33.65 times on average (maximum 441).

In total, 152 studies provide some information related to RQ1, 81 are relevant for RQ2,
while for motivation, background, and answering RQ3 and RQ4 all 261 studies were
used. We have uncovered that the majority of the recent publications either compare their
approaches with the results published more than 25 years ago, or use those algorithms as
part of their solution methods. Contrary to all existing SLRs, we systematically cover all
the methods, instances, and comparisons. Additionally, we have made all the timeline(s)
clearly visible for each research question and identified group, such that any time period or
other characteristics of interest can be distinguished and understood.
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4. RQ1: Optimization Algorithms
The basic categorization of optimization methods is given in Section 2 and loosely

follows the taxonomy defined in [19]. These basic categories explain three fundamentally
different approaches to optimization problems. Exact solvers are able to guarantee the
optimality of the solution if enough resources are provided. They generally reduce search
space as much as they can to overcome the scarcity of resources. Heuristic methods usually
provide “good” solutions within a short running time. In general, heuristics are not able
to find optimal solutions or to guarantee the quality of the found solution. Contrary to
heuristic approaches that are usually specialized, i.e., they use some a priori knowledge
about the considered problem, metaheuristics are general-purpose algorithms. They can
be applied to various optimization problems and may be viewed as recipes to guide the
development of efficient heuristics for a specific optimization problem. Heuristic and meta-
heuristic optimization algorithms are focused on the fast construction of feasible solutions
or on the iterative improvement in the existing solutions. Figure 2 shows the distribution
of the selected primary studies that cover each identified optimization algorithm category.

Exact

24.3%

Heuristic

46.1%

Metaheuristic

29.6%

Figure 2. Percentage of different approaches.

As shown in Figure 2, the heuristic methods dominate the other two categories. This
pattern might be occurring for two reasons. Heuristics usually provide feasible solutions
fast; most providing some insights into the solutions quality and/or complexity of the
underlying algorithms. This provides researchers with standards that they can compete on,
i.e., publish improvements with respect to them. Metaheuristics have been explored for
only 30 years, and experienced a meteoric rise since 2000s; hence, it is unsurprising that
they occupy a slightly bigger area than the exact solvers. The latter are still very popular
regardless of their limitations. Advantages of exact solvers include but are not limited
to their theoretical importance, their applicability to special, easier yet very important,
variants of the problem, and the new paradigms that enable the efficient explorations of
solution space.

In this section, we explain the important steps for developing P||Cmax optimization
algorithms and divide the categories into groups based on the strategies used to address the
P||Cmax problem. For each group of methods, we present a short history, standardization,
and a graph showing the distribution of methods publications over time. When presenting
standardization, in each group of optimization algorithms the following table template is
used: The columns of the table are labeled: Name of the optimization algorithm (Name);
Where and when it is introduced (Reference), known selected characteristics for that
optimization algorithm (Known Characteristics); Publications where it is compared with
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other algorithms from the same group (Compared with). If any of the information is not
provided or not applicable, the corresponding cell contains N/A.

4.1. The Main Issues in Developing Optimization Algorithms

There have been many theoretical discussions about the P||Cmax problem, its prop-
erties, mathematical analysis, relations with other problems, hardness of instances,
etc. [2,3,14,47–94]. The majority of the theoretical conclusions are integrated into vari-
ous optimization algorithms from all groups. In the remainder of this section, we rely on
these theoretical results without explicit citations.

For developing any practical optimization algorithm, aiming to reduce its execution
time, it is important to conduct the following:

• reduce search space;
• have suitable data structures;
• have efficient rules for the construction/transformation of solutions.

As we want to ensure that our SLR represents a self-contained material, we provide
more detail about each of the items mentioned above.

4.1.1. Search Space Reduction

Usually, the first step in reducing the search space is finding good upper and lower
bounds. To quickly find a good upper bound, a common practice is to use some constructive
heuristic algorithms, which are described in Section 4.3.1. Many lower bound techniques
have been developed for P||Cmax since 1959 [16]. There are no theoretical guarantees that
some lower bound technique will be better than others [14,95]; therefore, they are often
combined for a better outcome.

To increase the efficiency of the lower bounds calculation, it is usually assumed
that jobs are sorted in a non-increasing order of their processing times. The most fa-
mous simple lower bound is L0 =

⌈ 1
m ∑n

i=1 pi
⌉

obtained by LP-relaxation rule that al-
lows dividing job processing time among machines [16]. Another simple lower bound
denoted by L1 is calculated as max{L0, maxi pi} [16]. The next simple lower bound is
L2 = max{L1, pm + pm+1} [57] obtained by considering the relaxed set of m + 1 as the
biggest jobs, and proved L2

C∗
max

≥ 2
3 . By exploiting the fact that there must be a machine

processing at least ν = ⌈n/m⌉ jobs, another simple lower bound is Lν = ∑n
i=n−ν+1 pi [57].

A whole class of other lower bounds may be obtained by observing a duality be-
tween P||Cmax and BPP [54]. Assuming that items correspond to jobs, the capacity of each
bin corresponds to the BPP-based lower bound L. The number of used bins corresponds to
the number of machines m. Finally, L is a valid lower bound for P||Cmax when the decision
procedure of BPP returns yes. The procedures for calculating BPP-based lower bounds LHS,
L3, and LFS are described in [54,57,96].

In addition to simple and BPP-based lower bounds, there are two other lower bounds:
LGB [97] and Lθ [57]. To compute general lower bound LGB, an instance of the P||Cmax

problem and machine-ready times (times when each machine can begin processing jobs)
are required. Actually, it is possible to compute LGB even in the case when machines are
already occupied. On the other hand, Lθ computes upper bound Θ and lower bound θ on
the number of jobs per machine.

Each lower bound Lξ can be lifted using the lifting procedure [95] and lifted lower
bound is denoted as L̃ξ . There is also the enhanced lifting procedure [14] where the resulting
lower bound is denoted as

#”

L ξ . The former lifting procedure relaxes instance of P||Cmax

considering k < m machines and the largest λk(n) = k⌈n/m⌉+ min{k, n − ⌈n/m⌉m} jobs.
The latter lifting procedure uses a solver for the Subset Sum Problem (SSP) to potentially
improve the result of the first lifting procedure.
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Some lower-bounding procedures and optimization algorithms perform the search
over solution space and require a priori known bounds to reduce that space and, conse-
quently, the execution time. Those particular procedures often use simple, computation-
ally inexpensive lower and upper bounding procedures in order to reduce the solution
space [54,57,96]. On the other hand, some procedures depend on the theoretical back-
ground of the simpler lower and upper bounds [97]. In addition, quickly found good lower
bound can terminate the execution. It can also guarantee optimality if it becomes equal to
the objective function value of a previously discovered feasible solution.

Lower-bounding procedures can be very computationally intensive, especially with
active lifting procedures. Sometimes it is important to make a balance between a good
lower bound and the required execution time for it. Finding a good initial solution can
reduce and eventually stop the lower-bounding procedure. On the other hand, a good
lower bound can reduce the search space for other solution-searching procedures.

In addition to lower bounds related to makespan, there are also bounds that impose
constraints on other solution parameters. These lower bounds can additionally streamline
the solution–finding process. That is, given a suboptimal solution S, when searching for an
improved solution S′, the condition CS′

min ≥ ∑i∈m CS′
i − (CS

max − 1)(m − 1) must hold. [42]
There is no full review of lower-bounding procedures and their comparison in the

literature. Similar papers include [14,95], and relying on their experiments; hence, it can be
concluded that no single procedure dominates for all instances. There is a need for a more
detailed comparison of all known lower-bounding procedures on a wider set of instances.
However, it is out of the scope of this study. Other than the reduction in search space, lower
bounds are important because the gaps with respect to them are used as the performance
evaluation in many cited articles.

4.1.2. Data Structures

For a P||Cmax optimization algorithm efficiency, it is important to define a proper
solution representation that ensures quick access to all necessary data. In the studies
selected during the SLR process, the following solution representations can be found:
Matrix, Permutation, List, and Path.

The usual way to represent solutions in the mathematical programming-based ap-
proaches is to use binary assignment matrix Xm×n = (xij). For each i ∈ M, j ∈ J, element xij

of assignment matrix Xm×n indicates whether job j is assigned to machine i, i.e., xij = 1
when job j is assigned to machine i, and xij = 0 otherwise. The assignment matrix repre-
senting a feasible solution for P||Cmax has exactly one non-zero element in each column,
i.e., it belongs to the class of sparse matrices.

Having in mind that each column in the assignment matrix has exactly one non-zero
element, storing zeros is not needed. Hence, for each job j ∈ J one can only store the
machine index µ(j) ∈ M such that job j is assigned to machine µ(j), where µ : J 7→ M
is an assignment function. Solutions can be considered as permutations of jobs and these
permutations actually define the order of their scheduling. Jobs are taken one by one from
the permutation and assigned to the least occupied machine (list scheduling principle).
Such a representation is indirect. Although each permutation uniquely defines the corre-
sponding solution, it is necessary to perform additional computations before discovering
the makespan value. This representation is more suitable for constructive optimization
algorithms than for iterative improvement-based ones.

A solution of P||Cmax problem could also be represented as an array Mchn of m assign-
ment lists, one for each machine. For machine i ∈ M, Mchn[i] contains all indices j ∈ J such
that job j is assigned to machine i. The assignment lists can be implemented in various
ways: (1) arrays of size n (inactive elements at the end are filled with zeros), (2) singly



Symmetry 2025, 1, 0 13 of 70

and (3) doubly linked lists. Each assignment list can be sorted in a non-increasing order
by processing times of jobs. Moreover, assignment lists can be implemented as (4) heaps
(facilitate accessing jobs with shortest or longest processing times in constant time) or (5)
sets (facilitate accessing/inserting/removing jobs in logarithmic time).

The least intuitive solution representation uses flow networks. The scheduling problem
is then formulated as the problem of determining m disjoint assignment paths between the
source vertex s and the target vertex t such that each job is used exactly once. Each
assignment path p : s ⇝ t represents a machine along which the assigned jobs can
be reconstructed.

4.1.3. Construction/Transformation Rules

As already mentioned, optimization algorithms either construct solutions from scratch,
or perform transformations on the existing solutions with an aim of improving them. In
both cases, some prior knowledge about the problem and the application of learning
techniques may increase the efficiency of the underlying procedure. Therefore, special
attention in developing P||Cmax optimization algorithms should be paid to construction
and transformation rules. More details are provided in the remainder of this section, where
each optimization algorithm is described separately, if applicable.

4.2. Exact Algorithms

The first exact algorithm, presented 1962 [98], is based on dynamic programming.
Over the years, many other exact solvers have been proposed. Our SLR revealed that
33 out of 167 selected studies consider the development of exact P||Cmax solvers. Their
main advantage is the optimality guarantee of provided solution, while the disadvantage
relates to the large resource requirements. Nonetheless, exact algorithms are still studied
from both theoretical and practical points of view.

We have classified the exact P||Cmax solvers into two groups based on [99,100] and
one group of practical significance.

• Exact exponential algorithms (EE);
• Fixed parameter tractable algorithms (FPT);
• Hybrid exact algorithms (HE).

EE algorithms for NP-hard problems are focused on providing as small as possible
WTC and WSC. The main characteristic of FPT algorithms is that they have polynomial
complexity with respect to the input data, while their exponential dependence on some
fixed parameter contributes to WTC. HE algorithms’ focus is often on exploring the results
of some other type of optimization algorithms to provide optimal solutions with guaranties
of optimality in a reasonable amount of time.

The practical importance of HE solvers stems from their adaptation and the ability to
explore the results of other types of optimization algorithms as the upper bounds used to
reduce the search space and increase the execution speed.

4.2.1. Exponential Exact Algorithms

To the best of our knowledge, all EE solvers for P||Cmax are presented in Table 2. We
include solver names which is based on the technique used and the year of publication.
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Table 2. Exponential exact algorithms.

Name Reference Known Characteristics Compared with

DP62 [98] 1962 DP; WTC: O(n2n); WSC: O(2n) N/A
DP66 [101] 1966 DP; WTC: O(mn

n ) N/A
DP76 [102] 1976 DP; WTC: O(min{2n, nC}) N/A
DP82 [103] 1982 DP; WTC: O(nC2n); WSC: O(pmax) N/A
DP87 [26] 1987 DP; WTC: O(nCm) N/A

DP11 [104] 2011 DP; WTC: 2O(m
√

|I|) N/A
SSM13 [105] 2013 SSM; WTC: O∗(m

m
2 ( n

2 )
m+1); WSC: O∗(m

m
2 ( n

2 )
m−2) N/A

C—optimal Cmax value (C∗
max). O∗(αn) = O(poly(n)αn). |I|—length of the input.

The first developed exact solver [98] belongs to the class of EE solvers. The focus of
researchers working on these solvers is improving WTC and WSC, which are therefore
much better than those for other exact solvers. Unfortunately, this fact has no practical
significance, since these algorithms are not implemented.

Even though many more techniques exist for EE solvers, it can be seen that the first
and mainly used technique for P||Cmax [98] is dynamic programming (DP). Notable EE
algorithms later improved DP with techniques like linear waiting costs [101], partition
algorithm scheme [102], the principle of inclusion and exclusion [103], recursive formula-
tion [26], and dynamic allocation [104]. In 2013, another EE P||Cmax solver was presented
based on the Sort and Search method (SSM) [105]. The table shows that WTC has been
improved consistently and WSC occasionally. Some WTC and WSC values depend on the
variables that are indirectly correlated with the size of the input (n and m), and thus, do not
have a clear exponential function form. Implementations of EE solvers are rarely found.
As shown in Table 2, EE solvers are not directly compared to each other, but there is some
cases where they are compared with other optimization algorithms.

Some EE solvers need the assumption of a known Cmax, i.e., C to establish WTC and
WSC in a pseudo-polynomial manner. Thus, the following theoretical result for the version
of P||Cmax with limited machine capacity - P|Cmax < C| [106] could be relied on. It has been
proven the existence of a lower bound on the WTC under the Exponential Time Hypothesis
(ETH). Assuming ETH, there is no algorithm that solves this problem with a worst-case
time complexity 2nδ

CO(1) where δ ∈ [0, 1], i.e., it cannot be solved in sub-exponential time.
Lower bounds for exponential algorithms are studied in [64,107]. From Table 2 it can be
seen that EE solvers are approaching this bound.

4.2.2. Fixed Parameter Tractable Algorithms

FPT algorithms focus on solving problems that are computationally hard in general
but become tractable when certain parameter k has a small fixed value. In other words,
these algorithms aim to provide efficient solutions for specific instances of a problem based
on k. Actually, FPT algorithms are exponential only with respect to k, while the size of the
input has polynomial influence to the algorithm’s running time. More formal definition is
that algorithms with running time f (k)nc, for a constant c independent of both n and k, are
called FPT algorithms [100]. In such a way, value of k controls the combinatorial explosion.

In 2015, it was proven that the P||Cmax problem is FPT parameterized by pmax = maxi pi [62].
Since then, several studies focused on generalizing the results to similar problems [108,109].
Unfortunately, these algorithms cannot be applied in general cases, nor compared to other
optimization algorithms. Thus, the practical significance of FPT solvers is very small, and more
detailed consideration is out of the scope of this study.

4.2.3. Hybrid Exact Algorithms

The main characteristics of HE algorithms is leveraging the results of other types of
optimization algorithms to reduce the search space. Providing optimal solutions, including
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guaranties of optimality, in a reasonable amount of time is what contributes to their practical
value. HE algorithms identified in our SLR are summarized in Table 3. For the known
characteristics field we opted to present what the HE solvers were composed of. As shown
in Table 3, HE solvers have been widely used and are still under development. Unlike other
exact solvers, they have been compared with other solvers in the same group.

Table 3. Hybrid exact algorithms.

Name Reference Known Characteristics Compared
with

N/A [110,111] 1973 B&B + Lagrange multipliers N/A
N/A [112] 1980 KP + Reduction method N/A

BIN, DM [57] 1995 BPP, B&B + MS + New LB N/A
CGA, CKK [9] 1998 Small m; B&B + LDM N/A

CP04 [113] 2004 B&B + Cutting plane + Polyhedral theory N/A
HJ [14] 2008 B&B + Symmetry-breaking + New LBs [57]

DIMM [114] 2008 B&B + Branch and price + Bin. search + SS [57]
SNPie, RNP [115] 2009 Small m; B&B + LDM [9]

IRNP [116] 2011 Small m; B&B + LDM + SSP [115]
MOF [117] 2013 Small m; B&B + SSP [116]

BSBCP, CKKi , RNPi [118] 2013 Small m; BPP; B&B + LDM + SSP [9,116]
BSIBC [119] 2013 Bin. Search + BPP [114,118]

SNPess, H14 [120] 2014 Small m; B&B + LDM + SSP [117,118]
CIW [121] 2014 Small m; Iter. weakening + Caching [117,119,120]

WL, WL′ [8,63] 2017 B&B + Path-related dominance criteria [14,114]
LCS [42] 2018 Small m; Iter. weakening + Caching + B&B [9,115–117,119–121]
KL [122] 2018 Bin. Search + B&B [57,114]
AF [123] 2018 ILP + AF + Reduction criteria + BPP [8,14]
iAF [124] 2022 ILP + AF + Graph compress. + BPP + VNS [123]

DIST [12] 2023 Decomposition + MKP [124]

The first HE algorithm for solving P||Cmax was developed in 1973 [110,111], and is
based on Lagrangian multipliers and utilizes Branch and bound (B&B) techniques. The
majority of HE algorithms use the B&B techniques with different criteria for branching
and bounding searches [8,9,14,42,57,63,110,111,113–118,120,122]. Before branching, HE
algorithms tend to tighten the search space as much as possible. For that purpose, lower
bounding techniques, various heuristics (e.g., Multi-Subset (MS)), metaheuristics (e.g.,
Scatter Search (SS) and Variable Neighborhood Search (VNS)) and LP techniques are
engaged [57,63,114,122]. Fine balancing between different phases is very important for the
best performance.

Some exact solvers for P||Cmax focus on solving instances with very small m and very big
job processing times, which belong to the MWNP formulation. Complete Greedy Algorithm
(CGA) [9], besides B&B simply tries all possible greedy ways to construct solution, while
Complete Karmarkar–Karp (CKK), presented in the same paper, combines B&B with Largest
Differencing Method (LDM) [53] algorithm. Authors used instances with m ≤ 3, n ≤ 200
and job processing times up to 1010. In [115], Sequential Number Partitioning with Inclusion
Exclusion (SNPie) and Recursive Number Partitioning (RNP) start with LDM solution and
follow the CKK algorithm and B&B strategy, are able to solve instances for m up to five and
processing times up to 108. IRNP [116] is a version of RNP, improved by using SSP. It can solve
instances for m up to 10 and processing times up to 1010. MOF [117] also leverages B&B and SSP
with new optimality rule—the principle of weakest-link. It can solve instances for m up to ten
and processing times up to 1010. CKKi and RNPi [118] are improved versions of CKK and IRNP
algorithms. RNPi are able to solve instances with up to m = 7 and with job completion times
up to 1014. A new version of the Sequential Number Partitioning with extended Schroeppel
and Shamir (SNPess) was developed in [120]. It generates all first subsets with sums within the
lower and upper bounds, and then for each, recursively partitions the remaining numbers k − 1
ways. It can solve instances for m up to ten and processing times up to 1014. H14 is a hybrid
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algorithm that combines CKK, CGA, SNPess, and MOF. Cached Iterative Weakening (CIW) [121]
uses iterative weakening instead of classic B&B, caches feasible subsets, and explores subsets
in cardinality order. All algorithms in this paragraph before CIW are anytime algorithms that
start with an approximate solution and then improve it until the best partition is found and
optimality is proved. In contrast, CIW starts with a lower bound and increases it iteratively
until an optimal solution is found, and the first complete partition found is optimal. The LCS
algorithm [42] combines the ideas of CIW and the MOF, by search caches only low-cardinality
subsets and performs in a two phases. In the first phase, it searches for an upper bound in the
way similar to CIW. In the second phase, it uses the B&B technique to either prove the upper
bound optimal or find a better optimal solution.

Other than B&B, a few solvers leverage binary search and duality with BPP. In [57],
the modification of MF CH (see Section 4.3.1) is used for the BIN algorithm. It is realized by
replacing the FFD procedure with exact MTP algorithm [125] with some small modifications
and limited number of backtracks to 5 · 103. For starting bounds they used L2 and result
of LPT CH. In the same paper, authors presented a very similar approach called MF, as
part of the initial phrase for their B&B DM algorithm. BSBCP works in a similar way, but
it uses the BCP algorithm [126] for solving BPP. The DIMM algorithm also uses a similar
principle with more advanced initial bounds, and BSIBC [119] uses BPP solver improved
by the authors.

Recently, ILP and graph compression techniques were combined with Arc Flow (AF)
formulation [123,124]. The resulting algorithms (AF and iAF) show remarkable perfor-
mance on some P||Cmax instances, however, they do not provide any feasible solution if
they are not able to find the optimal one. Another notable technique [112] reported in
1980 was based on the analogy between P||Cmax and the Knapsack Problem (KP). Recently,
the DIST algorithm [12], based on the decomposition and Multiple Knapsack Problem
(MKP), can guarantee the optimality of the provided solution when adequate time limits
for subproblems are defined. In all other cases it acts as iterative heuristic and can provide
good suboptimal solutions very fast.

4.2.4. Summary of Exact Approaches

To conclude the section on exact approaches, in Figure 3, we present the time distri-
bution of studies in which exact solvers were either developed or compared with other
optimization algorithms. From the figure, it is easy to distinguish the development of the
exact approaches in any decade of interest. EE solvers were the first developed; however,
the most recent study was about a decade ago. FTP solvers were only recently developed
with limited practical usability and are not represented in this figure as their focus might
only be related to some special variants of the P||Cmax problem. Finally, HE solvers have
been developed since the introduction of the formal P||Cmax problem definitions in the
early 70s. Their development and usage has been intensified recently.
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Figure 3. Published exact solvers per year.

4.3. Heuristic Approaches

Out of all considered literature items, the largest amount of papers introduced or
analyzed heuristic approaches to the P||Cmax problem as can be seen in Figure 2. This
is expected because the problem is NP-hard and exact solvers require large amounts of
resources. As aforementioned, in general, heuristics are not able to provide guarantees
of optimality. However, there are some heuristic methods that provide solutions with
provable quality and/or provable runtime estimation.

Definition 3 (α-Approximation). An algorithm A is an α-approximation for an optimization
problem Π if for each instance I of problem Π algorithm A computes a feasible solution to I and:
A(I) ≤ αOPTΠ(I), if Π is a minimization problem and α > 1; or A(I) ≥ αOPTΠ(I), if Π is a
minimization problem and α < 1.

If α is a constant, then an α-approximation is also known as a constant AR. For P||Cmax

if n → ∞, it could be said that it has 2-approximation [127], 4/3-approximation [128],
13/11-approximation [129], 72/61-approximation [53], etc. Usually, AR is not a constant, as
it depends on the size of the input data.

Heuristic approaches, also referred to in the literature as approximate algorithms, may
be divided into three groups. One group contains algorithms that construct a solution, the
other is composed of algorithms improving given solution as categorized in [8,130], while
the algorithms from the third group provide solutions arbitrarily close to the optimal and
are recognized in [19] as follows:

• Constructive Heuristics (CH);
• Improvement Heuristics (IH);
• Polynomial Time Approximation Schemes (PTAS).

The CH algorithms quickly build a feasible solution. Some of those algorithms might
provide also the AR. The goal of IH algorithms is to enhance the quality of a given solution
and, similar to CH, some of them may provide AR. PTAS algorithms take the solution
quality as an input argument and provide a solution of a given quality in polynomial time.

4.3.1. Constructive Heuristics

The CH algorithms are able to construct feasible solutions for a given instance very fast.
Their known characteristics may include AR and WTC, which give a solid performance
prediction in terms of solution quality and execution time, respectively. CHs are used
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both independently and integrated in more complex optimization algorithms. With their
execution time being often smaller than most lower-bounding procedures, they are usually
executed just after the trivial lower bound (L2). That is, CH algorithms are integrated in
more complex optimization algorithms with the goal of providing a good upper bound for
more complex lower-bounding procedures, improvement heuristics, exact solvers, and to
solve easy instances fast (Section 4.1).

The CH algorithms recognized in our SLR study are summarized in Table 4. They are
based on three identified techniques: List Scheduling (LS), Binary Search, and Decomposi-
tion, which are explained in the remainder of this section.

LS technique consists of two main steps. The first one is to arrange jobs into a prior-
ity list according to some predefined criterion. The second step performs actual assign-
ment/scheduling of one-by-one jobs from the list to the most appropriate machine as it is
defined by some scheduling rule. Many CH algorithms use the LS technique with different
job ordering criteria and different scheduling rules.

The first P||Cmax optimization algorithm from the CH group was developed
in 1966 [127]. In the literature, it is often referred to as LS because it uses the LS tech-
nique. However, we call it Simple List Scheduling (SLS) as the ordering criterion of jobs
is not specified. The scheduling rule utilized in SLS assumes scheduling the current job
on the least loaded machine, i.e., on the machine that is the earliest to start its execution.
Therefore, this scheduling rule is often referred to as the Earliest Start (ES) scheduling rule.

Table 4. Constructive heuristics.

Name Reference Known Characteristics Compared
with

SLS [127] 1966 AR: 2 − 1
m ; WTC: O(n log m) N/A

LPT, KK [128] 1969
AR: 4

3 − 1
3m ( 7

6 for m = 2); WTC: O(n log(nm)),
AR: 1 + 1−1/m

1+⌊r/m⌋ ; WTC: NP N/A

MF′ [131] 1972 AR: 5
4 + 5

4 21−k ; WTC: O(n log n + kn log m) N/A
MF [129] 1978 AR: 13

11 + 2−k ; WTC: O(n log n + kn log m) [128,131]
MAAAT [112] 1980 WTC: O(n log n) N/A

LDM [53] 1982 AR:
[

4
3 − 1

3(m−1) , 4
3 − 1

3m

]
( 7

6 for m = 2);
WTC: O(n log n + nm log m)

N/A

MFi [132] 1986 AR: 72
61 + 2−k (tight for m ≥ 12);

WTC: O(n log n + kn log m)
N/A

MFe [133] 1988 AR: 10
9 for m = 2; WTC: O(n log n + kn log m) [128,129]

COMBINE [134] 1988 AR: 13
11 + 2−k( 10

9 for m = 2);
WTC: O(n log n + kn log m)

[128,129]

P1 [135] 1994 WTC: O(n) N/A
MS [57] 1995 WTC: O(mn2) N/A

RAS2 [136] 1996 AR: 4
3 − 1

3m ; WTC: O(n log(nm)) [128,129]
LISTFIT [137] 2001 AR: 13

11 + 2−k ; WTC: O(n2 log n + kn2 log m) [128,129,134]
FGH, DGH [130] 2001 AR: 13

11 + 2−k ; WTC: O(n log n + kmn) [128,129,136]
AP [138] 2002 WTC: O(n log(nm)) [128–130]
H1 [139] 2004 WTC: O(nm log( 1

ε +
1
ε2 )) N/A

SS, LPTR [95] 2006 WTC: O(nmS), AR: 2 − 1
m ; WTC: O(n log(nm)) [57,128]

MPS [140] 2007 AR: 1 + m−1
mz ; WTC: O(n log n + nm) [128]

PSC [141] 2008 WTC: O(n log n) [128]
PSCi [142] 2009 WTC: O(n log n) [128]
SPS [143] 2010 AR: 1 + m−1

mz ; WTC: O(n log n) [128]
DJMS [144] 2015 AR: 13

11 + 2−k ; WTC: O(n log n + mkn log m) [128,129,134,137]
PSMF [145] 2015 AR: 13

11 + 2−k ; WTC: O(kn2) [128,129,134,137]

SLACK [146] 2020
AR: 4

3 − 1
3(m−1) (

9
8 for m = 2);

WTC: O(n log(nm)
[53,128,134]

z—number of initial partitions. k—number of steps. r—number of optimally scheduled longest jobs. S—target
sum of job durations. ε—target precision.
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The most popular LS-based algorithm is LPT [128], because of its simplicity, speed, and
very good AR and WTC. The more appropriate name for this algorithm would be LPT+ES
(as it is suggested in [147]). The LPT part of the name refers to the longest processing
time job ordering criterion, while ES is used as a scheduling rule. However, the LPT+ES
algorithm is most commonly referred to as the LPT algorithm only and we keep this
notation. To distinguish between the two LPT meanings, we always write the LPT ordering
criterion and LPT algorithm when appropriate. In the same study [128], Kleitman and
Knuth’s (KK) algorithm is presented. It starts with a partial schedule in which r < n longest
jobs are optimally scheduled and then arbitrarily schedules the remaining jobs. It has been
proven that, under the optimality of partial solution and for a large enough r, KK improves
AR in comparison to the LPT algorithm.

Several algorithms leverage the LPT job ordering criterion. m-Assignment-at-a-time
(MAAAT), proposed in [112], uses the LPT job ordering criterion and schedules jobs to
machines in a zig-zag manner. Ordered jobs are partitioned into subsets of size m and jobs
from each subset are scheduled to machines alternating between first-to-last and last-to-
first order. Randomized LPT (LPTR) [95] iteratively selects two unscheduled jobs with
the longest processing times and then randomly assigns one out of this pair to the first
available machine.

RAS2 [136] heuristic is similar to the LPT algorithm, but instead of ES, Best Fit (BF)
is applied to schedule the remaining jobs. That is, the unscheduled job with the longest
processing time is assigned to the most heavily loaded machine such that L1 bound is not
exceeded. If such a machine does not exist, the job is assigned to the least loaded machine.
Therefore, AR and WTC are the same as for the LPT algorithm. In [148], AR was proved to
be the same as LPT, and we concluded that WTC is the same as LPT, too.

Fixed Gap Heuristics (FGH) and Dynamic Gap Heuristics (DGH) [130] are also based
on the LS technique and have parametric and non-parametric variants. They use the
LPT job ordering criterion and an alternation between ES and McNaughton Adjustment
(McNA) [17,136] scheduling rules. According to McNA, the machine whose load, after
the assignment of the current job, will be closest to the makespan lower bound (without
exceeding it) is selected. If this is not possible, the job is assigned to the machine where its
completion time would be minimal. The presented procedures work in iterations, using
the best solution makespan and various lower bounds [130] for switching between the
McNA and ES scheduling rules. Both of these procedures have significantly better AR and
significantly larger WTC in comparison to the LPT algorithm.

Three constructive heuristics [138] are based on the following algorithm. The setup is
to start with a jobs sorted in a non-increasing order of their processing times and machines
divided in r subsets (r ≤ m). The algorithm takes the first subset of machines and assigns
the jobs according to the LPT rule, until completion time of the included machines is nearest
to a fixed limit (e.g., some lower bound), without exceeding it. When there is no machine
in the first set to which it is possible to assign a job, respecting the limit, the next subset of
machines is added to the first one and the algorithm follows in the same manner. When the
last subset of machines was added the algorithm follows the LPT rule, assigning the rest of
the jobs without respecting given limit. AP heuristics (AP10, APni, and APi) are derived
based on the described algorithm depending on the way of forming the machine subsets.
We concluded that heuristics can be implemented in WTC O(n log(nm)).

SLACK [146] is a recent modification of the LPT algorithm. It organizes jobs into
groups (slacks) of m elements (complemented with zeros) and sorts them in a non-increasing
order according to the difference between their longest and shortest jobs. In this way, a
new priority list of jobs is obtained and jobs are scheduled one-by-one following the ES
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scheduling rule. The AR of the SLACK algorithm is improved in comparison to the LPT
algorithm, without significantly increasing the computation time.

P1 from the 3-PHASE [135] algorithm is also based on LS and does not require sorting.
It starts with identifying minimum and maximum job processing time and dividing the
interval between these two values into a predefined number c of equal or almost equal sub-
intervals. In addition, an array of c elements is introduced and initialized with zeros. Each
element contains the index of the machine where the previous job from the corresponding
sub-interval is scheduled. Then, the algorithm takes one by one job from the unsorted list
and schedules it to the machines in a round round-robin manner. That is, if the previous
job from the same sub-interval is scheduled to the machine i, the current one is assigned
to machine i (mod m) + 1. AR was not provided in the study, but the scheduling can
be performed in linear time. With well-chosen parameter c, a balanced schedule can
be obtained.

MULTIFIT algorithm (MF), developed in 1978 [129], is based on the binary search
technique, firstly used in [131] for similar but weaker and less popular MF′ algorithm. At
the beginning of the MF algorithm lower (CL) and upper (CU) bounds on the search interval
have to be set. MF iteratively performs a binary search in the interval [CL(i), CU(i)], where,
CL(1) = L1 and CU(1) = max{2L1, pmax}. The main step of the binary search involves
the execution of the First Fit Decreasing (FFD) algorithm [77,149] with the bin capacity
limit C = (CL(i) + CU(i))/2 to construct the feasible solution for the BPP. The maximum
number of iterations (steps) k is an input parameter of the MF algorithm. Recommended
value for k is to be not smaller than seven, and seven is the default value if some another
value is not mentioned. As AR depends on this input parameter, MF has a better AR for
relatively small values of k, while having a higher WTC in comparison to the LPT algorithm.
MFe [133] and MFi [132] are the modifications of MF.

The MPS [140] algorithm is based on the decomposition technique and it iteratively
combines partial solutions (PS) of a given instance. The set of jobs is divided into a given
number (z) of partitions. Each partition contains m disjunctive subsets of jobs, representing
an initial PS, which are combined until a complete solution is obtained. The authors derived
the properties that each PS should satisfy such that the resulting complete solution has
AR z+1

z − 1
mz . Although MPS’ AR is strongly related to the number of initial partitions, it

has been demonstrated that its values are competitive with the LPT’s AR. A similar idea
is used in PSC [141], and its improved variant PSCi [142]; however, the AR for these two
algorithms cannot be easily estimated. The newest algorithm in this group, SPS proposed
in [143], has the same AR and lower WTC with respect to MPS.

There are several CH algorithms that are based on a combination of the identified
techniques. The multi-Subset (MS) algorithm [57] uses the lower bound of L3 and an
efficient G2 heuristic [150] for SSP. In the first phase, using G2 it construcs at schedule the
closest possible to L3 for machines one by one, using currently unassigned jobs. In the
second phase, if some jobs are still unscheduled, it is proved (assuming that G2 has found
an optimal solution) that their number is smaller then m. The optimal way to schedule
them is to assign the longest unscheduled job to the less busy machine and so on. AR
for this heuristic has not been derived. A similar CH algorithm to MS was developed
for HI IH [139] and it is named H1. In this variant the longest yet unassigned task is
assigned to the current processor. Then, a subset of the yet unassigned tasks such that
the sum of their processing times is as close as possible to a given limit to the makespan
will be assigned to the same processor. The MTSS(3) PTAS [151] is used in the second
step. The remaining unassigned tasks are considered one by one in non-increasing order of
their processing times and assigned to the processor with the smallest load. SS algorithm
starts by finding a subset of jobs whose total processing time is minimal but not less than
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the value of a L2, using the SSP solver. These jobs will be assigned to a first machine.
Then, the algorithm computes a lower bound of the instance, which is defined by one
machine less and the rest of the jobs. Again, a SSP is solved in order to determine an
optimal subset of jobs that will be assigned to a second machine, and so on. In their
implementation, authors used pseudo-polynomial time using the dynamic programming
algorithm developed by Pisinger [152]. The COMBINE algorithm [134] is a combination
of LPT and MF algorithms. It first applies the LPT algorithm and then invokes the MF
algorithm with CL(1) = max{L1, CLPT

max /ARLPT} and CU(1) = CLPT
max . The COMBINE

algorithm has the same AR as MF and provides competitive results that correspond to the
better among LPT and MF algorithms.

The Different Job and Machine Sets (DJMS) algorithm [144] applies to most m times
LPT algorithm followed by MF algorithm on various subproblems of the considered P||Cmax.
Unlike other LS-based algorithms, DJMS decomposes both job and machine lists.

The LISTFIT [137] algorithm combines MF with two LS techniques involving LPT and
Shortest Processing Time (SPT) ordering criteria. The main idea of the LISTFIT algorithm is
to create a number of job lists to be explored by the MULTFIT algorithm. In more detail,
the set of jobs is iteratively partitioned into two subsets that are ordered according to all
combinations of SPT and LPT criteria and used for generating various job lists. In such a
way, 4n different lists are explored in the MULTFIT algorithm. The best obtained solution
is returned as the final one. LISTFIT’s AR corresponds to the MF algorithm, while WTC is
significantly larger.

The PSMF algorithm [145] is a recent combination of modified MPS and MF algorithms
that has the same AR as MF but worse WTC than both MPS and MF.

The largest Differencing Method (LDM) also known as the Karmarkar–Karp algo-
rithm [53] is based on the idea of how to construct a solution hierarchically in n iterations.
In the beginning, jobs are sorted in the non-decreasing order of their processing times,
and n partial solutions are created such that j-th partial solution consists of m − 1 empty
machines, while machine m is assigned job j only. In each of the remaining n − 1 iterations,
two partial solutions are replaced with the result of their combination performed in the
following way: First, two partial solutions with the maximum difference between the
loads of maximally and minimally loaded machines are identified. These two solutions are
combined into a new partial solution by joining the load of the minimally loaded machine
from the first with the load of the maximally loaded machine in the second partial solution.
The second smallest load of the first partial solution is joined with the second largest load
of the second partial solution, and so on. In the end, a unique complete solution is obtained,
whose AR value is estimated to be between ARs of SLACK and LPT. However, it has a
larger WTC than SLACK.

4.3.2. Improvement Heuristics

The IH algorithms start from an existing feasible solution (however it is provided) and
iteratively apply different modifications (transformations) trying to improve its makespan.
The most frequently applied modifications are move and swap (exchange). The move
modification, takes one or more jobs from one machine and schedules it/them to some
other machine. In its most general case, swap modification selects two machines, takes
subsets of jobs assigned to each of them and exchanges their positions. The simplest and
most common swap variant is the binary swap that exchanges positions (machines) for
a pair of jobs scheduled on different machines. We use term interchange to denote any
modification of some feasible solution. One of the important properties of the IH algorithms
is that they can be provided by a stopping criterion to limit their execution. The best found
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solution is returned as the final result. Table 5 presents all improvement heuristics known
to us, with information about other improvement heuristics they were compared with.

IH, proposed in 1978 [153], involves human help (interaction) in some steps of execu-
tion. Such IH approach is not practical, especially for large instances, and therefore, it was
not further developed.

IC (0/1-INTERCHANGE), proposed in [154], is one of the simplest IH algorithms. It
starts from a randomly generated feasible solution and iteratively performs the following
steps. It sorts machines in the non-increasing order of their loads. It then calculates the
difference between the most and the least heavily loaded machines. On the most heavily
loaded machine, it finds the job with the processing time smaller than the calculated
difference and moves it to the least heavily loaded machine. The above-mentioned steps
are repeated until no such job can be found. Two improved versions of the IC algorithm
(ICI and ICII) were developed in [155]. The final version of ICII differs from the original
algorithm in the initial solution generation procedure. The longest 2m jobs are scheduled
using the LPT algorithm, while the remaining jobs are assigned to the machines randomly.
In this way, the same AR as the LPT algorithm is obtained without increasing WTC.

A more sophisticated approach, named Knapsack-on-multiple-processors (KOMP)
algorithm, was proposed by[112]. The initial solution could be generated by any CH and
the authors proposed to use LPT, MF, or their own MAAAT constructive procedure. In the
improvement phase, the initial solution is first modified by iterative single-job moves and
then by binary swaps (two jobs exchange their machines). Next, the resulting solution is
additionally improved by iteratively solving the Knapsack problem for a pair of machines
containing the most heavily loaded one using KP solver presented in [156].

The EX (EXCHANGE) algorithm [157] combines the interchange principle with the
decomposition. The authors analyzed in detail the case when m = 2 and proposed to swap
and/or move subsets of jobs such that the current makespan is reduced and made closer
to L0. In the more general case, a pair of machines (one of them being the most heavily
loaded) is selected and 2-machine transformation rules are applied until no improvement
can be made, iteratively. In [158], this algorithm is named EXCHANGE, and its AR
is calculated.

The 3-PHASE algorithm [135] is composed of three procedures (phases). The first
procedure is fast CH P1. The second procedure repeatedly tries to move a job from the most
heavily loaded machine to the least loaded machine in order to reduce the makespan. The
third procedure tries to improve makespan by exchanging one job between the maximally
loaded machine and some other machine.
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Table 5. Improvement heuristics.

Name Reference Known Characteristics Compared
with

N/A [153] 1978 Interactive N/A
IC [154] 1979 Interchange; AR: 2 − 2

m+1 ; WTC: O(n log m) N/A
KOMP [112] 1980 KP + Interchange; WTC: O(nmS) N/A

EX [157] 1981 Interchange + Decomposition; AR: 4
3 − 2

3m ; WTC: O(n2mS) N/A

ICI, ICII [155] 1982 Interchange; AR: 3
2 − 1

2m ; WTC: O(n log m),
Interchange; AR: 4

3 − 1
3m ; WTC: O(n log m)

N/A

3-PHASE [135] 1994 Interchange + Decomposition; AR: 2 [154,155]
X-TMO [159] 1995 SSP; AR: 13

11 + 2−k ; WTC: NP N/A
RAS1 [136] 1996 Interchange; WTC: O(n log(nm)) N/A

PI [160] 1998 Interchange; WTC: O(n log(nm)) N/A
CP99 [17] 1999 Cutting plane + ILP + Polyhedral theory N/A

LPT+, MF+ [161] 2002 Interchange; AR: 4
3 − 1

3m ; WTC: O(nmS log n),
Interchange; AR: 13

11 + 2−k ; WTC: O(nmS log n)
N/A

ME [162,163] 2004 Interchange + Graph [135]
HI [139] 2004 BPP+TS; AR: 5

4 + 2−k [135,163]
MSS [95] 2006 SSP; AR: 2 − 1

m ; WTC: O(nmkS2) [57,139]
MSK [14] 2008 KP; AR: 2 − 1

m ; WTC: O(n2mkS2) [57,95,139]
CA [164] 2011 Partial [139,163]

PSMF+ [145] 2015 Interchange + Partial; AR: 13
11 + 2−k ; [139,163]

KLh [122] 2018 Interchange + BPP [139]
MMIPMH [165] 2019 Hopfild; AR: 4

3 − 1
3m N/A

SLACK+ [146] 2020 Interchange; AR: 4
3 − 1

3(m−1) N/A
N/A [166] 2022 Interchange + KP N/A
DIST [12] 2023 Decomposition + MKP; AR: 4

3 − 1
3(m−1) ; WTC: NP N/A

X-TMO [159] uses the new TMO SPP solver to optimally solve a case that includes the
most heavily loaded and the least loaded machine. When the solution cannot be improved
anymore using these two machines, the procedure uses the second least loaded machine.
Then, it continues choosing the next least loaded machine while there exists a chance
for improvement.

CP99 [17] is an approximation algorithm that leverages linear programming formula-
tions combined with a cutting planes method. This approach involves iterative calculations
of lower bounds through successive linear programming relaxations.

RAS1 [136] and PI [160] algorithms are similar to X-TMO, but they do not solve two-
machine problems exactly. Instead, they try to find the best two jobs on two machines for
exchange. The presented WTC for RAS1 in [136] is O(n log n + nm log m); however, we
concluded that (using efficient data structures) both algorithms can be implemented in
WTC O(n log(nm)).

LPT+ and MF+ [161] start with schedules constructed with LPT and MF CHs. A local
search heuristic is applied to refine the solutions generated by constructive heuristics. The
neighborhood is created by identifying pairs of jobs assigned to processors with varying
loads, ensuring that one of the processors is the most heavily loaded. The local search
involves evaluating these job pairs and accepting changes that decrease the load disparity
between the two processors. After each adjustment, the neighborhood is redefined, and the
search process begins again. The search ends when all job pairs in the neighborhood have
been explored without achieving any improvement, indicating that a local optimum has
been reached.

A wide family of IH solvers for P||Cmax has been proposed in [162,163]. The authors
showed that, among them, 1-SPT, K-SPT, 1-BPT, and K-BPT exhibit the best performance.
They are based on a graph representation of the problem and multiple exchanges of jobs
between machines. The best result of the mentioned four heuristic is denoted as Multi-
Exchange (ME).
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Hybrid Improvement (HI) [139] starts with LPT and H1 CHs, and ε-DUAL PTAS for
ε = 1

5 which also produces LHS and gives AR of 5
4 + 2−k. Additionally, lower bounds

L3 and Lθ are used. Then, HI applies the binary search that explores duality between
P||Cmax and BPP where for every new target value of makespan new starting solutions are
constructed and improved with TS.

Multistart Subset Sum (MSS) [95] is an IH algorithm which tries to iteratively improve
the solution by equalizing the load of all pairs of machines with the most heavily loaded
one and using an exact SSP solver. The Multistart Knapsack (MSK) algorithm [14] works in
the same way, but always puts a minimal number of jobs on a machine with a smaller load.
This strategy increases the chance for future improvements. To achieve this, instead of an
exact SSP solver, it uses an exact KP solver.

The Composite Algorithm (CA) [164] starts from a family of initial partial solutions
and combines these partial solutions (similarly to MPS [140]) until a feasible solution is
generated. In the second phase, the CA applies local search procedures on partial solutions
trying to generate a feasible solution with an improved makespan compared to the initial
feasible solution. In total, five local search procedures are defined, one exploring the
single-job moves, while four of them are based on the job swaps. In two of the swap-based
neighborhoods, it is allowed to exchange a single job with a subset of jobs (referred to as
composite jobs) from another machine. In addition, two neighborhoods allow accepting the
solutions of the same quality as the initial one, as long as these moves increase the chances
of improving the succeeding neighborhoods (similarly to MPS).

The PSMF+ algorithm [145], is obtained by inserting a 2-exchange procedure in PSMF
CH after CUPS procedure and after MTMF procedure. It swaps two jobs from different
machines until an advantageous exchange has been identified.

The KLh algorithm [122] is an initial phase of the KL HE algorithm. It consists of
the constructive approximation algorithms, the local searches for improvements for every
constructed solution, the lower bounds, and the primal heuristic at the root node of the
B&P tree for the makespan value is equal to the best lower bound. The main component is
the primal heuristic with task to find a feasible solution for a BPP instance at the root node
of HE algorithm.

The MMIPMH method [165] is inspired by balancing the Hopfild neural network
with binary decision variables from the assignment ILP model for P||Cmax. In practice, it
iteratively applies the LPT algorithm on selected partial solutions.

SLACK+ [146] applies a one-job swap neighbor search (NS) on a solution obtained
with SLACK constructive heuristic. Swaps are performed between the most heavily loaded
and some other machine.

In [166], a wide set of solution modification procedures that perform local improve-
ments of an initial P||Cmax solution is presented. In total, 35 solution modifications are
proposed and, when combined with two CH algorithms to obtain an initial solution, they
produce 70 simple IHs. Solution modifications are composed of job moves and swaps
and are divided into two classes depending on the selection strategies for both jobs and
machines. The main goal of these transformations is to obtain a makespan of the schedule
as close as possible to L0 lower bound. Transformations from the first class are composed
of the following steps: The most heavily loaded machine (called source) is identified, a
job from it is selected, as well as the destination machine where this job should be moved.
Optionally, the load imbalance may be improved by moving some small-sized jobs from the
destination machine to the source one in a deterministic way. There are three different ways
to select the job to be moved and five possibilities to select the destination machine. Trans-
formations from the second class combine (mix) all jobs from the source and destination
machines (identified in the same ways as for the first class transformations) and schedule
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them by the KP algorithm such that the load imbalance is minimized. The complexity of
all transformations is analyzed having in mind the efficient data structures that have been
used.

Decomposition-based Iterative Stochastic Transformation (DIST) [12] is IH based on
binary searching for optimal makespan and exact solving subproblems of increasing size
using the MKP exact solver. DIST explores the relationship between P||Cmax, BPP, and
Multiple Subset Sum Problem (MSSP) end, examining efficient algorithms for BPP and
MSSP to provide high-quality solutions of P||Cmax. The main step of DIST explores a
stochastic partitioning strategy to create subproblems of the original problem that are
treated as instances of MSSP and solved by the efficient exact solver based on MKP within
the predefined time limit. At the beginning of its execution, DIST starts by random
partitions that create smaller subproblems with a larger potential to yield improvements of
the current solution. In the case were the improvement has not been achieved, the algorithm
creates and solves larger subproblems. In such a way, DIST performs nondeterministic
transformations of the current solution, and therefore, it could be considered as a stochastic
search algorithm. Due to the fact that it applies the time-limited exact solvers to the created
subproblems, it belongs to the class of heuristic algorithms. However, DIST exhibits a very
good performance within a short execution time, and becomes an exact solver for given big
enough time limits.

4.3.3. Polynomial Time Approximation Schemes

The majority of constructive heuristics provide good approximations for the opti-
mization of P||Cmax. However, P||Cmax and many other optimization problems can be
approximated to any precision. More precisely, there exists a special group of algorithms
providing nearly optimal solutions that may be possible in polynomial time. They are
known as Polynomial Time Approximation Schemes or PTAS algorithms [167]. In this
section, we explain the characteristics of PTAS and review studies that introduced various
PTAS algorithms.

Definition 4 (Approximation Scheme). An approximation scheme for an optimization prob-
lem Π is a family of algorithms Aε defined as follows. For a given approximation accuracy param-
eter ε > 0 and an instance I of problem Π, algorithm Aε computes a feasible solution of I whose
objective value differs from OPTΠ(I) by at most εOPTΠ, i.e., |Aε(I)− OPTΠ(I)| ≤ εOPTΠ(I).

Actually, PTAS is defined as an algorithm that, for any given ε > 0, produces a feasible
solution within a factor of (1+ ε) of the optimal solution. The running time of the algorithm
should be polynomial with respect to the input size and inversely proportional to ε. For
example, if an algorithm is a (1 + ε)-approximation PTAS for a certain problem, it means
that the solution it provides is guaranteed to be within a factor of (1 + ε) times the optimal
solution. As ε approaches zero, the approximation factor approaches one, indicating a
solution that is arbitrarily close to the optimal.

The parameter ε controls the distance to the optimal objective value, i.e., smaller
values of ε result in better solutions (closer to optimum). It is important not to confuse
approximation schemes with simple heuristic algorithms, as the later may not provide
certain approximation guarantees. Selecting the appropriate value for ε involves a trade-off.
A smaller ε generally leads to a more accurate approximation but may result in longer
running times. The choice of ε depends on the specific requirements of the problem at hand
and the balance between solution quality and computational efficiency that is acceptable
for the application. Researchers and practitioners in general cases often experiment with
different values of ε to find a suitable compromise for their particular use case.

Let us denote by |I| the size of instance I, and let f : R → R be a polynomial
function. Depending on the running time, the following types of approximation schemes
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are summarized in Table 6. A quasipolynomial-time approximation scheme (QPTAS) if the
corresponding algorithms run in time |I| f (1/ε)logO(1) |I|. A polynomial-time approximation
scheme (PTAS) if they run in time |I| f (1/ε). An efficient polynomial-time approximation
scheme (EPTAS) if they run in time f (1/ε)|I|O(1). A fully polynomial-time approximation
scheme (FPTAS) if they run in time (|I|/ε)O(1), which is polynomial in |I| as well as in 1/ε.

Table 6. Approximation schemes.

Approximation Scheme QPTAS PTAS EPTAS FPTAS

WTC |I| f (1/ε)logO(1) |I| |I| f (1/ε) f (1/ε)|I|O(1) (|I|/ε)O(1)

In [102], the authors proposed an FPTAS for the Pm||Cmax problem, i.e., when the
number of machines m is fixed. However, in general, the problem is strongly NP-hard, so
there is no FPTAS for P||Cmax unless P = NP . PTAS approach is not practical for P||Cmax

because, even for large values of ε, the execution time is unacceptably long for large-size
instances. Therefore, PTAS algorithms are usually studied from a theoretical aspect. WTC
that includes ε are common comparison measures for this type of optimization algorithms.

The first PTAS for P||Cmax is ε-DUAL and it was presented in 1985 [54,168], and
improved by [58,169–171]. For (1 + ε)-approximate solutions, the fastest known PTAS
for P||Cmax has a running time of 2O((1/ε) log(1/ε) log log(1/ε)) +O(n) [175]. [107] shows that,
assuming the exponential time hypothesis (ETH), for ε > 0 it cannot exist PTAS that yields
(1 + ε)-approximate solutions with running time 2(1/ε)1−δ

+ poly(n) for any δ > 0. Table 7
shows the WTC of all known PTAS optimization algorithms for P||Cmax. Among them,
only ε-DUAL and BDJR [174] have been implemented. Lower bounds for approximation
schemes were studied by [64].

Table 7. Polynomial time approximation schemes.

Name Reference Known Characteristics Compared
with

ε-DUAL [54,168] 1985 WTC: nO((1/ε)2 log(1/ε)) N/A
N/A [169] 1989 WTC: nO((1/ε) log2(1/ε)) N/A
N/A [58,170] 1998 WTC: 2O((1/ε)poly(1/ε)) +O(n log n) N/A
N/A [171] 2010 WTC: 2O((1/ε2) log3(1/ε)) +O(n log n) N/A

JR [172] 2019 WTC: 2O((1/ε) log2(1/ε)) +O(n) N/A
N/A [173] 2020 WTC: 2O((1/ε) log4(1/ε)) + poly(n) N/A
BDJR [174] 2022 WTC: 2O((1/ε) log(1/ε) log log(1/ε)) log n +O(n) N/A
N/A [175] 2023 WTC: 2O((1/ε) log(1/ε) log log(1/ε)) +O(n) N/A

4.3.4. Summary of Heuristic Approaches

One of the oldest constructive techniques, LPT proposed in 1966 [127], still presents
the most popular heuristic for the P||Cmax problem due to its simplicity and effectiveness.
Ever since its development, it has been used in other approaches to generate the initial
solution. The different heuristic approaches developed from 1966 to today are summarized
in Figure 4. The figure shows that it is easy to distinguish the development of the heuristic
approaches in any decade and for any group of interest. There has been a steady devel-
opment of improvement heuristics and that PTAS were introduced in 1980s and there has
been renewed interest in that type of algorithms lately.
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Figure 4. Published heuristics per year.

4.4. Metaheuristics

Metaheuristic (MH) algorithms [19] are high-level search strategies designed to find
near-optimal solutions for optimization and search problems. These algorithms are not
problem-specific but can be applied to a wide range of problems. They are particularly use-
ful when dealing with complex problems for which finding an exact solution is impractical
or impossible within a reasonable amount of time.

MH algorithms became popular in the late 1980s and their application to P||Cmax

started at that time. We will use [19] classification and divide MH algorithms into
Population-Based Metaheuristics (P-class) and Single Solution-Based Metaheuristics (S-
class). P-class metaheuristics maintain a population of potential solutions throughout the
search process. The algorithms maintain a population though its evolution over time, typi-
cally through mechanisms inspired by natural processes such as selection, mutation, and
recombination. S-class metaheuristics focus on iteratively improving a single candidate so-
lution. They generally perform local search around the current solution and move towards
better solutions through various strategies. We are primarily interested in enumerating the
approaches that were successfully applied to P||Cmax.

All MH approaches are summarized in Table 8. A short review of studies of HS
metaheuristics for P||Cmax, without practical comparisons, is conducted in [176]. It could
be seen that the S-class and P-class MH algorithms are equally represented. The majority
of metaheuristics are performing transformations on the existing solutions, while only
some sporadic approaches are based on the construction of new and potentially better
solutions [177].
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Table 8. Metaheuristics.

Name Reference Known
Characteristics

Compared
with

SA88 [10] 1988 SA N/A
HG [178] 1994 TS [10]

SA97 [179] 1997 SA N/A
TGR [180] 1998 TS [178]

GA99, SA99 [181] 1999 GA, SA N/A
AIS, SA02 [161] 2002 IBA N/A
AntMPS [7] 2003 ACO N/A

SA06 [182] 2006 SA N/A
ILS06 [183] 2006 ILS N/A

HDNN [184] 2006 ANN N/A
HDNNi [185] 2007 ANN N/A

TCNN, TCNNi [186] 2008 ANN [184]
DIMMSS [114] 2008 SS N/A

MC09 [187] 2009 MC N/A
MVNS, GA09 [5] 2009 VNS, GA N/A

BCO09 [6] 2009 BCO N/A
VNS09 [188] 2009 VNS [187]

DPSO09, HDPSO [189] 2009 PSO [182]
DSHS [190] 2010 HS [182,189]

DHS11, HDHS [191] 2011 HS [5,181,182]
RIVNS, HIVNS [192] 2012 VNS [5,181,182]

SA12 [193] 2012 SA [182]
SPPSO, DPSO12, PSOspv [194] 2012 PSO N/A

BCO12 [177] 2012 BCO N/A
DHS12, BHS, DHSLS [195] 2012 HS, HS, HS+VNS [182,189]

CSA [196] 2015 CS [182,189]
GES, GES+ [197] 2018 GES [182]

ICSA [198] 2018 CS [182,189,195,196]
RIVNS1, HIVNS1, RIVNS2, HIVNS2 [199] 2018 VNS [5,181,182,192]

GA19, GWO19 [200] 2019 GA, GWO N/A

4.4.1. Summary of Metaheuristic Approaches

Figure 5 presents the distribution over time of papers describing the applications
of different underlying metaheuristics. From the figure, it is easy to distinguish the
development of the metaheuristic approaches in any decade and for any algorithm of
interest. Up to ten years ago Simulated Annealing (SA) was the most popular meta-
heuristics [10,161,179,181,182,193]. The first metaheuristic algorithm for P||Cmax prob-
lem (MMBPP formulation) from 1988 [10] used SA. The Tabu Search (TS) was applied
by [178,180]. The Genetic Algorithm (GA) was applied in [5,181,200]. The Harmony
Search (HS) was applied most recently [190,191,195]. Other notable metaheuristics in-
clude the Iterated Local Search (ILS) [183], Genetics Algorithms (GA) [181], Gray Wolf
Optimization (GWO) [200], Cuckoo Search (CS) [196,198], Immune-Based Approach
(IBA) [161], Ant Colony Optimisation (ACO) [7], Scatter Search (SS) [114], Particle
Swarm Optimization (PSO) [189,194], Monte Carlo (MC) [187], Bee Colony Optimization
(BCO) [6,177], Grouping Evolutionary Strategy (GES) [197], and Variable Neighborhood
Search (VNS) [5,188,192,199]. Deep learning methods, being successful in many different
areas, might have a potential in applications to P||Cmax. However, so far only methods that
use Artificial Neural Networks (ANN) have been developed [184–186].
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Figure 5. Published metaheuristics per year.

4.5. Parallel Optimization Algorithms

Parallelization of optimization methods is a very popular research avenue: however,
its description is out of the scope of this study. Optimization algorithms from all three main
categories can be parallelized. However, in our SLR, we found only four parallel algorithms
for P||Cmax. The parallel version of ε-DUAL PTAS proposed by [54] is published in [201],
while [202] contains parallel versions of BCO12 MH [177], and in [203] parallelization of
IRNP HE algorithm [116] is presented. BDJR PTAS is presented in [174] along with its
parallel implementation.

4.6. Taxonomy of P||Cmax Optimization Algorithms

Figure 6 shows the taxonomy of P||Cmax optimization algorithms. Relationships
between different types of algorithms are represented by the connecting lines and similar
colors. HE solvers often use some heuristics and/or metaheuristic before B&B phase.
Metaheuristics often use some heuristics for initial phase. IHs starts with some CH solution,
and tries to improve it. Any type of algorithm can be more or less effectively parallelized.

Parallel

Exact

HE

FPT

EE
Meta-

heuristics
P-class

S-class

HeuristicsCH

IH

PTAS

Figure 6. P||Cmax optimization algorithms taxonomy.
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5. RQ2: Standardization of the Problem Instances
To evaluate the performance of any optimization algorithm, a representative set of

benchmark test instances is needed. Unfortunately, our SLR shows that such a represen-
tative set does not exist for P||Cmax. We found a number of various instance sets, but not
all are available to wider audience. Therefore, our aim was to review the most commonly
used sets, identify their strengths and weaknesses, classify them into various categories,
and select a representative set for each category. Finally, we perform the standardization
of identified groups of instances according to the criteria presented in the reminder of
this section.

The most commonly used are the four groups of instances that we classify as follows:

• E instances;
• F instances;
• C instances;
• B instances.

Please note that the names for groups of instances do not systematically appear in the
corresponding papers, and therefore, we provide detailed explanations. The description of
each group of widely used instances includes a short history, main characteristics, and the
list of papers exploring these instances in the experimental evaluation. At the end of this
section, we provide a graph illustrating the utilization frequency of various instance groups
in the relevant publications over time. From that graph it will be easy to distinguish the use
of instance groups in any decade and for any group of interest. All standardized instances
are now made available at the publicly accessible website https://gitlab.com/pcmax-
problem/pcmax-instances. This repository contains either the generation code with the
guidance how to use it or the set of instances ready for use.

In addition, we propose a uniform notation N
M I

n
m
p . N and M representing maximal

values for n and m, respectively, I denotes related set of instances, and D describes the
distribution for generating job durations. Ĩ represents set of instance similar to I, and I
represents subset of I. If different values for n

m and/or D are exploited, they are all listed
separated by comma. The correspondence between our notation and the instance names
from the literature is described in the reminder of this section.

The main characteristics of instances from various groups are summarized in
Tables 9–12. These tables are organized in the following way: The first column contains
names of the subgroup of the presented group of instances (class), followed by the corre-
sponding notation (that we introduced) in the second column (notation). The ratio between
the number of jobs and the number of machines ( n

m ) is presented in the third column. The
fourth column shows the number of machines (m), while the type of distribution and its
corresponding parameters used to obtain values of processing times are given in the last
column (D). For uniform distribution we are using notation U[a,b], where [a, b] represents
interval for sampling values. For normal distribution, notation Nµ,σ, where µ represents
mean and σ denotes standard deviation, is utilized. Each combination of values presented
in columns three to five corresponds to one generation rule for instances (some authors also
use the term instance size). An instance that has a solution for which C∗

max = L0 is known as
a perfect instance, and the corresponding solution is known as a perfect schedule, i.e., a perfect
partition. In these types of schedules, the difference in the loads of any two machines is not
greater than one.

At the end of this section, we also cover other instances that do not match any criteria
defining the above mentioned groups. However, the introduced notation applies to those
instances as well.

https://gitlab.com/pcmax-problem/pcmax-instances
https://gitlab.com/pcmax-problem/pcmax-instances
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5.1. E Instances

The first widely used group of instances for the P||Cmax problem are what we will call
E instances. E instances cover a huge range of parameter n

m . The first part of those instances,
E1 instances, was proposed in 1971 for testing of the developed heuristic in [204], the study
that was never published. These instances were used also in [21,26]. Extension E2 proposed
in 1988 was used in [133,134] where normal distribution is letter replaced with uniform
distribution, while E3 and E4 extensions appeared in 2001 [137]. The final version of the
complete E group is shown in Table 9. The main idea behind E instances was to develop a
framework that would serve for testing various algorithms used for P||Cmax problem.

This group has a variety of different values for n
m parameter, which is generally

preferred characteristic. All job’s processing times are generated in a uniform way, with
the smallest range [10, 20] and the largest range being [100, 800]. However, values for m are
too small to make these instances hard in any sense. Another big problem is the absence
of information about random seeds used for their generation, as well as corresponding
download repositories.

Today, E instances are obsolete for testing state-of-the-art optimization algorithms, although
they are still in use for testing MHs [182,189,190,193–198,200], CHs [21,26,30,134,137,144,145],
and measuring the performance of PTAS [174]. In all extracted studies, the authors generated
E instances on their own with different random seeds. Thus, there is no guarantee that the
obtained results could be compared fairly. To address this problem, in our repository we provide
an open source generator for E instances and we propose to generate 50 instances per generation
rule, using 1 as the seed value.

Table 9. E instances with 120 different generation rules.

class notation n
m m D

E1
25
5E1

2,3,5
U[1,20] ,U[20,50]

2, 3, 5 3, 4, 5 U[1,20], U[20,50]

E2

100
2E2

5,15,25,50
U[100,800]

5, 15, 25, 50 2

U[100,800]

100
3E2

3.33,10,16.67,33.33
U[100,800]

3.33, 10, 16.67, 33.33 3

100
4E2

7.5,12.5,25
U[100,800]

7.5, 12.5, 25 4

100
6E2

5,8.33,16.67
U[100,800]

5, 8.33, 16.67 6

100
8E2

3.75,6.25,12.5
U[100,800]

3.75, 6.25, 12.5 8

100
10E2

3,5,10
U[100,800]

3, 5, 10 10

E3

17
3E3

3.33,3.67,4.33,4.67,5.33,5.67
U[1,100] ,U[100,200] ,U[100,800]

3.33, 3.67, 4.33, 4.67, 5.33, 5.67 3

U[1,100], U[100,200],
U[100,800]

27
5E3

3.2,3.4,4.2,4.4,5.2,5.4
U[1,100] ,U[100,200] ,U[100,800]

3.2, 3.4, 4.2, 4.4, 5.2, 5.4 5

42
8E3

3.12,3.25,4.12,4.25,5.12,5.25
U[1,100] ,U[100,200] ,U[100,800]

3.12, 3.25, 4.12, 4.25, 5.12, 5.25 8

52
10E3

3.1,3.2,4.1,4.2,5.1,5.2
U[1,100] ,U[100,200] ,U[100,800]

3.1, 3.2, 4.1, 4.2, 5.1, 5.2 10

E4

9
2E4

4.5
U[1,20] ,U[20,50] ,U[50,100] ,U[100,200] ,U[100,800]

4.5 2 U[1,20], U[20,50],
U[50,100], U[100,200],

U[100,800]

10
3E4

3.33
U[1,20] ,U[20,50] ,U[50,100] ,U[100,200] ,U[100,800]

3.33 3

5.2. F Instances

The next identified group of widely used instances is F, in relevant papers often called
benchmark instances. In the first part of those instances (uniform), FU , introduced in
1994 [135] for the purpose of testing 3-PHASE IH, is proposed by the authors. Ten years
later, in 2004, the (non-uniform) extension, FNU , of this group of instances is proposed
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by [163] with the purpose of providing harder instances required by their ME IHs. F
instances are presented in Table 10.

Table 10. F instances with 78 different generation rules.

class notation n
m m D

FU

103

5FU
2,10,20,100,200
U[1,100] ,U[1,103 ] ,U[1,104 ]

2, 10, 20, 100, 200 5

U[1,100], U[1,103 ],

U[1,104 ]

103

10FU
5,10,50,100
U[1,100] ,U[1,103 ] ,U[1,104 ]

5, 10, 50, 100 10

103

25FU
2,4,20,40
U[1,100] ,U[1,103 ] ,U[1,104 ]

2, 4, 20, 40 25

FNU

103

5FNU
2,10,20,100,200
ξ1 ,ξ2 ,ξ3

2, 10, 20, 100, 200 5

103

10FNU
5,10,50,100
ξ1 ,ξ2 ,ξ3

5, 10, 50, 100 10

103

25FNU
2,4,20,40
ξ1 ,ξ2 ,ξ3

2, 4, 20, 40 25

ξ1, ξ2, ξ3

ξ1 ∼
{
U[89,100], 98% cases
1, otherwise

. ξ2 ∼
{
U[899,103 ], 98% cases
U[1,19], otherwise

. ξ3 ∼
{
U[8999,104 ], 98% cases
U[1,199], otherwise

.

F instances are used for testing all types of algorithms for P||Cmax problem. For HE
solvers, this group of instances was used in [8,14,57,63,114,119,122], where the authors
in [14,95,122,135,139,145,146,161–164] utilized them for IHs; CHs have been tested on
these instances by [139,141–143,146], while [114,161] explored F instances to evaluate the
performance of MHs. Even though links to the instances provided in some of the papers
are not active anymore, all methods have been tested on exactly the same instances that we
are providing in our repository. For each generation rule, there are ten generated instances.

With respect to standardization issues, F instances satisfy the majority of criteria
and are accompanied with optimal solutions that can be retrieved from both the above
mentioned papers and our repository.

5.3. C Instances

In numerous extracted studies, we found a few sets of instances that are generated
with similar rules and thus, having similar characteristics. We refer to all these sets as C
instances. The first set of C instances, based on the instance set for BPP problem [125],
was proposed in 1995 for comparing exact solvers [57]. Since then, they have been used
sporadically, while lately, these instances become very popular and are constantly upgraded.
The C instances were divided into five distinctive classes with respect to the distributions
used to generate the length of jobs. In these classes, D values follow distributions: U[1,100],
U[20,100], U[50,100], N100,20, and N100,50, respectively. These instances are initially generated
with a relatively big n

m ratio, where m takes values between 2 and 15 and values for n
belong to the [10, 104] interval. In [95], there are similarly generated instances having a
smaller n

m factor with an aim to produce a harder set of instances. More precisely, the
authors used n

m = 2.5 and D ∈ U[ n
5 , n

2 ]
, for each m ∈ {8, 12, 16, 20, 24, 28, 32, 36, 40, 60, 80}.

This was the first time that parameters of D did not take constant values, instead they were
dependent on the input data defining each particular instance. Inspired by [95], authors
in [8] added two new distribution for generating lengths of jobs (U[n,4n] and N4n,n), with
additional values for n

m ∈ {2, 2.25, 2.75}. Later, n
m = 3 is added in [123] where values of m

have been used from similar range as in [95]. The classes of C instances used in [123], with
included (m, n) pairs {(8, 18), (6, 18)}, and n

m values {4, 4.5, 5, 6, 9, 10, 11}, are summarized
in Table 11 and considered as the final version. For all instances, ten times generated per
generation rule, from this final version are provided in our repository. Different versions of
C instances were used for testing HE solvers [8,12,14,57,63,95,123,124].
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Table 11. C instances

class notation n
m m D

Cp

200
100C2

D 2 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

U[1,100], U[20,100],
U[50,100], N100,20,
N100,50, U[n,4n],

N4n,n

198
88C2.25

D 2.25 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88
200
80C2.5

D 2.5 8, 16, 24, 32, 40, 48, 56, 64, 72, 80
220
80C2.75

D 2.75 8, 16, 24, 32, 40, 48, 56, 64, 72, 80
198
66C3

D 3 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66
200
50C4

D 4 5, 10, 15, 20, 25, 30, 35, 40, 45, 50
198
44C4.5

D 4.5 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44
200
40C5

D 5 4, 8, 12, 16, 20, 24, 28, 32, 36, 40
198
33C6

D 6 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33
198
22C9

D 9 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22
200
20C10

D 10 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
220
20C11

D 11 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

To simplify and shorten the notation of C instances for CU[1,100]
we will use the nota-

tion C1, for CU[50,100]
we will use C2, and so on.

With respect to standardization, C instances satisfy the majority of criteria. Optimal
solutions and the state-of-the-art solver results can be retrieved from our repository.

5.4. B Instances

B instances are the well-recognized group of instances used for testing MWNP solvers.
Originally proposed in 1998 [9], the B instances were defined over a configuration of
three machines (m = 3), up to 100 jobs (n ≤ 100), and with job processing times (precision)
pi ∈ [1, 105]. They are characterized by a small machine count m, and large, uniformly dis-
tributed processing times. Over time, these instances were extended to include variations
in the number of machines, job counts, and processing time bounds. Therefore, B instances
form the most extensive dataset with m extending up to 12, n taking values up to 60, and
processing times up to 248 − 1 [9,40,42,115–121]. To ensure the inclusion of all notable
B-like instances from the literature, our proposed standardized dataset includes all distri-
butions U[1,2class−1] for class ∈ {1, . . . , 48}, and all coefficients

⋃60
n=m+2

n
m for m ∈ {2, . . . , 12},

following the formulation in [205].
Considering the generation of 100 instances per rule, as adopted in prior studies, this

results in a comprehensive dataset comprising approximately 2,745,600 instances. This
large volume presents significant challenges. The first challenge is the computational
demand—the total time required for testing this scale of instances is significant, especially
for exact solvers. The second challenge is lightness—many instances may be relatively
easy for most solvers, diluting the focus on challenging cases. The third challenge is the
growth in dataset size—the number of instances escalates rapidly as the maximal values
for n, m, or class increase. The challenges are likely to remain relevant despite constant
improvements in the solver performance and computational power.

Our objective is to reduce this set to include only challenging instances, thereby
addressing all three problems. Previous research in OR community has indicated that
instances tend to become more difficult when n

m ∈ [2, 3] [95]. In the context of the MWNP
formulation, AI researchers have similarly noted the importance of selecting hard instances.
For instance, in [9], the authors experimentally demonstrated that for m ∈ {2, 3} and job
duration bounded by fixed precision (p), increasing n initially raises the complexity until a
peak, after which complexity begins to decrease. This trend aligns with the phase transition
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phenomenon in NP-hard problems. It highlights a “critical state” where approximately
half of the instances are solvable to perfection and half are not, marking a peak in the
computational effort. An instance is solvable to perfection (is perfect) if it has a solution
in which difference between each two processor loads is maximally one. In [118], the
authors extended this methodology. For fixed m and p, as n grows, the number of possible
schedules (mn) expands exponentially, whereas the number of possible distinct machine
loads grows linearly (O(pn)) leading to a critical threshold where computational resources
peak. Determining whether an instance is perfect requires an extensive exploration within
this critical region.

While many open questions remain, this methodology provides a practical framework
for identifying generation rules for “harder” instances. Following this methodology for m ∈
[2, 7] and D ∈ U[1,10class−1], where class ∈ [1, 12], the authors in [118] generated 100 instances
for each generation rule, increasing n until at least 50 instances were identified as perfect.
Due to computational constraints, results for larger values of class and m are limited.

Using a third degree polynomial regression [206] trained on data provided in [118],
the authors derived the following predictive model for values of n depending on class and
m stored in matrix Tclass,m :

Tclass,m =− 0.002 class3 + 0.014 class2 m − 0.016 class2 − 0.032 class m2

+ 0.812 class m + 2.032 class + 0.036 m3 − 0.459 m2 + 3.388 m − 4.207
(5)

where R2 > 0.999 predicts known values. This model provides a basis for predicting
unknown values, supporting our generation rules Table 12.

Table 12. B instances with 270 different generation rules.

class notation n
m m D

{1, . . . , 18} Tclass,m
mB10class

Tclass,m
m {2, . . . , 16} U[1,10class−1]

Using it we have extended their results up to class = 18 and m = 16. The results are
presented in Table 13, where the bold values were originally reported in [118], and the
others are predicted by Equation 5.

Table 13. Extended experimentally calculated matrix Tclass,m up to m = 16 and class = 18. Original
values are bolded.

class \ m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 4 7 9 11 13 16 18 22 27 33 40 48 59 72 86
2 9 11 14 17 19 22 25 29 34 40 47 56 67 79 94
3 12 16 18 22 25 28 32 36 42 48 55 64 75 87 102
4 15 20 25 28 31 35 39 44 49 56 63 72 83 95 110
5 18 24 29 33 38 42 46 52 57 64 72 81 92 104 118
6 22 28 34 39 44 49 54 59 65 72 80 90 100 113 127
7 26 33 39 45 50 56 61 67 74 81 89 99 110 122 137
8 29 37 44 51 57 63 69 75 82 90 99 108 119 132 146
9 33 41 49 57 63 70 77 84 91 99 108 118 129 142 156

10 36 45 55 62 70 77 85 92 100 108 118 128 139 152 167
11 39 50 59 68 77 85 93 101 109 118 127 138 150 163 177
12 42 54 64 74 83 92 101 109 118 128 138 148 160 174 188
13 45 58 69 80 90 100 109 118 128 137 148 159 171 185 200
14 48 62 74 86 97 107 117 127 137 147 158 170 182 196 211
15 51 66 79 92 104 115 125 136 147 157 169 181 194 208 223
16 54 70 84 98 110 122 134 145 156 168 180 192 205 220 236
17 56 73 89 103 117 130 142 154 166 178 190 203 217 232 248
18 59 77 94 109 124 137 150 163 176 189 202 215 229 244 261
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Neither of the mentioned papers which used some B-like instance set, provided
instances or discussed the characteristics of the random seed values used. We propose
generating 100 instances per generation rule, starting with random seed 1 as the standard.
In our repository, we have already placed the generated B instances, organized into folders
by class, as well as we provided a generator for their creation. If the researchers prefer
generating instances rather than using the pre-generated ones, but only need a subset, we
strongly recommend the following procedure: Generate the entire set first and then select
the preferred subset. This way errors related to random seed handling should be avoided.

The described method of generating instances is both effective and well-suited for
practical applications is explored in more detail in [78,92,93]. Recent theoretical advances
have additionally analyzed the hardness of instances in the MWNP problem formula-
tion [91], specifically for the m = 2 case [94]. Practical guidance on generating robust
benchmarking tests is provided in [15].

5.5. Other Instances

In this section, we provide some additional sets of instances that do not satisfy our
criteria for standardization. However, they appear in P||Cmax literature and should be
described for the sake of completeness.

The first group of instances for P||Cmax problem, containing only five examples,
appeared in [128]. It was used to evaluate the performance of the LPT algorithm and
generated to contain hard instances for that particular algorithm.

G78 instance, based on the BPP and proposed in 1978 [71], is characterized with m = 10
and n = 100. The job processing times fall within the interval [1010, 1011], which made these
instance particularly challenging at the time they were introduced. For the P||Cmax problem
it was used in [10,178,180]. The authors of [178] used this instance to evaluate the TS
algorithm and managed to improve the result obtained by SA in [10]. Additionally, in [180],
this instance is used to generate a similar set of instances with n = 2 · 103 and m = 50 for
testing his variant of TS.

Perfect packing or PP instances were proposed in 1995 [57] as hard instances for the
purpose of testing a new HE. In this set, for every instance, the optimal schedule has
equal competition time on each machine. The set covers instances with n ≤ 104 and
m ∈ {3, 5, 10, 15}. These instances were also used in [14].

MK instances were proposed 2004 [113] for testing HE algorithm. They are a union of

a set of instances 15
5MKU[1,100] ,U[10,100] ,U[50,100]

and set of instances 103

100MKU[1,100]
. These instances

were also used in [17,207].
BINPACK or BP instances were adopted to P||Cmax in 2004 [163]. They are character-

ized by the uniform distribution of job duration from the range (20, 100). These instances
were also used in [137,140–143,177,202].

TRIPLET or TR were originally designed for the BPP problem [208] These instances
for P||Cmax have been used for the first time in [7]. The TR instances are generated in such
a way that the optimal solution has exactly three jobs per machine, while the job processing
times belong to the (25, 50) interval. They were later used in [140,163,164].

Iogra (IO), It (IT), and Rand (RN) instances, adapted from Multiprocessor Scheduling
Problem with Communication Delays [209] and from [210] for P||Cmax. Although these
instances were considered easy, they are used in [166,177,188,202,211].

All the sets of instances in this section are either reused from other problems, small,
or too easy in comparison with other described instances. In addition, we do not consider
them as a special group because they are less explained, less used, or simply do not provide
any novelty compared with B, C, E, and F instances.
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5.6. Summary of Instance Groups

The key results of our SLR are the identification of the main differences between
various sets of problem instances and the definition of criteria for producing standardized
groups of instances for testing P||Cmax optimization algorithms. Figure 7 illustrates the
usage of various types of instances over the years. As none of the “Other” group instances
satisfies all standardization criteria and they are used ad hoc only, we do not present them
here. The figure shows that E instances were the first in use, other types of instances were
used from the 1990s. However, all types are still in use.
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Figure 7. Used instance sets per year.

6. RQ3: Comparisons
Comparing two or more algorithms, also known as optimization benchmarking, is con-

ducted in the literature with the goal of determining which algorithm has performed best
on a given representative set of problem instances [212,213]. In some cases, approaches
that rely only on formal analysis of the algorithms have been applied assuming that anal-
ysis will explain the quality of algorithms on all problem instances. However, for these
approaches, one must presume only problem instances with a suitable structure which
might not be representative of all problem instances. This is one of the shortcomings of
applying formal analysis exclusively [214]. Additionally, the worst-case or average-case
analysis of the algorithm’s complexity does not provide complete information about how a
given heuristic will perform on any given set of instances. Finally, the stochastic analysis of
the algorithm’s performance might require the knowledge of underlying instance distri-
bution. This distribution, in practice might not be easily identifiable. These are the main
motivations why empirical (experimental) work is necessary in order to ensure adequate
comparison [214,215].

In the remainder of this section, the general methodology for comparing optimization
algorithms is explained. It is then followed up with the specific details of comparing
algorithms applied on P||Cmax problem. For each step of the methodology, its importance
and relevance are explained, and studies in which the methodology is applied are cited.
Finally, the comparisons made in the literature are presented.

6.1. General Methodology

The choice of appropriate performance metrics, along with adequately selecting param-
eter values and working with proper instances, form the bedrock for a robust performance
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analysis of the developed algorithm. In more detail, the experimental procedure for opti-
mization benchmarking consists of the following basic steps [212,213,216]:

1. Select performance metrics;
2. Design the experiment;
3. Select test instances;
4. Perform an experiment;
5. Analyze and present results.

Performance metrics are categorized into two essential groups: those impacting ef-
fectiveness and those influencing efficiency [217]. Effectiveness implies collecting data
on solutions’ quality within a limited amount of time or other computation resources
(e.g., maximal number of functions evaluations). Here, the algorithm’s performance is
described via statistics, such as a measure of central tendencies and variability. Known
measures of effectiveness are the arithmetic mean and the corresponding standard devia-
tion or median and range. On the other hand, the efficiency of an algorithm is an estimate
of runtime (or computational steps) to reach a solution of predetermined quality.

It is generally assumed that the proposed algorithm should be compared against the
state-of-the-art methods for the considered problem. However, note that generating a
state-of-the-art method is an iterative process, and identifying the current state-of-the-art
methods could be performed only after benchmarking. Usually, the development of new
algorithms is a product of fusion between old and new ideas that positively affect runtime
and solution’s quality. As it is hard to determine what the state-of-the-art method is, the
comparison is usually conducted against some other well-known algorithms. In the absence
of such methods, comparisons are conducted against the more general methods (greedy
approach, integer programming). Sometimes, the comparisons are made even against a
simple random restart procedure, as that may offer some reference points [216].

As mentioned above, optimization benchmarking is conducted in the literature with
the goal to determine which algorithm has performed best on a given representative set of
problem instances. Representative sets assume the exhaustive coverage of different cases
for any important characteristic of the instances.

Evaluating algorithm performance can be performed through graphical analysis or
statistical testing. During the comparison process, the authors should always aim to achieve
fairness. As there are various aspects of the study that may influence the fair comparison,
we list a few recommendations provided in [213]:

1. Avoid comparing tuned versus untuned algorithms. Namely, the best scenario is if
algorithms are compared at their peak performance, i.e., after parameter values are
determined via some tuning procedure.

2. Whenever possible, conduct a comparison on the same machine, with respect to both
hardware and software characteristics. If this is not possible, use a machine with
similar characteristics and perform the appropriate scaling of the results.

3. The analysis must adhere to the 3Rs of Data Science: repeatability, reproducibility,
and replicability all pointing towards getting the same results. Repeatability involves
the same researcher and environment. Reproducibility engages another researcher on
the same computer system. Replicability means that the estimated performance could
be achievable by anyone in any computing environment.

6.2. P||Cmax Problem Specific Methodology

The most important part of any computational evaluation of an algorithm’s perfor-
mance is to address the correct measure of performance. A very important moment for
practical comparison of any proposed algorithm is the quality of its implementation. Addi-
tional information related to MH algorithms can be found in [218]. The usual performance
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metrics for P||Cmax problem-specific comparisons are the quality of the solution and the
running time, where the time metric could refer to the following:

• time to complete the execution (until the stopping criterion is fulfilled) in the majority
of the reviewed literature and explained in [123];

• time required to find the best solution (time-to-best) in several reviewed papers and
explained in [12].

Sometimes the time of execution of some parts of the optimization algorithm can be
relevant, for example, the time can be measured for lower bound values [95], initial solution
construction [122], etc.

Measurement of the solution quality may be more difficult, especially in cases when
the optimal solution of the given instance is not known. The quality of solution metrics
used in the literature for P||Cmax are as follows:

• makespan—the objective function value [6,110,111,148,188]. This is the simplest so-
lution quality measure, used mostly in the cases when the optimum or some other
relevant data are not known. The makespan values obtained by analyzed algorithms
are compared and the lowest among them is declared as the best. The main disad-
vantage of this metric is that it does not give any information about the distance of
compared solutions from the best possible (optimum) solution.

• gap (error)—relative distance between the compared solutions [5,8,14,20,21,26,95,113,
114,133–139,141,142,145,148,153,157,159,163,164,174,177,182–184,189,190,193–200,204,
219,220]. The gap is calculated as makespan−bound

bound , where bound is usually some estima-
tion for the makespan of the best possible solution (LB); however, it can also be the
makespan of the solution provided by some other algorithm (UB). Other than having
the same drawback as the previous metric, the main disadvantage of using the gap
is that it can be calculated in different ways. When calculated differently, there is no
consistent way of establishing a fair comparison.

• opt—achieved optimality flag [5,12,20,95,114,139,141,142,144,145,148,161,163,164,166,
183,194,220]. When the optimal makespan value is known, this flag indicates whether
the considered algorithm(s) managed to provide the optimal solutions or not.

• OPT—proved optimality [12,57,63,113,118,123,124,137,139,144,164,207]. This metric
differs from the previous one in the fact that the evaluated algorithm is able to prove
the optimality of the provided solution.

There are some additional algorithm performance measures used in the relevant
literature. For example, some exact solvers are characterized by the number of solved LP
relaxations or the number of branches (nodes) required to find optimal solutions and prove
their optimality [8,14,17,63,110,111,113]. Iterative algorithms perform better when they
require small number of iterations to provide high-quality solutions [6,12,166,178,180,202].
Stochastic algorithms’ performance should be evaluated also by means of statistical tools
illustrating their stability with respect to the value of seed used for initialization of random
number generator. This requires a sufficient number of executions (runs, restarts) to have
the corresponding values of mean, standard deviation, and other statistical data meaningful
for the derived conclusions [213,217].

Other than the statistical data related to the repeated execution of (stochastic) the
algorithm on a single instance, the majority of papers usual present summary (average)
performance measures for a set of instances from the same class e.g., [123,207]. These kinds
of measurements can testify to the robustness of the analyzed algorithm with respect to the
characteristics of different instances.

For parallel algorithms, it is important to take into account the number of processing el-
ements involved in the algorithm execution [202,221,222]. To ensure fairness in comparison,
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the stopping criterion is usually reduced appropriately. However, sometimes, the goal is to
examine if the enriched hardware resources can contribute toward the improvement in the
final solution quality. In addition, it could be very informative to examine the contribution
of each part of the algorithm (executed in parallel) and to modify them if necessary.

In order to conduct a comparison between two or more optimization algorithms for
P||Cmax the next step involves the selection of benchmark instances in such a way as to
allow some sort of generalization. As the answer to Research Question 2 (Standardization
of the problem instances), discussed in Section 5, we recommend using any of the four
instance types B, C, E, and F, preferably all four of them. Finally, in the remainder of the
section, we provide comparisons of specific algorithms for P||Cmax problem.

6.3. Comparisons of Specific Algorithms P||Cmax Problem

In this section, we provide information about the existing comparisons between
various algorithms. Usually, algorithms from the same group are compared, although
sometimes we also found the comparison between algorithms belonging to different groups.
The remainder of this section follows the categorization and grouping from Section 4, with
these non-typical cases pointed out when appropriate. For each group of methods, the
types of comparisons are presented first. Then, we try to establish a relationship graph
among the algorithms based on the available comparisons. The nodes in that graph
represent the algorithms, while the direct edges source represents the “better” algorithm in
that comparison.

The experimental results on the same group of standardized instances are used to
evaluate the performance of one algorithm relative to others. The performance measures
used to build a graph are gap and the number of instances for which the optimum is
reached/optimality proven. Having in mind the drawbacks of gap calculations, we have
also included the elapsed time and the number of iterations, if needed and provided in the
literature. When elapsed time is taken into account, it was normalized based on known
characteristics of the resources. In extreme cases, when it is not possible to conclude which
algorithm among those examined is better, we did not connect them by the directed edge.
Transitive relationships were not shown in the graphs. Therefore, the position in the graph
(the higher the better) is only an estimate of the quality of the algorithm.

6.3.1. Comparisons of Exact Algorithms

In the reviewed papers, Exponential exact algorithms have pure theoretical importance
and usually are not implemented at all. In addition, due to their complexity, it is not
rewarding to compare their performance on (benchmark) problem instances. For their
theoretical comparison, standard metrics (WTC and WSC) are utilized. However, there are
some exceptions.

The DP87 algorithm was compared with the HE algorithms BIN and DM in [57]. It

was significantly slower than the other two algorithms for instances
50

3C̃1−5. It is also
compared with the LPT and RAS2 CHs, as well as RAS1 IH on instances 50

5 IU[10,100]
in [136].

As expected, the other algorithms demonstrated superiority with respect to solving times.
The second practical problem with this algorithm mentioned in [136], relates to its memory
requirements for instances with m = 5 and n ≥ 30. More precisely, the machine used for
experimental evaluation did not have enough memory to complete the experiment.

The practical importance of Fixed parameter tractable algorithms is also very small, and
therefore, they are compared mainly using the theoretical metrics WTC and WSC. However,
theoretical metrics cannot estimate the performance of any particular algorithm on any
tested instance. Despite bad theoretical indicators, an algorithm may provide an optimal
solution very quickly if the instance turns out to be “easy” for that algorithm. On the other
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hand, having experimental results for different sets of instances enables the application of
machine learning techniques to predict the difficulty of any new instance that has not been
tested yet as it is conducted in [1].

Hybrid exact algorithms are, contrary to the first two groups, focused on solving some
particular instances. Performance evaluation of these algorithms is conducted by numerical
experiments involving selected sets of benchmark instances. Therefore, general perfor-
mance could not be judged outside the tested set of instances. In addition, the published
results cannot be repeated or reproduced easily, because the algorithms’ implementations,
as well as the utilized instances, are not publicly available. Consequently, there are not
many papers that report on comparing these algorithms, especially those that involve more
than two HE algorithms.

BIN and DM algorithms, presented in paper [57], have been compared to each other
and with DP87 EE. The first comparison is conducted on a subset of an early version of

C instances,
50
3C̃1−5. As the best-performing algorithm, DM was identified, while BIN

sometimes was an order of magnitude slower. DP87 performed the worst and it was
practically unusable for instances with m ≥ 3. In the second experiment, the authors used
104

15C̃1−5 instances. Although not being able to solve all instances, DM clearly outperformed
BIN, except for some very small instances. In the third experiment, the authors used PP
instances and made the same conclusion.

CGA and CKK [9] algorithms were compared with each other on instances
200

2B̃1010

and
100

3B̃105 where always m = 3. In both cases, CKK outperforms CGA. Especially on the
perfect instances, the difference in performance is significant.

CP04 algorithm [113] is compared with simple ILP solver. For the experimental evalua-
tion, memory was limited to 50 Mb, while the running maximum time was set to 2 · 103 s for
both algorithms. Experiments were performed on MK instances. The first experiment in-
volved 15

5MKU[1,100] ,U[10,100] ,U[50,100]
instances. The obtained results show that both algorithms

were always able to converge to the optimal solution, with CP04 requiring less computa-
tional time for the largest instances. On the other hand, the ILP solver was faster for the

smallest instances. The second experiment was performed on the 103

100MKU[1,100]
instances.

In this case, the ILP solver was not able to find optimal solutions in the majority of cases,
while CP04 provided optimal solutions for almost all instances with drastically smaller
computation effort. The authors of [207] critically reviewed CP04 and showed that the
algorithm can be significantly outperformed by DM on the same sets of instances.

The HJ algorithm [14] is compared with DM. As the starting bounds, MSK CH and
#”

L FS were used. The PP instances were used in the first experiment. Due to the very good
starting bounds, HJ solved to optimality in all of the instances in a very short time, and
branching was required only for three instances. On the other hand, DM failed to solve 13

instances. The second experiment involved
104

15C̃1−5 instances from [57]. Both algorithms
exhibited similar behavior; however, five instances remained unsolved by HJ, which is
again better comparing to eight instances unsolved by DM. In the third experiment, HJ
showed very good performance on F instances, although not being directly compared
with any other algorithm. The authors concluded that it solved to optimality 13 instances
being open problems for some time. The algorithm was not able to solve 3 not-uniform

and 18 uniform instances. In the fourth experiment, HJ algorithm was tested on
200

80C̃2.5
U[ n

5 , n
2 ]

instances. The authors were not satisfied with 35% of unsolved instances in this case and
concluded that an alternative approach should be developed.

DIMM, proposed in [114], is compared with DM on F instances. The main ingredients
of DIMM include DIMMSS MH and MT1 [151] Knapsack solver. The obtained results
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show that DIMM solved all instances to optimality within small computation times, clearly
outperforming DM.

SNPie and RNP [115] algorithms were compared with each other and with CKK and

CGA algorithms. In the first experiment, the instances
40
3B̃107 , with m = 3 and n ≥ 25,

were used. According to the provided results, SNPie significantly outperforms CKK with
respect to running time. Authors mentioned (without providing profs) that for m = 4 and
m = 5 CGA is faster than CKK, and in the second experiment, they compared SNPie and

RNP only with CGA on instances
33

4B̃105 , with m = 4 and n ≥ 20. CGA is outperformed by
several orders of magnitude by the other two algorithms. RNP showed better performance
than SNPie. The third experiment was performed for the same algorithms on instances
30
5B̃104 , with m = 5 and n ≥ 20. The obtained results are similar to those in the previous

experiment. Finally, an additional experiment is carried out involving instances
40

5B̃108 ,
with m > 2 and n ≥ 20. Again RNP was the best algorithm, followed by SNPie.

IRNP [116] was compared with RNP on instance sets
52

6B̃231 and
40
10B̃231 . On all instances,

IRNP was a few orders of magnitude faster than RNP.

MOF [117] was compared with IRNP and demonstrated its superiority on
40
10B̃231 instances.

BSBCP, CKKi, RNPi, IRNP, and CGA algorithms are compared in [118]. For m = 2,
the authors showed that CKK dominates CGA. Without providing experimental results,
the authors mentioned that BSBCP performed better than IRNP for m > 7. Finally, on

instances
50
7B̃248 , with m > 2 and n ≥ 25, RNPi clearly outperformed IRNP.

BSIBC [119] was compared with BSBCP and DIMM. The first experiment was con-

ducted for BSIBS and BSBCP algorithms on
45
20B̃1015 instances. Both algorithms performed

well, with BSIBC solving the majority of the instances faster. In the second experiment, the
authors compared different variants of the BSIBC algorithm against DIMM on a subset
of FU recognized to contain hard instances in [114]. The conclusion was that BSIBC with
limited discrepancy search is able to outperform DIMM by up to three orders of magnitude.

SNPess and HI14 [120] were compared with each other and with MOF on
50
10B̃248

instances. SNPess is always faster than MOF, except for instances with small n. As expected,
the authors reported smaller computation times for HI14 in comparison to other algorithms
for all instances.

CIW [121] was compared with SNPess, MOF, and BSBCP, and clearly outperformed

all other algorithms: SNPess on
60

7B̃248 instances, MOF on
60
10B̃248 instances, and BSBCP

on
60
12B̃248 instances.

WL [8] was compared with DIMM and HJ solvers. First, the comparison was con-

ducted on
50
15C̃1−5 instances. According to the authors, this subset of the first version of C

instances [57] contains difficult test examples. In this experiment, WL was compared with
HJ and was faster on all instances except the biggest ones. However, in total, HJ solved
more instances within less running time. In the second experiment, HJ outperformed WL
on F instances, although both algorithms had plenty of unsolved instances. In the third
experiment, WL was compared with DIMM on F instances and it was shown that WL can
solve three instances faster than DIMM. However, DIMM was generally a superior ap-

proach. The fourth experiment involved comparison of WL with HJ on
200

80C̃2.5
U[ n

5 , n
2 ]

instances

presented in [14]. It revealed that WL has comparable performances with HJ. The fifth
experiment shows clear superiority of the WL algorithm in comparison with its variant WL′

on an extended set of
30
15C̃1−5 instances from the first experiment. An additional comparison

of WL and WL′ on a more expanded
100

25C̃2,2.5,3,4,5
1−5 instances was performed in [63]. The

authors made the same conclusion: WL outperforms WL′.
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The LCS algorithm [42] in comprehensive practical experiments was compared with
CGA, RNP, IRNP, SNPie, BSIBC, BSBCP, SNPess, MOF, and CIW on B̃ instances with n ≥ 20.
The obtained results can be summarized as follows: SNPess is dominant for m = 3 and for
small values of n when m ∈ {4, 5}. CIW dominates for large values of n when m ∈ [4, 12].
SNPie performs the best for m ∈ [8, 10] if the values of n are very small. BSIBC and BSBCP
outperform others for m ∈ {11, 12} and small values of n. For m ∈ [6, 12] and n ≤ 35,
MOF often performs the best. From the presented results, it is clear that CIW dominates
other algorithms in the majority of cases. LCS performs better on instances with m > 5 and
requires less memory for m > 8.

KL [122] was compared with DM and DIMM on F instances. As expected, DM was
outperformed by DIMM which managed to solve all instances in a much shorter time. KL
also solved all instances in significantly less time than DIMM. In addition, it did not require
branching: the initial heuristic KLh was enough.

AF [123] was compared with HJ and WL solvers. Comparison with HJ was performed
on instances similar to a subset of C instances with n

m = 2.5 presented in [14]. AF domi-
nated HJ by solving all instances to optimality. Comparison with WL involved the whole
set of C instances. In this case, AF outperformed WL, it successfully solved 77 out of
3500 instances.

iAF [124] was compared with the AF solver on C instances and clearly improved AF
results by solving all but one instance within a shorter execution time.

DIST [12] was compared with iAF solver on C instances with n
m = 2. Within the

subproblem time limit of 0.06s and 30 runs, DIST optimally solved all instances in a much
shorter execution time. It is important to note that in some cases DIST was not able to
guarantee the optimality of the provided solutions.

Based on the described empirical results given in papers included in our SLR, the
relationship between all exact algorithms is illustrated in Figure 8. Blue color represents
HE algorithms, and light blue represents EE algorithms. The first observation is related to
a separation of the graph into two parts (left and right), connected just with the FU branch.
The right part of the graph is characterized by algorithms oriented to solving instances with
small m and large job processing times. They were compared just on sets of B̃ instances.
The left part of the graph is focused on algorithms for solving instances with larger m,
and smaller job processing times. On the left side, a bigger variety of instances can be
seen, primarily F and variants of C. These two types of algorithms had been developed
separately, the first for the purpose of solving P||Cmax and the second for solving MWNP.
Only one comparison between these two types of solvers is performed, between BSIBC and
DIMM algorithms on FU instances, with BSIBC being superior. Due to the lack of detailed
comparisons in the literature, we did not have enough results to make clear relations
between algorithms. Therefore, we made a compromise by keeping several algorithms on
the same level of the comparison graph in Figure 8. This is specially related to the right
part of the graph.
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Figure 8. Graph of experimental comparisons of exact algorithms.

Final remark about the experimental evaluation of exact algorithms, is the importance
to utilize standard benchmark instances and report various metrics for quality of solution
under the same conditions. This will ensure fair and comprehensive comparison.

6.3.2. Comparisons of Heuristic Algorithms

The comparison of Constructive heuristics is usually very easy as there are many
proposed comparison metrics. Both theoretical and experimental comparisons are relevant.
For theoretical comparison, WTC and AR metrics are utilized, while practical comparison
involves similar metrics as for HE algorithms.

If n > m is assumed, WTC can be expressed as dependent only on n, which enables
sorting of the CH algorithms in the non-decreasing order as follows. P1: O(n); SLS, LPT,
MAAAT, RAS2, AP, LPTR, PSC, PSCi, SPS, and SLACK: O(n log n); MF′, MF, MFe, MFi, and
COMBINE: O(kn log n); MPS: O(n2); LDM: O(n2 log n); FGH, DGH and PSMF: O(kn2);
LISTFIT and DJMS: O(kn2 log n); MS: O(n3); SS: O(n2S); H1: O(n2 log( 1

ε + 1
ε2 )); and

finally, KK has NP WTC. The meaning of parameters k, S, and ε is explained in Table 4.
Comparing CH algorithms with respect to AR is not always straightforward. The AR

of LPT equals 4
3 − 1

3m , which is presented when the algorithm was introduced [128] and
again proved in [223]. However, for some of the CH algorithms, AR is not easy to calculate.
The AR for MF has been improved from 1.22 + 2−k [129], to 1.2 + 2−k and 13

11 + 2−k for
m ≥ 13 [224], and finally to 13

11 + 2−k for arbitrary m [225]. AR for LDM was an open
problem for a long time, and first result was given for m = 2 [226], while the most recent
analysis of general case was provided in [227], with the conclusion that AR should belong
to the interval

[
4
3 − 1

3(m−1) , 4
3 − 1

3m

]
. Additional results can be found in [228–231].
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If it is assumed that m and k are approaching infinity, AR can be expressed as constant,
and the CH algorithms can be sorted in the non-increasing order of AR values as follows.
SLS, KK, LPTR: 2; Specific case for MPS and SPS: 1 + 1

z where z > 1, so upper bound of
3
2 can be used. LPT, LDM, RAS2 and SLACK: 4

3 ; MF′: 5
4 ; MF, COMBINE, LISTFIT, FGH,

DGH, DJMS and PSMF: 13
11 ; MFi: 72

61 ; Specific values are provided for m = 2 for some CHs:
LPT, LDM: 7

6 ; SLACK: 9
8 and finally MFe and COMBINE: 10

9 .
There are also some additional asymptotic performance indicators for LPT [232–237],

and for MPS [238]. The statistical asymptotic performance is analyzed for SLACK [239], for
LPT [86,240–246], for some other LS variants [243,246–249], and in general [250]. However,
the obtained results involve some parameters that are not always available. Therefore,
these results are not utilized in this SLR.

Theoretical performance indicators illustrate the expected solution quality and re-
quired running time of each particular CH. However, the practical behavior of these
algorithms may differ significantly. For experimental evaluation, achieved solution quality
(the makespan value) and the running time spent for each problem instance are usually
the most relevant performance indicators. The majority of the reviewed papers report on
experimental evaluation. However, usually, only a few CHs are compared simultaneously,
on a very specific set of problem instances, which makes the conclusions non-adequate in
many situations. Some of the conclusions drawn by the authors of reviewed papers and
related to the experimental comparison of CH algorithms are presented here.

The variant of MF algorithm [129] where the parameter k takes value 7 (MF7) was
compared with LPT and MF′

7. The quality measure was defined as the average gap with
respect to the lower bound. The comparison was made on a small instance set 30

10 I. Based
on the presented results, the authors concluded that MF7 was clearly the best and MF′

7
performed better than LPT in the majority of cases.

The MFe algorithm [133] was compared with MF, LPT; and the ε-DUAL PTAS algo-
rithm with ε = 1

5 . The first version of E2 instances with mean 450, where variance is
not explicitly provided, but limits for values are in interval [100, 800] (denoted as Ẽ2N450

)
was used. The experimental results showed that MFe performed generally the best, MF
outperformed the other two algorithms, and LPT was better than ε-DUAL.

The COMBINE algorithm [134] was compared with MF and LPT algorithms, on the
same variant of E2 instances as in [133]. It was shown that COMBINE provides better
results on average, which is expected considering that it represents a combination of the
other two mentioned algorithms. In addition, it was confirmed that MF outperforms LPT.

The performance of the RAS2 algorithm [136] was compared with LPT and MF;
RAS1 IH; and DP87 EE solver. The first experiment is conducted on instances 50

5 IU[10,100]
.

In this experiment, it is shown that RAS2 performed better than LPT, slightly worse than
RAS1. In addition, its running times are significantly shorter compared to DP87, where the
exact solver failed on some instances, due to the memory limitations of the used machine.
In the second experiment, tests are conducted on instances 2·103

150 IU[10,100]
. In comparison with

LPT, RAS2 obtained better quality solutions within slightly longer computation times. With
respect to RAS1, RAS2 provided marginally worse solutions within significantly shorter
computational times. Based on the results of the third experiment on instances 250

50 IU[10,100]

and the fourth experiment on instances 104

250 IU[10,100]
, it can be seen that RAS2 is similar to

MF in terms of the solution quality. However, RAS2 provides a significant reduction in
CPU times.

The LISTFIT algorithm [137] shows considerably better average performance com-
pared to LPT, MF, and COMBINE on the E instance set. As expected, COMBINE outper-
forms MF, and MF outperforms LPT.
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Among all variants of FGH and DGH algorithms [130], npar-FGH10, npar-DGH1 and
npar-DGH2 were evaluated. The listed algorithms have been compared with LPT, MF (MF7 and
MF16), RAS2; and RAS1 IH on their own instance sets, with sizes up to 104

103 IU
[1,103]

. The authors
utilized the gap with respect to L2 as a performance measure. As can be seen from the presented
experimental results, the listed algorithms dominate for the majority of instances. However, in
some cases, MF algorithms or RAS1 performed the best. There was no significant difference in
the computational time between the compared heuristics. Upon the proper parameter tuning,
no obvious difference between the FGH and DGH algorithms can be found. Although they did
not usually produce identical solutions, the computed gap deviations were similar.

AP10, APni, and APi (AP) algorithms [138] were compared with LPT, FGH, DGH, and
MF. Instances set 103

50 IU[1,100]
were used in the first experiment, while the second experiment

was conducted on instances 103

50 IU
[1,103 ]

. The authors concluded that the algorithms they
proposed require much less time to run than FGH, DGH, and MF. According to the solution
quality, AP algorithms showed superiority only in comparison with LPT.

H1 [139] has not been directly compared with other algorithms. Instead, the authors
mentioned that it was capable of finding 556 out of 780 optimal solutions on the F instances
when using lower bounds L3, Lθ , and LHS.

The SS algorithm [95] was compared with MS, the better among MF and LPT; and

MSS IH with respect to the solution quality. Instance sets
200

80C̃2.5
U[ n

5 , n
2 ]

and 100
15 IU[50,100]

were

utilized. MSS performed the best, followed by SS and MS. In the case when SS was used
(instead of LPTR) to construct an initial schedule for the MSS IH, even better solutions were
achieved; however, at the cost of increased computation time.

The MPS algorithm [140] was compared with LPT. It produced better AR on BP, TR,
and FNU instances than LPT. However, LPT showed slightly better results in terms of
execution time. The issue with these experiments is that the authors do not provide insight
into makespan values or other directly dependent statistics, making it difficult to compare
MPS with other algorithms based on solution quality.

Based on the solution quality, the PSC algorithm [141] was compared with LPT; and
the 3-PHASE and 1-SPT IHs. Comparison with LPT and 3-PHASE was conducted on F
instances. On the other hand BP instances were utilized for comparison with LPT and
1-SPT. The provided experimental results show that PSC outperforms LPT on both instance
sets. With respect to both IHs, PSC exhibits comparable performance.

PSCi (the best performing among all presented variants) [142] was compared with
LPT; and 3-PHASE and K-SPT IHs under the same conditions as in the previous paper.
Regardless of the performed modifications, the conclusion of the experimental evaluation
remains unchanged.

A similar experimental evaluation was performed for the SPS algorithm [143], and a
similar conclusion was made. SPS performed better than LPT on BP and F instances. It
was comparable with 3-PHASE on F instances and with 1-SPT on BP instances.

The DJMS algorithm [144] was compared with LPT, MF, COMBINE, and LISTFIT on
E instances. It showed the smallest overall average percentage error compared to LPT, MF,
COMBINE, and LISTFIT, although LISTFIT performed slightly better with respect to the
percentage of instances solved to optimality.

PSMF algorithm [145] is evaluated against LPT, MF, COMBINE, and LISTFIT on
E instances. It can be seen that PSMF performed the best, and it flowed with LISTFIT,
COMBINE, MF, and LPT, respectively. In addition, authors used the FNU set to compare
PSMF with ME (the best result of 1-SPT, 1-BPT, K-SPT, and K-BPT), PSMF+ and HI IHs;
and DM HE. In this experiment, HI always outperforms all other algorithms. PSMF obtains
the worst average relative error (the same order of magnitude as ME and DM) and solves
the fewest instances to optimality. PSMF+ performs better than PSMF with respect to
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the average relative error and the number of provided optimal solutions with negligible
increase in the running time. Actually, it can be ranked as the second the best algorithm,
outperformed only by HI.

The SLACK algorithm [146] was compared with LPT, COMBINE, and LDM on F
instances. It produced better overall experimental results than LPT and COMBINE but
not better than LDM. COMBINE outperformed LPT. The SLACK+ IH was also compared
with LDM, showing generally better results on FNU instances but weaker results on FU

instances, with computational times more than an order of magnitude longer in both
cases. The issue with these experiments is that they provide only win/equal/lose results
without concrete makespan or gap values, making a more precise comparison with other
algorithms impossible.

The studies in [41,219] compare LPT, MF, COMBINE, and LISTFIT on the instance set
300
10IU[1,100]

. The results indicate that LISTFIT achieves the best performance, followed by COM-
BINE and MF, with LPT performing the worst, which is consistent with previous findings.

In [113], the author examined the performance of the CP04 HE algorithm exploring
various CHs for generating the initial solution: LPT, FGH1, MF17, and AP10. Instance
set 103

15 IU[1,100]
is used for the evaluation. Based on the experimental evaluation, it can

be concluded that CP04 with AP10 produced the best results on hard instances, while
better results can be obtained on easy instances starting from MF17, the obtained initial
solution. However, the provided results cannot be used for direct comparisons of the given
constructive heuristics.

WTC and AR are also standard performance measures for theoretical comparison of
Improvement Heuristics. Their experimental evaluation involves the quality of the produced
solution and the required computational time on the selected test instance. However,
WTC may not be known for some IHs, as well as AR for IHs that start from a random
initial solution. On the other hand, AR which originates from CH, used to obtain an initial
solution for the improvement procedure, may not be improved in a theoretical sense. In
those cases, experimental comparison is the only choice.

Assuming n > m, enables to express WTC as dependent only on n and sorts the IH
algorithms in non-decreasing order with respect to complexity as follows: IC, ICI, ICII:
O(n log n); KOMP: O(n2S); LPT+, MF+: O(n2S log n); EX: O(n3S); MSS: O(n2kS2); MSK:
O(n3kS2); X-TMO and finally DIST with WTC of NP complexity.

For some of the IHs, WTC estimations have not been provided in the related papers.
Therefore, the necessary derivations were performed to complete the above-presented list.
For example, in [157] WTC of EX algorithm, was considered only for the 2-machine case
and it is estimated to O(n2). In [158], precise pseudo-code for the case m > 2 is provided,
allowing us to derive WTC. Assuming that every improvement minimally decreases the
load of the most loaded machine (i.e., by 1), the number of iterations in the main loop is
related to the sum of job durations (S). In the worst case the improvement will always
occur for the last considered pair of machines, implying that WTC cannot be worse than
O(n2mS), i.e., O(n3S) for n > m. Similarly, the WTC for MSS, MSK, LPT+, and MF+ could
be calculated. Estimation of the WTC for the 3-PHASE algorithm is more complicated,
as mentioned in [135]. The same holds for HI [139], and therefore the corresponding
algorithms are missing in the aforementioned list.

If it is assumed that m and k approach infinity, AR can be expressed as a constant. Thus,
the IH algorithms can be sorted in the non-increasing order of AR, with their constructive
heuristics in parentheses: X-TMO (MF), MF+ (MF), PSMF+ (PSMF): 13

11 ; HI (ε-DUAL): 5
4 ;

EX, ICII, LPT+ (LPT), MMIPMH (LPT), SLACK+ (SLACK), DIST (SLACK): 4
3 ; ICI: 3

2 ; IC,
3-PHASE, MSS (LPTR), MSK (LPTR): 2.
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A comparison of CHs and IHs with respect to WTC and AR can be found in Table 14.
The question mark (?) in the second or the third column indicates that the information
about the corresponding performance indicator is missing. The algorithms are graded
with respect to WTC and AR. The corresponding points are presented in the fourth and
fifth columns, respectively. A larger number of points indicates a higher grade. If the
performance is missing, the grade of the corresponding algorithm is set to 0. Finally, WTC
and AR points are summed up (values presented in the last column) defining the overall
grade of algorithms. In Table 14, the algorithms are sorted in the non-increasing value with
respect to the sum of points. Regarding the experimental evaluation of the IH algorithms,
proposed SLR revealed the following information.

Table 14. Heuristic algorithms comparison by AR and WTC. “?” represents unknown values.

Name WTC AR WTC Points AR Points Σ Points

MFi O(kn log n) 72/61 13 7 20
COMBINE O(kn log n) 13/11 13 6 19

MF O(kn log n) 13/11 13 6 19
SLACK O(n log n) 4/3 14 4 18

MF′ O(kn log n) 5/4 13 5 18
LPT O(n log n) 4/3 14 4 18

RAS2 O(n log n) 4/3 14 4 18
ICII O(kn log n) 4/3 13 4 17
SPS O(n log n) 3/2 14 3 17
ICI O(kn log n) 3/2 13 3 16

FGH O(kn2) 13/11 10 6 16
DGH O(kn2) 13/11 10 6 16
PSMF O(kn2) 13/11 10 6 16
SLS O(n log n) 2 14 2 16
P1 O(n) ? 15 0 15

MPS O(n2) 3/2 12 3 15
LDM O(n2 log n) 4/3 11 4 15

LISTFIT O(kn2 log n) 13/11 9 6 15
DJMS O(kn2 log n) 13/11 9 6 15

MAAAT O(n log n) ? 14 0 14
AP O(n log n) ? 14 0 14

LPTR O(n log n) ? 14 0 14
PSC O(n log n) ? 14 0 14
PSCi O(n log n) ? 14 0 14

IC O(kn log n) 2 13 1 14
MFe O(kn log n) ? 13 0 13
MF+ O(n2S log n) 13/11 6 6 12
LPT+ O(n2S log n) 4/3 6 4 10

EX O(n3S) 4/3 5 4 9
MS O(n3) ? 8 0 8

X-TMO NP 13/11 1 6 7
SS O(n2S) ? 7 0 7

KOMP O(n2S) ? 7 0 7
PSMF+ ? 13/11 0 6 6

MSS O(n2S2) 2 4 1 5
HI ? 5/4 0 5 5

DIST NP 4/3 1 4 5
MMIPMH ? 4/3 0 4 4
SLACK + ? 4/3 0 4 4

MSK O(n3S2) 2 3 1 4
H1 O(n2 log(1/ε + 1/ε2)) ? 2 0 2

3-PHASE ? 2 0 1 1
KK NP ? 1 0 1

The IC algorithm [154] was compared with the LPT CH on instances 500
10 I, using

five different distributions. In these experiments, IC showed comparable but generally
performed weaker than LPT. The authors also concluded that the IC algorithm is very fast
for the considered set of instances.

The KOMP algorithm [112] was compared with LPT and MF CHs on 100
10 I instances

with controlled pmin
pmax

ratio. The results clearly indicated KOMP’s dominance over the
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other algorithms with respect to solution quality. Additionally, MF showed slightly better
performance than LPT. However, the reported computational times of KOMP are sometimes
up to two orders of magnitude larger than in MF and LPT cases, raising questions about its
practical usability.

The EX algorithm [157] was compared with the LPT CH on 60
5 I instances for ten dif-

ferent uniform distributions of job durations. EX performed better without a significant
increase in computational time.

The 3-PHASE algorithm [135] was compared with IC and ICII; BIN HE; and LPT
CH algorithms on the FU instances (introduced in this work). 3-PHASE showed better
performance than IC, ICII, and LPT CH, where LPT CH outperformed IC and ICII. IC and
ICII showed identical performance. BIN solved to optimality more instances than 3-PHASE;
however, required a larger computational time.

The X-TMO algorithm [159] was compared with LPT, MF, and MFe CHs on 100
12

IU[20,250]

instances. As the initial solution for X-TMO each of CHs’ solutions is provided and it
improved all of them with a significant increase in computational time. The results of
comparing the CHs on the same instances suggested the following order: MFe, MF, and
LPT.

The PI algorithm [160] was compared with LPT and MF CHs on 30
10 I instances with

four different uniform distributions of job processing times. The authors reported the
dominance of PI over CHs with respect to solution quality and a negligible increase in
computational time. Among CHs, MF performed better.

The CP99algorithm [17] was compared to a simple ILP solver on 15
5MKU[1,100],U[10,100),U[50,100]

instances, within a node limit of 5 · 105. Without providing the resulting table, the authors
concluded that CP99 performs well on all instances. In the cases when the ILP solver provided
optimal solutions, CP99 was able to find the same solutions within a significantly smaller
running time. When the ILP solver failed, CP99 always converged to a feasible solution.

The ME algorithm (representing the best results of 1-SPT, 1-BPT, K-SPT, and
K-BPT) [162,163] was compared with the LPT CH; DM HE (with a backtrack limit of 4 · 103);
and the 3-PHASE algorithms on FNU instances. DM dominated in this experiment, with ME
outperforming the remaining algorithms, and LPT being the weakest. In the subsequent
experiments, ME was compared with LPT and 3-PHASE on BP and TR instances. ME
performed the best, while LPT was consistently the weakest. In [162], DM, 3-PHASE, and
LPT were compared on FU instances, where DM outperformed 3-PHASE, which in turn
was better than LPT.

The HI algorithm [139,220] (with an iteration limit of 103 for the TS improvement
phase) was compared with LPT CH; DM HE (with a backtrack limit of 4 · 103); and the
3-PHASE algorithms on FU instances. HI produced the best results, followed by DM and
3-PHASE. On FNU instances, HI was compared with LPT, DM, and ME algorithms, yielding
similar results: HI dominated, DM was second, and ME was third. Detailed comparison
results are provided in [251].

The MSS algorithm [95] was compared on the
104

15C̃1−5 instances with DM and BIN
HE solvers. The results provided by MSS and DM were close, while MSS dominated in
comparison with BIN. For PP instances, MSS achieved results similar to DM, where DM
outperformed BIN. MSS was also compared with HI on F instances, showing comparable
results, although sometimes slightly weaker.

The MSK algorithm [14] was compared with MSS and HI on F instances. The authors
did not provide detailed comparison results, just the direct comparison by the number of
better, equal, and worse solutions. They concluded that MSK performed better than the
other two algorithms. MSK also showed a lower average gap compared to DM HE on
104

15C̃1−5 instances.
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The CA algorithm [164] was compared with DM HE; and HI on FU instances, where
CA dominated and HI was the second. The comparison on FNU instances shows that CA
clearly outperformed DM, HI, and ME, solving all instances to optimality, with HI being
the second, followed by DM. On BP instances, CA performed similarly to HI, requiring
slightly larger computation time, while ME was the third and DM took the last place. On
TR instances, CA dominated HI, DM, and ME, solving all instances to optimality. The
order of remaining algorithms was: HI, ME, DM.

The KLh algorithm [122] was compared with HI and DIMMSS MH on F instances. KLh

solved all instances to optimality within less time than the other two algorithms. The other
two algorithms were not able to solve all instances, where DIMMSS was more successful.

The MMIPMH algorithm [165] outperformed the LPT CH on a very small 9
4 I instance

set based on a direct comparison of makespan values.
In [166], the authors compared 70 introduced IHs with each other on a subset of Iogra

instances. The ten best-performing algorithms are identified, as it was not possible to
distinguish between them with statistical significance.

The PTAS algorithms for P||Cmax, as well as EE and HE algorithms, make the most
sense in theoretical discussions. The primary measure for comparing them is WTC. How-
ever, some PTAS algorithms are implemented and experimentally compared with CHs.

The ε-DUAL algorithm, with ε = 1
5 , was compared with the MFe, MF, and LPT CHs

on the Ẽ2N450
instances in [133], as it is mentioned earlier in this section. The average

performance of the ε-DUAL algorithm was close to its worst error bound, generating low-
quality solutions compared to other methods. However, the required running time was
comparable to others.

The BDJR algorithm [174], parallelized on 16 CPU cores was tested with ε ≈ 17.29%.
The obtained results were comparable with LPT, MF, and DJMS CHs on E instances;
however, the required computational times were significantly longer.

In Figure 9, the relationships between all heuristic algorithms are displayed, based on
the available empirical results. The orange color represents IH algorithms, the light orange
represents CH algorithms, and the lightest orange (at the very bottom left) represents
PTAS algorithms. Additionally, small blue nodes present some exact algorithms, making
the connection between heuristic and exact algorithms, i.e., between Figures 9 and 8.
Dashed-line edges are used merely to highlight necessary edge intersections. The graph is
divided into two major parts: the left part primarily features F edges, while the right side is
dominated by E edges. However, these two parts are more connected than in Figure 8. The
first connection between these two parts is established by FNU edges, linking PSMF with
algorithms from the F-part of the graph. The second connection arises from the FU edge,
connecting PSC and MF+ with the E-part. On the E-part, there is an additional F-path
from SLACK+ to LPT. However, this path is problematic because it is based merely on
better/worse comparisons, which are not informative enough to support the integration
of this path into the F-part. It can be seen that LPT has the largest number of input edges,
indicating that it is the most studied and widely used heuristic for this problem.

Once again, due to the lack of empirical comparisons in the literature, several compro-
mises had to be made to distinguish between results across various instance sets. This may
lead to some unclear relationships.

For example, considering the results on BP instances, the order of PSCi, PSC, and SPS
CHs should be reversed. However, as they belong to the F-part, the presented order is
established, although, the other one is indicated too.

Similarly to the case of exact algorithms, no single heuristic method that dominates
across all instances could be identified based on the available results. Therefore, it is crucial
to perform a comparison of all methods on a wide range of instances under equal conditions
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to gain a comprehensive understanding of the practical performance of the proposed
heuristics. Due to the fact that CH algorithms are usually quite simple to implement and
that they represent a good starting point for many other methods, the results of this SLR
indicate that they might be extensively used in future comparisons. Additionally, special
attention should be paid to selecting appropriate parameters for each particular algorithm.



Symmetry 2025, 1, 0 51 of 70

LPT

MF′

MF

BDJRε-DUAL

MFe

COMBINE

MF+

RAS2EX

LISTFIT

RAS1

DGHFGH

APMMIPMH

SLACK

LDM

SLACK+

DJMS

PSMF

SPS

PSC

PSCi

H1 3-PHASE

ME

PSMF+

DM

MSS

SS

MS

DM

HI

IC ICII

KOMP

X-TMO

PI

MSK

CA

HJ

DM

BIN

DIMM

KLh KL

DP87

BIN

DM

LPT+

30
10I

30
10I
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6.3.3. Metaheuristics Comparisons

Metaheuristics generally provide high-quality solutions, although without a guaran-
tee. No improvement with respect to the AR of the initial solution was certified. An initial
solution is usually generated by some CH or IH. Moreover, the performance of these algo-
rithms heavily relies on the values of the parameters, making WTC an unreliable measure.
Therefore, the performance of MHs can be estimated only by experimental evaluation.

The SA88 algorithm [10] was tested on a small instance set 103

12 I and the G78 instance.
The experimental evaluation on 103

12 I instances was used to discuss the quality of the ob-
tained solutions. The author concluded that only for m = 2 SA88 can find the optimal
solutions. As the number of machines increases, finding optimal solutions becomes harder.
For the G78 instance, based on private correspondence with its creator, the author con-
cluded that SA88 outperformed several tested approximate algorithms. However, no
information about the specific approximate algorithms is provided. Considering that
Graham created G78, one can assume that LPT was certainly among them.

The HG algorithm [178] was tested on the 2·103

50
IU[0,1]

set of instances with known

optimal solutions. The provided results show an average relative error of at most 10−5. In
addition, HG algorithm is compared with SA88 on the G78 instance. In this experiment,
HG provided a solution of better quality.

The SA97 algorithm [179] was evaluated on the 5·103

50
IU

[103,5·104 ]
instance set. The authors

examined the influence of neighborhood types and the number of iterations on the quality
of the provided solution. Two types of neighborhoods are combined with two values of
iteration limits (100 and 103). The reported gap with respect to L2 ranged from 0.2% for
small-sized instances up to 3% for larger instances. However, no comparison with other
algorithms was provided.

The TGR algorithm [180] was compared with HG on the 2·103

50
IU[0,1]

instance set and,
in the majority of the cases, it provided better quality solutions requiring smaller number
of iterations.

The GA99 and SA99 algorithms [181] were compared with each other and with the LPT
CH on instance 7

3 I. The results show that GA99 and SA99 are comparable and that they
outperform LPT. In the next experiment, GA99 showed better performance than SA99 on
instances 10

2 I and 30
10 I.

The AIS and SA02 algorithms [161] were compared with each other, as well as with the
LPT and MF CHs, and the LPT+ and MF+ IHs on FU instances and five instances from [127]
obtained using a stepwise distribution. This job duration distribution is known to produce
the worst-case instances for LPT. In the first experiment on FU instances, AIS performed
slightly better than SA02, although requiring an order of magnitude larger processing time.
The heuristic algorithms were ranked in decreasing order of solution quality as follows:
LPT+, MF+, LPT, and MF. In the second experiment, 25 instances 95

2
IU [109,1010] from [252]

were used to compare only the two metaheuristics (due to the weak performance of other
algorithms). AIS was superior with respect to solution quality.

The AntMPS algorithm [7] was tested on 103
IU [20,100] instances for BPP and on TR

instances. Interestingly, AntMPS, as a P||Cmax metaheuristic, was directly compared with
different BPP metaheuristics, that were actually solving different problems on the same
instances. However, AntMPS was given an optimal number of bins as the input value
for m to simulate the P||Cmax problem. The resulting makespan actually represents bin
capacity and, if it is not exceeded, the corresponding instance is considered as solved
to optimality. With the stopping criterion limited to 103 iterations, AntMPS was able to
solve the majority of instances to optimality, while for the remaining the resulting gap
was minimal.
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The SA06 algorithm [182] was compared with LISTFIT CH and PI IH on E instances.
Given a stopping criterion of 30n iterations, it outperformed other algorithms with respect
to the solution quality: providing the smallest gap with respect to L1 for almost all instances.
For E4 class, SA06 found the larger number of optimal solutions. The second-best position
was taken by PI. The execution times were not reported because SA06 turns out to be very
fast, i.e., it completed all executions within less than 1s.

The ILS06 algorithm [183] was compared with the LPT CH on 103

40
IU[1,100]

instances,
generated by the authors, where it demonstrated better performance. They used interesting
performance measure of algorithms for a single instance, calculated as the ratio between
the makespan produced by the algorithm for that instance and the best-known makespan
for all instances of the same size. In general, ILS06 outperformed LPT with respect to the
solution quality. However, the authors noticed different behavior of ILS06 algorithm related
to n

m radios, ranging from 2 to 333, where the largest improvement of 7.21% over LPT was
achieved for n

m ≈ 3. The authors also observed that the largest execution times correspond
to the smallest n

m ratios. ILS06 solved 83% of instances to optimality.
The HDNN algorithm [184] was compared with the LPT CH on 10

3
IU[1,3]

instances, where
it outperformed LPT in reasonable time. As a performance measures, the authors used the
gaps between the obtained solution and both the LPT solution and the optimal solution.

The HDNNi algorithm [185] was compared with the LPT CH on 100
5
IU[1,3]

instances,
also demonstrating superior performance in reasonable time, and using the same measures
as for HDNN.

The TCNN and TCNNi algorithms [186] were compared with HDNN on 50
3
IU [1,50]

instances, where TCNNi showed the best performance, followed by TCNN. The authors
measured the best and average makespan over 100 random instances with the same input
parameter values.

The DIMMSS algorithm [114] was compared with 1-SPT (one of four ME algorithms)
and HI IHs on FU instances. The presented results show that DIMMSS provided the best
results measured as the relative gap with respect to the max(L3, LHS, Lθ). The second
was HI which, in the majority of cases, required less computational time. In the second
experiment, DIMMSS was compared with 3-PHASE, 1-SPT, and HI algorithms on FNU

instances, with similar results. 3-PHASE showed the worst performance.
The MVNS and GA09 algorithms [5] were compared with the LPT CH on 200

20
IU [1,100]

instances, where MVNS showed the best results and GA09 performed the worst, with
respect to the relative gap between produced makespan and L1. Regarding the execution
time, MVNS also outperformed GA09.

The BCO09algorithm [6] was tested on the IT10,20,30,40,50,100 set of instances, achieving
optimal solutions for all instances within the execution time less than 2 s for a single instance.

The VNS09 and MC09 algorithms [187] were compared on the IT10,20,30,40,50,100 set of
instances. Better performance was demonstrated by VNS09, providing optimal solutions
for all instances. Additionally, VNS09 required less CPU time than BCO09 in [6] .

The DPSO09 and HDPSO algorithms [189] were compared with SA06 on E instances.
The results showed that DPSO09 slightly outperformed SA06, while HDPSO performed
significantly better than DPSO09, with respect to relative gap between produced makespan
and L1. It is important to note that the results for SA06 on E2 were not consistent with those
reported in [182].

The DSHS algorithm [190], with a stopping criterion of 100 iterations, was compared
with HDPSO and SA06 on E1,2 instances, showing better results than both competitors
with respect to both L1-gap and execution time. As expected, SA06 performed the worst
regarding the both measures.
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The DHS11 and HDHS algorithms [191] were compared with LPT CH, GA99, SA06,
and MVNS on 200

20
IU[1,100]

instances. All MHs were limited to 100 iterations. Both introduced
algorithms outperformed the other competitors, where HDHS performed the best with
respect to the quality of solutions (L1-gap); however, requiring longer execution time than
DHS11. Unexpectedly, all other competitors performed worse than LPT. This was surprising
because MVNS was tested on the same type of instances in [5], where it outperformed LPT.
This discrepancy can be explained by the fact that experiments were performed on the
newly generated test instances. However, the results for LPT seem to be copied from [5].

The RIVNS and HIVNS algorithms [192] were compared with LPT CH; GA99, SA06,
and MVNS on 200

20
IU[1,100]

instances. All MHs were limited to 100 iterations. RIVNS and
HIVNS outperformed the other competitors, with HIVNS emerging as the best, with respect
to both quality of solution (L1-gap) and execution time. The experiments were conducted
using the same version of instances as in [190], and the results of both algorithms were
better than those of HDHS. In this experiment, LPT achieved better average solution quality
than GA99 and MVNS, while SA06 was just slightly better than LPT.

The SA12 algorithm [193] was compared with SA06 on E2 and 500
20

IU [1,100],U [100,800]
instances, where it achieved better results with respect to L1-gap. It is interesting to note
that the authors reimplemented the SA06 algorithm and regenerated E2 instances, but they
were unable to reproduce the SA06 results and reported worse performance of SA06 with
respect to [182].

The SPPSO, DPSO12 [253], and PSOspv [254] algorithms were compared in [194]
on 500

50
IU [1,100],U [100,800] instances. All algorithms used population size n and were limited

to 2·103

n iterations. SPPSO dominated over other algorithms with respect to average L1-gap,
followed by PSOspv.

The BCO12 algorithm [177] was compared with a BPP solver, and in [211] with DM and
DIMM HE algorithms on IO, IT500, and RN instances. Both HE algorithms outperformed
BCO12 solving all instances to optimality and having much better execution times. DM is
faster than DIMM.

The DHS12, BHS, and DHSLS algorithms [195] were compared in two experiments.
In the first experiment, BHS, DHS12, and DHSLS were compared on E2 instances, where
DHSLS dominated, followed by DHS, with respect to average L1 gap, and all algorithms
had similar execution times. In the second experiment, DHS12, DHSLS, SA06, DPSO09,
and HDPSO were compared on E instances. With respect to the average L1 gap, DHSLS

dominated, followed by HDPSO provided slightly worse average solution quality, but
within a significantly shorter execution time. DHS, SA06, and DPSO09 ranked third, fourth,
and fifth, respectively, and also required significantly longer execution times. It is worth
mentioning that the general conclusions, and in particular the relationship between DPSO09

and SA06, are different from those in [189].
The CSA algorithm [196] limited to 103 iterations was compared with SA06, DPSO09,

and HDPSO on E instances, considering average gap with respect to L1. CSA provided
solutions similar to HDPSO with significantly lower CPU time consumption. Both of them
outperformed SA06 and DPSO09. Regarding this experiment, again, it is important to
mention significant differences in the presented results compared to older studies.

The GES and GES+ algorithms [197] limited to 103 iterations were compared with
SA06 on E instances, with respect to L1, where GES+ emerged as the best and GES ranked
as the second. In addition, the new algorithms required shorter average running times. The
results for SA06, once again, were not consistent with older papers.

The ICSA algorithm [198] with limitation to 103 iterations, was compared with SA06,
DPSO09, HDPSO, DHS12, DHSLS, and CSA on E instances. The authors reported the
domination of ICSA in terms of solution quality. In the performed experimental evaluation,



Symmetry 2025, 1, 0 55 of 70

the results of the older algorithms were taken from the literature, and the results of ICSA
were obtained using newly generated E instances with unspecified parameters used for
generation. We have a reasonable doubt about the reliability of the provided results.
Based on the analysis of the results from previous experiments, the methodology of using
E instances is questionable. As [198] provides the most comprehensive comparisons of
different algorithms so far, it is used here for a more detailed analysis.

In the presented experiments related to E instances, for each combination of parame-
ters, the authors randomly generated 50 problem instances without providing details about
the random seeds. They presented the average gap with respect to L1. Let us focus on the
small group E4, because of the simplicity of its instances and the possibility of solving them
to optimality using a commercial linear programming solver. We generated 50 groups of
E4 instances (50 generations of 50 instances for each parameter combination), and, in the last
two columns of Table 15, we present the best (OPTB) and the worst (OPTW) average gaps
of optimal results among these 50 groups, obtained using the exact solver. The table also
contains the characteristics of instances and results of other algorithms provided in [198].

As shown in Table 15, the average results of all metaheuristics, except ICSA, are
between OPTB and OPTW . If we assume that all presented heuristics provided near-
optimal solutions for all instances from E4, these results can be considered acceptable.
However, the average gap with respect to all instances presented for ICSA is significantly
smaller than the best average gap of OPTB, leading us to conclude that the authors of [198]
may have been particularly fortunate when generating the E instances.

Table 15. OPTB, OPTW and results of metaheuristic solvers presented in [198] for E4 instances. Bolded
values indicate identified discrepancy.

m,n D SA06 DPSO09 HDPSO DHS12 DHSLS CSA ICSA OPTB OPTW

2,9 U[1,20] 1.001 1.000 1.000 N/A N/A 1.000 1.000 1.000 1.001
U[20,50] 1.001 1.001 1.001 N/A N/A 1.001 1.001 1.002 1.001
U[50,100] 1.004 1.004 1.004 N/A N/A 1.004 1.003 1.002 1.003
U[100,200] 1.004 1.004 1.004 N/A N/A 1.004 1.004 1.002 1.005
U[100,800] 1.002 1.002 1.002 N/A N/A 1.002 1.001 1.002 1.003

3,10 U[1,20] 1.001 1.001 1.001 N/A N/A 1.001 1.002 1.003 1.006
U[20,50] 1.008 1.007 1.007 N/A N/A 1.007 1.005 1.006 1.009
U[50,100] 1.010 1.009 1.009 N/A N/A 1.010 1.006 1.011 1.010
U[100,200] 1.017 1.016 1.016 N/A N/A 1.016 1.008 1.010 1.020
U[100,800] 1.009 1.009 1.009 N/A N/A 1.009 1.006 1.007 1.008

Average 1.0057 1.0053 1.0053 1.0064 1.0061 1.0054 1.0036 1.0046 1.0067

The HIVNS1, RIVNS1, HIVNS2, and RIVNS2 algorithms [199] limited to 103 iterations,
were compared with GA99, SA06, MVNS, RIVNS, and HIVNS on 200

20
IU[1,100]

instances. The
authors generated ten instances for the same combination of parameters and used the gap
with respect to L1 as the performance measure. All presented algorithms outperformed the
older competitors. RIVNS1 and RIVNS2 achieved the best average results, while RIVNS2

was slightly faster. HIVNS1 performed the worst.
The GWO19 and GA19 algorithms [200] were compared with each other on E instances,

where GWO19 outperformed GA19. However, the type of measurement used was not
explained, and therefore, the results were unusable for additional comparisons.

Figure 10 illustrates the relationships between the employed metaheuristic algorithms
based on the available empirical results. MHs from the P-class are represented in dark
green, while light green is used for S-class MHs. Additionally, some exact and heuristic
algorithms (in the corresponding colored nodes) are included to establish a connection with
the graphs in Figure 8 and Figure 9. As the first observation, it is evident that the graph
can be separated into several parts. The largest (central) part is primarily characterized
by the utilization of E instances. Based on our analysis of the performances of the ICSA
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algorithm [198], we demonstrated that this branch should not be considered as a fully
accurate representation of the relationships between the corresponding algorithms.
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Figure 10. Graph of experimental comparisons of metaheuristic algorithms.



Symmetry 2025, 1, 0 57 of 70

The second (upper right) part of the graph contains algorithms compared on 200
20

IU[1,100]

instances and the relationships between the algorithms could clearly be established (algo-
rithms performing better are on top). Additionally, there is a smaller, central right, part of
the graph that involves FU instances, which helps to establish relationships between meta-
heuristics and the results of exact and heuristic algorithms. ANN-based metaheuristics are
presented in the left part of the graph, besides ILS06. Finally, in isolated parts of the graph,
comparisons of algorithms that have no direct relationship with other algorithms provided.
Similarly to heuristic and exact methods, no single metaheuristic method dominates across
all instances.

7. RQ4: Discussion, Challenges, and Future Work
Although the P||Cmax problem was introduced more than half a century ago, Figure 11

shows that interest in publishing research related to P||Cmax did not diminish. Several pa-
pers have been published on this topic every year. We observe that majority of publications
related to metaheuristic approaches were published from the early 2000s to the 2020s. On
the contrary the publications on heuristics and exact solvers, which exhibit a consistent
developmental trend from the inception of the problem.

The identified limitations of any SLR are related to biases in availability of publications
and in the study selection processes, to inaccuracy in the study extraction process, and to
misclassification of published results [255]. We have identified the following challenges,
which provide the exciting opportunities for future work:

1. Isomorphic versions of P||Cmax problem;
2. A lot of taxonomies available;
3. Standardization of identified groups of instances;
4. Instance nomenclature limitations;
5. Fair algorithm performance evaluation;
6. The state-of-the-art algorithm identification.
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Figure 11. Published solving methods per year.

Isomorphic versions and multiple taxonomies challenges could be addressed by
identifying and presenting various isomorphic versions of P||Cmax problem and selecting
the taxonomy that was most appropriate for the corresponding studies. However, there
might still be cases of specialized P||Cmax problem versions as well as algorithms that
were not covered by our exhaustive search. An example is a set of exact solvers and
approximate algorithms for high-multiplicity instances, i.e., instances containing a small
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number of groups with a lot of identical jobs [256–259]. Theoretical verification of model
equivalence and performance evaluation of corresponding algorithms for each newly
discovered isomorphism represent promising a avenue for future research.

Instance groups standardization and instance nomenclature allow us to establish
benchmarks and simplify the procedure of checking and referencing published results.
To that end, we have constructed a graph of algorithm comparisons for each group of
algorithms in the selected studies. This graph from each group of the algorithms shows
that it is easy to see the relationships between them in reference to testing on the same
instance groups. However, the facts that not all instances can be considered as standardized
and not all algorithms were tested on all instances resulted in our inability to provide a
comprehensive graphical representation. Our nomenclature covers four characteristics
of instances, which to the best of our knowledge is the most efficient way to describe all
instances in the instance groups we identified. The comprehensive set of standardized
instances still needs to be identified and systematically characterized.

Fair algorithm performance evaluation challenge is rather a group of many inherent
issues that include but are not limited to using ad-hoc instances, not providing the full
set of characteristics of the results, instances, solvers, controlling seed values for random
variables, and the lack of public repositories containing the algorithms, instances and their
optimal/best-known solutions. By making at least the standardized groups of instances
available, along with all the identified characteristics, we are setting the stage for fair
evaluation of algorithm performance. Resolving the remaining issues remains as a potential
subject for future work.

In addition, fair algorithm comparison must include the analysis of all involved
components. From the selected studies, we learned that the choice of the lower bounds
affects both the solution quality and the speed of obtaining the solution. Thus, we attempted
to exhaustively explain all available lower-bounding strategies. Moreover, many algorithms
and their performance depend on the underlying algorithm that was implemented to
help in the solution finding process. We identified and described many such algorithms.
Combining various parts from different algorithms should be additionally explored, as it
may result in the development of more efficient search procedures.

Another issue for fair algorithm performance evaluation is related to testing stochastic
algorithms. Here, it is important to determine the number of repetitions (executions, runs)
of the algorithm by combining minimal statistical requirements and a number of runs
already utilized in the literature. For example, the authors of [260] suggest that any number
of runs between 20 to 100 could be sufficient for a good estimation of the algorithm’s
performance, in [137] the authors used 100 repetitions, while in [12], 30 repetitions were
performed. Standardization of the number of repetitions, supported by theoretical statistical
considerations, still needs to be performed.

For some CH and IH algorithms, only AR and WTC parameters were available. Even
though this was not a primary focus of our research, we have tried to establish AR and WTC
for the remaining CH and IH algorithms to be able to include all of them into comparison.
As a future work we envision the systematic experimental evaluation of all CH and IH
algorithms on the standardized set of instances, under the same condition.

The state-of-the-art algorithm identification is directly tied with fair algorithm per-
formance evaluation. Due to the fact that not all algorithms were tested on all instances,
under the same conditions, and other related issues, we were unable to identify even the
best-performing algorithm for any of the standardized groups of instances. Instead, we
have established the standardized framework to characterize the state-of-the-art candidates,
i.e., the algorithms that perform the best on the majority of instances from all standardized
groups. Another interesting utilization of the obtained results involves the selection of
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the best-performing algorithm for the unseen instances. More precisely, future work may
include building a rich database of experimental results for different algorithms on different
sets of instances. Such a database would enable AI/ML techniques to predict the difficulty
of any new instance that has not been tested yet [1].

8. Conclusions
We conducted a systematic literature review of optimization algorithms applied to

the P||Cmax problem. We summarized and categorized the "state-of-the-art" methods,
benchmark test instances, and performance indicators. As a result, we identified a taxonomy
of optimization algorithms where the categories represent high-level types of optimization
methods (exact, heuristic, metaheuristic) that have been used in the attempts to solve the
P||Cmax problem.

Researchers are actively working on developing new methods that need to be eval-
uated appropriately. We have applied a systematic literature review mapping principles
to try to find them all and provided statistics of all the identified literature along with the
challenges and their resolutions. One of the problems we faced was the symmetry among
the optimization problems that are similar to P||Cmax. Therefore, the P||Cmax problem was
recognized under different names, not only in various communities that tried to solve it
but even within the communities. In was very challenging and time consuming to identify
all these symmetric problems as P||Cmax. Another difficulty was related to test instances.
Several dozens of various sets of instances were used in different papers, thus making
difficult to obtain fair comparisons of the used methods. We have standardized four main
groups of instances and made them publicly available along with explanations of their
characteristics. Various criteria (performance indicators) had been used to compare opti-
mization algorithms. We have identified a considerable number of them that were applied
to the P||Cmax problem. We made a proper match between categories of methods and
performance indicators, and, for each category, we proposed a suitable subset of indicators
that should be enough to objectively evaluate the newly developed optimization method.

The first avenue for future research could be identifying the best algorithms (the-
state-of-the-art) for P||Cmax problem. This could be performed by testing best solvers
from all categories on all standardized instances under the same conditions. Then, the
best-performing algorithms should be evaluated against each other and a set containing
the-state-of-the-art methods should be formed. It is not realistic to assume that a single
best approach with respect to all instances could be found. Upon an in-depth experimental
analysis, potentially supported by the theoretical consideration, the best that can be carried
out is to determine the combination of algorithms’ and instances’ characteristics that yield
a good performance. As the second avenue of future studies we envision the application of
artificial intelligence techniques, machine learning in particular, to predict the performance
of a given algorithm on some newly introduced instances. The third avenue could be the
hybridization of algorithms from different categories to build a solver capable of efficiently
solving a wide variety of instances. The fourth avenue could be the generation of additional
sets containing standardized instances for the P||Cmax problem. Moreover, theoretical
analysis of the problem and the development of new solvers could be another avenue of
future research.

In addition, our considerations could be generalized as a framework to investigate
other optimization problems. A fair comparison of optimization methods, as well as rich
data for learning and predicting the performance of various algorithms, would be of great
importance and applicability in many domains, including rather exotic blockchain mainte-
nance and security evaluation. However, significant work is required to prepare all relevant
data and the results for the application of the considered algorithms to each particular
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optimization problem instances. Automating this process may also be an interesting avenue
for future research.
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Abbreviation Meaning Group

AF Arc-flow

Exact

B&B Branch and Bound
DP Dynamic Programming
EE Exponential Exact
EN Enumeration Approach
FPT Fixed Parameter Tractable
HE Hybrid Exact
LDE Linear Diophantine Equations
SSM Sort and Search Method

CH Constructive Heuristic
HeuristicIH Improvement Heuristic

PTAS Polynomial Time Approximation Scheme

ACO Ant Colony Optimisation

Metaheuristic

ANN Artificial Neural Network
BCO Bee Colony Optimization
CS Cuckoo Search
GA Genetic Algorithm
GES Grouping Evolutionary Strategy
GWO Grey Wolf Optimiser
HS Harmony Search
IBA Immune-Based Approach
ILS Iterated Local Search
MC Monte Carlo
MH Metaheuristic
PSO Particle Swarm Optimization
SS Scatter Search
SA Simulated Annealing
TS Tabu Search
VNS Variable Neighborhood Search

BPP Bin Packing Problem

Problems

IPMS Identical Parallel Machine Scheduling Problem (P||Cmax)
KP Knapsack Problem
MKP Multiple Knapsack Problem
MMBPP Min-Max Bin Packing Problem (P||Cmax)
MSSP Multiple Subset-Sum Problem
MWNP Multi-Way Number Partitioning Problem (P||Cmax)
SSP Subset-Sum Problem

AI Artificial Intelligence

Terminology

BC Blockchain
LB Lower Bound
ML Machine Learning
OR Operational Research
SLR Systematic Literature Review
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Optimization Problems for Fair Proof-of-Useful-Work-Based Blockchain Consensus Protocol. Symmetry 2023, 15, 140.
2. Garey, M.R.; Johnson, D.S. Computers and Intractability; Freeman and Company: San Francisco, CA, USA, 1979.
3. Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems, 5th ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2016.
4. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.R. Optimization and approximation in deterministic sequencing and scheduling:

A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.
5. Sevkli, M.; Uysal, H. A modified variable neighborhood search for minimizing the makespan on identical parallel machines. In

Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 108–111.

6. Davidovic, T.; Selmic, M.; Teodorovic, D. Scheduling independent tasks: Bee colony optimization approach. In Proceedings of
the 2009 17th Mediterranean Conference on Control and Automation, Thessaloniki, Greece, 24–26 June 2009; IEEE: Piscataway,
NJ, USA, 2009; pp. 1020–1025.

7. Ritchie, G. Static Multi-Processor Scheduling with Ant Colony Optimisation & Local Search. Ph.D. Thesis, School of Informatics,
University of Edinburgh, Edinburgh, Scotland, 2003.

8. Lawrinenko, A. Identical Parallel Machine Scheduling Problems: Structural Patterns, Bounding Techniques and Solution
Procedures. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2017.

9. Korf, R.E. A complete anytime algorithm for number partitioning. Artif. Intell. 1998, 106, 181–203.
10. Kämpke, T. Simulated annealing: Use of a new tool in bin packing. Ann. Oper. Res. 1988, 16, 327–332.
11. Scholl, A.; Klein, R.; Jürgens, C. Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem.

Comput. Oper. Res. 1997, 24, 627–645.
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