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Abstract: In the automotive industry, the implementation of Process Failure Mode and 

Effect Analysis (PFMEA) is conducted by a PFMEA team comprising employees who are 

connected to the production process or a specific product. Core PFMEA team members 

are actively engaged in PFMEA execution through meetings, analysis, and the imple-

mentation of corrective actions. Although the current handbook provides guidelines on 

the potential composition of the PFMEA team, it does not strictly define its members, 

allowing companies the flexibility to determine the team structure independently. This 

study aims to identify the core PFMEA team members by adhering to criteria based on 

the recommended knowledge and competencies outlined in the current handbook. By 

applying the RAnking based on the Distances and Range (RADAR) approach, extended 

with Interval-Valued Pythagorean Fuzzy Numbers (IVPFNs), a ranking of potential 

candidates was conducted. A case study was performed in a Tier-1 supplier company 

within the automotive supply chain. 
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1. Introduction 

In automotive industry companies, the team responsible for conducting Process 

Failure Mode and Effect Analysis (PFMEA), commonly referred to as the PFMEA team, 

represents one of the most important multidisciplinary teams within the organization, as 

its work can significantly impact the reliability of the production process. Regardless of 

the type of product or the supplier level within the automotive supply chain, the PFMEA 

team is an essential and vital link in achieving the strategic and operational objectives of 

the production process. The responsibilities and tasks of the PFMEA team, as well as 

those of the team leader (facilitator), are focused on the preparation, execution, and 

evaluation of the implemented PFMEA activities. 

In addition to planning and coordinating activities related to PFMEA, team mem-

bers often perform other tasks associated with their primary job roles. Only in large and 

complex business systems is the PFMEA team composed of members for whom this role 

is their primary position. In most cases, participation in the PFMEA team is an additional 

responsibility alongside their main job tasks. 

PFMEA team members should possess technical expertise, be familiar with the 

workstations or production lines they are analyzing, be capable of effectively perceiving 
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and identifying potential problems, and be communicative and open to collaboration 

with employees. 

The application of PFMEA in the automotive industry is mandatory according to the 

IATF 16949:2016 standard [1]. To ensure uniformity and consistency in the implementa-

tion of PFMEA, the Automotive Industry Action Group (AIAG) and the German Asso-

ciation of the Automotive Industry (Ger. Verband der Automobilindustrie, VDA) de-

veloped a joint handbook [2], which serves as a basis for applying not only PFMEA but 

also its design-focused version (DFMEA) and the version for monitoring and system re-

sponse (FMEA-MSR). 

The AIAG&VDA Handbook provides certain guidelines and recommendations for 

the formation and work of PFMEA teams. However, it does not strictly define who 

should or can be a team member. The recommendations suggest that the core team 

should consist of [2] a facilitator (team leader), a process/manufacturing engineer, an 

ergonomic engineer, a process validation engineer, a quality/reliability engineer, and 

other personnel responsible for process development and planning. 

The same handbook also proposes who may be part of the extended team, which is 

involved as needed and does not regularly participate in PFMEA meetings. It is recom-

mended that occasional members include [2] a design engineer, technical experts, a ser-

vice engineer, a project manager, maintenance staff, line workers, purchasing personnel, 

suppliers, and other individuals who may be relevant to specific aspects of the produc-

tion process. 

As the composition of the core PFMEA team is not strictly defined in the handbook, 

the subject of this study is the optimization of its composition, disregarding the formal 

positions of potential candidates within the company’s hierarchy and focusing solely on 

their skills and characteristics. 

The aim of this research is to evaluate and rank candidates for inclusion in the core 

PFMEA team by applying a multi-attribute approach in a Pythagorean fuzzy environ-

ment. In this way, a mathematically grounded and reliable tool is provided to company 

management for solving the problem under consideration. 

The criteria for evaluating candidates are based on the recommended characteristics 

of the team members and facilitator outlined in the handbook [2], which are as follows: 

(1) knowledge of the considered process/product, (2) experience working in a PFMEA 

team, (3) interdisciplinary expertise, and (4) communication skills and teamwork abili-

ties. 

The selected criteria were chosen in collaboration with the management of the 

company where the case study was conducted. The company’s management considered 

these four criteria to be the most effective for evaluating potential candidates. Although 

additional relevant criteria, such as interest in participating in the PFMEA team and 

workload in the primary job position, should be taken into account when selecting 

PFMEA team members, in this case, all candidates were first interviewed and asked 

whether they were willing and able to participate in the PFMEA team activities. Besides 

the additional responsibility, it is common practice in the company that this assignment 

brings benefits such as a monetary bonus on the monthly salary, opportunities for faster 

promotion, access to additional training, the possibility to collaborate with colleagues 

from other departments, increased recognition within the company, and more. 

To address the problem under consideration, a Multi-Attribute Decision-Making 

(MADM) approach was employed. MADM, broadly speaking, falls under the group of 

Multi-Criteria Decision-Making (MCDM) methods and is used for solving optimization 

problems in various engineering domains, such as advanced manufacturing [3,4], logis-

tics [5,6], material selection [7,8], failure analysis [9,10], energy sector [11,12], supplier 

selection [13,14], selection of electric vehicles [15,16], etc. 
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In this case, the MADM approach was extended by the application of Interval-Valued 

Pythagorean Fuzzy Numbers (IVPFNs). The MADM method used for ranking potential 

candidates in this study was the Ranking based on the Distances And Range (RADAR) 

method [17,18]. 

In the literature, there are two variations of the RADAR method, namely RADAR 

and RADAR II, which differ in the way values are normalized. The RADAR method fa-

vours the stability of an alternative by mitigating the influence of extremely high values 

across a small number of criteria, whereas the RADAR II method evaluates alternatives 

more objectively. However, in this study, due to the limitations of fuzzy algebra for 

IVPFNs, which does not recognize classical mathematical operations, such as subtraction 

and division, distances between two IVPFNs were used instead of these operations. 

Therefore, two variants of the RADAR method extended by the application of 

IVPFNs were used in this study, referred to as the IPF-RADAR approach. For the pur-

poses of the case study, a shift manager, HR specialist, and production supervisor were 

engaged as independent experts in the decision-making process. All other individuals 

who were potential candidates for PFMEA team membership, or who were already part 

of the existing PFMEA team within the company, were considered as candidates. The 

case study was conducted in a Tier-1 company in the automotive supply chain, primarily 

producing rubber components, along with certain plastic parts for automobiles. 

This paper is organized as follows: The introductory chapter provides fundamental 

considerations regarding the research problem, presents the objective of the study, and 

outlines the applied methodology. The second chapter offers a literature review on the ap-

plication of MADM methods for solving personnel/candidate selection problems. The third 

chapter explains the employed methodology, starting with the fundamentals of IVPFNs 

and continuing to the applied IPF-RADAR approach. The fourth chapter presents the 

practical implementation of the proposed model, while the final chapter highlights the key 

conclusions of the research. 

2. Literature Review 

The problem of determining the composition of a PFMEA team can, more broadly, 

be viewed as a personnel selection problem. This chapter is divided into two sections. 

The first refers to the analysis of the personnel selection problem in the relevant litera-

ture, while the second focuses on previous applications of the RADAR method. 

2.1. Personnel Selection Problem 

Personnel selection is one of the significant and contemporary research problems in 

the relevant literature. A considerable number of studies can be found in which the au-

thors have conducted the selection of employees for specific positions or job roles, or the 

selection of candidates during the hiring process using various fuzzy MADM approach-

es. However, there is still a lack of studies addressing the selection of PFMEA team 

members, which gives particular importance to the proposed model. 

In the study by Chen and Hung [19], the authors employed the Technique for Order 

of Preference by Similarity to Ideal Solution (TOPSIS) [20] and entropy methods to iden-

tify unsuitable applicants, while the Preference Ranking Organization Method for En-

richment Evaluation (PROMETHEE) [21], extended through the use of two-tuple lin-

guistic variables, was applied to evaluate suitable candidates. The coefficients obtained 

from TOPSIS and PROMETHEE were then aggregated to produce the final ranking of 

candidates. The study focused on the selection of the best candidate for the position of an 

overseas marketing manager. 

The problem of selecting IT personnel was examined in the study by Mishra et al. 

[22], where the objective was to choose the best IT personnel candidate. For this purpose, 
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the authors employed the Additive Ratio Assessment (ARAS) method [23], extended by 

the application of Intuitionistic Fuzzy Sets (IFSs). To model uncertainty, IFSs were also 

used in the study by Krishankumar et al. [24], where the authors applied the Mul-

ti-Criteria Optimization and Compromise Solution (VIKOR) [25] to choose suitable can-

didates for a project. 

For evaluating candidates who applied for a sales job, the study by Biswas et al. [26] 

utilized the Logarithmic Percentage Change-driven Objective Weighting (LOPCOW) 

method, extended through the use of spherical fuzzy sets. 

For personnel selection in the textile industry, Ozgormus et al. [27] employed a hy-

brid Quality Function Deployment (QFD)–MCDM framework, where the Trial and 

Evaluation Laboratory (DEMATEL) [28] method was used to determine the weights of 

the criteria, while the Grey Relational Analysis (GRA) [29] method was applied to rank 

the candidates. To represent uncertain values, triangular fuzzy numbers were utilized. 

Although a considerable number of studies in the literature have addressed personnel 

selection using combined fuzzy MADM approaches, none of the authors have applied 

Pythagorean Fuzzy Sets (PFSs) for modelling uncertainty. Consequently, the personnel 

selection problem solved using this approach can be found, among others, in the studies 

[30–33]. 

Essentially, PFSs represent an extension of IFSs, offering a broader range for de-

scribing uncertainty. For this reason, some authors favour PFSs over IFSs [34]. A specific 

form of IFSs, known as IVPFNs, which were also used in this study, have membership 

and non-membership degrees within a defined range. This allows for a more accurate 

representation of uncertainty and imprecision. 

In the literature, IVPFNs have been applied in various forms and combined with 

different optimization methods to address a wide range of problems. Some of the fields 

where IVPFNs have been used include economics [35], energy systems [36], tourism [37], 

and project management [38]. Therefore, it can be concluded that applying this approach 

to solve the personnel selection problem would offer practical contributions, an objective 

achieved in this study. 

2.2. RADAR Method 

As stated in the introductory chapter, the RADAR method was first introduced in the 

paper [17], while the RADAR II version was presented for the first time in the paper [18]. The 

fundamental characteristics of the method from a mathematical perspective are given in the 

paper [39], which provides a mathematical proof of the consistency of the rankings obtained 

using the RADAR and RADAR II methods through the presentation of their basic features. 

In the paper [17], the author applied the RADAR method to determine the priority 

of failure modes. In addition, a comparison was made between the results obtained using 

the RADAR method and those obtained using the TOPSIS and ARAS methods, as well as 

the basic Risk Priority Number (RPN), including weighted RPN values (considering the 

importance of risk factors). A comparative analysis using the WS ranking similarity co-

efficient [40] showed a moderate to high level of overlap with the rankings obtained by 

TOPSIS and ARAS. When compared with the RPN and weighted RPN approach, this 

overlap was almost complete. 

In the paper [41], the authors addressed a similar problem but used a combined Ac-

tion Priority (AP) and RPN approach, introducing three additional criteria to determine 

the sequence for addressing failure modes. These additional criteria were the 

cost-effectiveness of mitigation actions, the time necessary to remedy the issue, and the 

impact on production process realization. To describe the uncertainty in this problem, 

pre-defined linguistic terms were used and modelled with triangular fuzzy numbers. In 

this way, the activities of the PFMEA team were optimized. 
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A comparison of results obtained by applying RADAR and RADAR II with those from 

other MADM methods was performed in the paper [18]. The author proposed a new model 

for equipment selection in the automotive industry and compared the results of the RADAR 

and RADAR II methods with those of TOPSIS, COmplex PRoportional Assessment (COP-

RAS) [42], VIKOR, ARAS, and EDAS [43] (Evaluation based on Distance from Average Solu-

tion). According to the WS ranking similarity coefficient, the degree of agreement between 

RADAR and RADAR II was very high (sometimes even absolute). Only the RADAR II 

method showed a moderate level of similarity with the EDAS method. Thus, only small 

variations were observed, which largely depended on the nature of each method. 

In the paper presenting the mathematical foundations of the RADAR and RADAR II 

methods [39], a comparison of these two methods was performed using three numerical 

examples. Although the rankings were largely similar, there were cases where deviations 

occurred. The basic characteristic of the RADAR method is that it “favours” alternatives 

that are stable across multiple criteria. When an alternative is “below average” across 

several criteria, its chances of achieving a high rank are significantly reduced. Naturally, 

the ranking also strongly depends on the weights of the criteria themselves, and both 

RADAR and RADAR II tend to favour alternatives that are “stable” with respect to the 

more important criteria. All this indicates that both methods are suitable for risk and re-

liability analysis problems. However, the study showed that the basic RADAR method is 

somewhat more flexible than the RADAR II version. In other words, the basic RADAR 

method allows for slightly greater negative deviations of an alternative from the “aver-

age” values. 

Since this paper addresses a personnel selection problem, the RADAR method was 

chosen in order to select candidates who outperform others across multiple criteria. 

Moreover, it favours candidates who perform well with respect to the most important 

criteria while reducing the effect of a candidate’s extreme strength in a single criterion in 

cases where they do not meet the expected standards in other areas. 

Based on the above, it can be concluded that although methods such as TOPSIS, 

VIKOR, and others are widely used in the literature for solving various types of prob-

lems, the RADAR method was selected due to its specific advantages that align with the 

nature of the problem under consideration. The key features of the RADAR method are 

particularly suitable for the personnel selection problem, as a candidate’s competence is 

reflected through their knowledge and qualifications across multiple domains. Therefore, 

the method is well suited for situations in which versatile candidates must be selected, 

and the PFMEA team is inherently expected to be both interdisciplinary and multidisci-

plinary. 

Furthermore, even in a fuzzy environment, the method’s logic, grounded in the 

principle of stability, remains applicable. As demonstrated in previous studies [17,18,39], 

RADAR produces results that are highly consistent with those of other methods, with 

only minor deviations. At the same time, the method’s underlying logic ensures that 

candidates with significant shortcomings in certain criteria are less likely to be selected. 

This is particularly valuable in contexts where the goal is to minimize risk. Hence, it can 

be concluded that RADAR provides a more cautious and robust decision-making 

framework, which is essential for the problem at hand. 

3. Methodology 

This chapter presents the fundamental considerations and basic computational op-

erations (fuzzy algebra rules) with IVPFNs, as well as the modelling of uncertain values 

for determining the weights of criteria and the uncertain values of alternatives for each 

criterion. The proposed algorithm is presented at the end of the chapter. 
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3.1. Fundamentals of IVPFNs and Basic Computational Operations 

An Interval-Valued Pythagorean Fuzzy Number (IVPFN) can be defined as a special 

form of Pythagorean Fuzzy Number (PFN) whose membership degree and 

non-membership degree lie between two values (within a range). IVPFN, �̃�, can be 

mathematically expressed as follows [44]: 

�̃� = {𝑥, [ 𝜇�̃�𝐿
(𝑥), 𝜇�̃�𝑈

(𝑥)], [𝜈�̃�𝐿
(𝑥), 𝜈�̃�𝑈

(𝑥)]; 𝑥 ∈ 𝑋}  

In this case, 𝜇�̃�(𝑥) denotes the membership degree, while 𝜈�̃�(𝑥) o represents the 

non-membership degree. The lower bound of the membership degree is denoted as 

𝜇�̃�𝐿
(𝑥), while the upper bound is denoted as 𝜇�̃�𝑈

(𝑥). Similarly, the lower bound of the 

non-membership degree is denoted as 𝜈�̃�𝐿
(𝑥), while the upper bound is denoted as 

𝜈�̃�𝑈
(𝑥). 

For each IVPFN, the following rules apply [44]: 

0 ≤ 𝜇�̃�𝐿
(𝑥), 𝜇�̃�𝑈

(𝑥), 𝜈�̃�𝐿
(𝑥), 𝜈�̃�𝑈

(𝑥) ≤ 1 

𝜇�̃�𝐿
(𝑥)2 + 𝜈�̃�𝐿

(𝑥)2 ≤ 1; 𝑥 ∈ 𝑋 
(1) 

If two IVPFNs, �̃� and �̃�, as well as a crisp value 𝑐, are considered, the following 

fuzzy algebra rules can be applied [44,45]: 

�̃� ⊕ �̃� = ([
√(𝜇1

𝐿)2 + (𝜇2
𝐿)2 − (𝜇1

𝐿)2(𝜇2
𝐿)2,

√(𝜇1
𝑈)2 + (𝜇2

𝑈)2 − (𝜇1
𝑈)2(𝜇2

𝑈)2
] , [𝜈1

𝐿𝜈2
𝐿, 𝜈1

𝑈𝜈2
𝑈])  (2) 

�̃� ⊗ �̃� = ([𝜇1
𝐿𝜇2

𝐿, 𝜇1
𝑈𝜇2

𝑈], [
√(𝜈1

𝐿)2 + (𝜈2
𝐿)2 − (𝜈1

𝐿)2(𝜈2
𝐿)2,

√(𝜈1
𝑈)2 + (𝜈2

𝑈)2 − (𝜈1
𝑈)2(𝜈2

𝑈)2
])  (3) 

𝑐�̃� = ([
√1 − (1 − (𝜇1

𝐿)2)𝑐 ,

√1 − (1 − (𝜇1
𝑈)2)𝑐

] , [(𝜈1
𝐿)𝑐 , (𝜈1

𝑈)𝑐])  (4) 

�̃�𝑐 = ([(𝜇1
𝐿)𝑐 , (𝜇1

𝑈)𝑐], [
√1 − (1 − (𝜈1

𝐿)2)𝑐 ,

√1 − (1 − (𝜈1
𝑈)2)𝑐

])  (5) 

The distance between two IVPFNs, 𝑑(�̃�, �̃�), can be calculated as follows [45]: 

𝑑(�̃�, �̃�) =
1

2
√(

((𝜇1
𝐿)2 − (𝜇2

𝐿)2) (1 −
𝜋1

𝐿−𝜋2
𝐿

2
) +

√((𝜇1
𝑈)2 − (𝜇2

𝑈)2) (1 −
𝜋1

𝑈−𝜋2
𝑈

2
)

)  (6) 

The values 𝜋𝐿 and 𝜋𝑈 are called the hesitancy degrees of the lower and upper 

points, respectively. They are calculated as follows: 

𝜋𝐿 = √1 − (𝜇𝑈
2 + 𝜈𝑈

2)  (7) 

𝜋𝑈 = √1 − (𝜇𝐿
2 + 𝜈𝐿

2)  (8) 

The defuzzification of �̃�, i.e., the determination of its crisp value, can be calculated 

as follows [46]: 

𝑑𝑒𝑓𝑢𝑧𝑧(�̃�) = 

1

6
(𝜇𝐿

2 + 𝜇𝑈
2 + (1 − 𝜋𝐿

4 − 𝜈𝐿
2) + (1 − 𝜋𝑈

4 − 𝜈𝑈
2 ) + 𝜇𝐿𝜇𝑈 +

√(1 − 𝜋𝐿
4 − 𝜈𝐿

2)(1 − 𝜋𝑈
4 − 𝜈𝑈

2)4
)  

(9) 
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As the focus of this study is not on advancing IVPFN algebra but solely on applying 

this approach, the mathematical operations presented are fundamental or sufficient for 

the implementation of the RADAR method. 

3.2. Modelling Uncertain Values of Criteria Weights 

The determination of criterion weights can be performed in various ways. If the re-

sults are reliable and the problem under consideration corresponds to a problem from the 

literature, the weights can be adopted from such a source [17]. Another approach is direct 

estimation, which is most commonly used when there is a single decision-maker. Fur-

thermore, weights can be determined by aggregating the assessments of decision-makers, 

as applied in [47–49]. Another method involves applying various MADM techniques, as 

demonstrated in [18,50–52]. 

In this study, the criteria weights were determined by aggregating the assessments 

of decision-makers, 𝑒, 𝑒 = 1, … , 𝐸 using the fuzzy addition operator, where the sum of 

the assessments was divided by the total number of decision-makers, 𝐸. As already 

stated in the introductory chapter, the decision-makers were as follows: a shift manager 

(𝑒 = 1) , an HR specialist (𝑒 = 2) , and a production supervisor (𝑒 = 3) . The deci-

sion-makers provided their assessments of criteria importance independently in written 

form via email. 

Based on the recommendations of the AIAG&VDA Handbook [2] regarding the 

knowledge and skills of PFMEA team members, and in collaboration with the deci-

sion-makers, the following criteria were defined: knowledge of the considered pro-

cess/product (𝑘 = 1), experience working in a PFMEA team (𝑘 = 2), interdisciplinary 

expertise (𝑘 = 3), and communication skills and teamwork abilities (𝑘 = 4). It is im-

portant to emphasize that all criteria are of a benefit type. 

For expressing their assessments, the decision-makers used the following linguistic 

terms modelled using IVPFNs: 

• Completely unimportant criterion (C1): {[0.0, 0.2], [0.8, 1.0]}; 

• Unimportant criterion (C2): {[0.2, 0.4], [0.6, 0.8]}; 

• Moderately important criterion (C3): {[0.4, 0.6], [0.4, 0.6]}; 

• Important criterion (C4): {[0.6, 0.8], [0.2, 0.4]}; 

• Very important criterion (C5): {[0.8, 1.0], [0.0, 0.2]}. 

As can be seen, the domain of IVPFNs is within the interval from 0 to 1. A mem-

bership degree value closer to 1 indicates a higher criteria importance, and vice versa. 

The opposite rule applies to the non-membership degree. 

3.3. Modelling Uncertain Values of Alternatives According to the Considered Criteria 

Unlike the assessment of criteria importance, the evaluation of candidates, 𝑖, 𝑖 =

1, … , 𝐼, based on each considered criterion, 𝑘, 𝑘 = 1, … , 𝐾 was conducted collectively by 

the decision-makers, 𝑒, 𝑒 = 1, … , 𝐸, through consensus. It was assumed that through di-

alogue and the exchange of opinions, the decision-makers would evaluate the candidates 

more effectively than if they had provided individual assessments. 

For candidate evaluation, the decision-makers used the following linguistic terms 

modelled using IVPFNs: 

• Extremely poor (S1): {[0.0, 0.2], [0.8, 1.0]}; 

• Very poor (S2): {[0.2, 0.3], [0.7, 0.8]}; 

• Poor (S3): {[0.3, 0.4], [0.6, 0.7]}; 

• Moderate (S4): {[0.4, 0.6], [0.4, 0.6]}; 

• Good (S5): {[0.6, 0.7], [0.3, 0.4]}; 

• Very good (S6): {[0.7, 0.8], [0.2, 0.3]}; 
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• Excellent (S7): {[0.8, 1.0], [0.0, 0.2]}. 

As with the assessment of criterion importance, the values of IVPFNs range from 0 

to 1. The same rules also apply to the membership and non-membership degrees. 

3.4. The Proposed IPF-RADAR Algorithm 

The process of candidate evaluation and selection of PFMEA team members, ac-

cording to the proposed model, is carried out through the following steps: 

Step 1. After defining the criteria, 𝑘, 𝑘 = 1, … , 𝐾, based on the recommendations 

from the AIAG&VDA Handbook, the decision-makers, 𝑒, 𝑒 = 1, … , 𝐸 , make their as-

sessments of the importance of each criterion. 

Step 2. By applying the fuzzy addition mathematical operation, the assessments 

obtained at the level of each decision-maker, �̃�𝑘
𝑒 , are aggregated, resulting in a unique 

unnormalized weight for each criterion, �̃�𝑘. The fuzzy values are ultimately transformed 

into crisp values by applying the defuzzification procedure [46], and normalized by ap-

plying a linear normalization procedure to obtain crisp criteria weights, 𝜔𝑘. 

Step 3. The candidates, 𝑖, 𝑖 = 1, … , 𝐼, are evaluated based on the considered criteria, 

𝑘, 𝑘 = 1, … , 𝐾. The decision-makers assess the candidates by consensus. Based on these 

assessments, a fuzzy decision matrix is formed, [�̃�𝑖𝑘]
𝐼×𝐾

. 

The steps of the basic RADAR method were further extended using IVPFNs algebra 

rules [44,45]. For the computational operation of subtraction, the distance between two 

IVPFNs was used. 

Step 4. The maximum proportion matrix, 𝛼, is generated: 

[𝛼𝑖𝑘]𝐼×𝐾 (10) 

such that 

𝛼𝑖𝑘 = 𝑑 (𝑑 (max
𝑖

�̃�𝑖𝑘 , �̃�𝑖𝑘) ; (𝑑 (max
𝑖

�̃�𝑖𝑘 , �̃�𝑖𝑘) + 𝑑 (�̃�𝑖𝑘, min
𝑖

�̃�𝑖𝑘)))  (11) 

Step 5. The minimum proportion matrix, 𝛽, is generated: 

[𝛽𝑖𝑘]𝐼×𝐾 (12) 

such that 

𝛽𝑖𝑘 = 𝑑 (𝑑 (�̃�𝑖𝑘, min
𝑖

�̃�𝑖𝑘) ; (𝑑 (max
𝑖

�̃�𝑖𝑘 , �̃�𝑖𝑘) + 𝑑 (�̃�𝑖𝑘, min
𝑖

�̃�𝑖𝑘))) (13) 

Considering the fact that all evaluated criteria are of the benefit type, the calculation 

formulas for cost-type criteria according to the RADAR method are not presented in this 

paper. 

The maximum and minimum values are taken as the highest and lowest assess-

ments given by the decision-makers for each criterion, respectively. 

Step 6. The empty range matrix is generated: 

[𝐸𝑖𝑘]𝐼×𝐾 (14) 

such that 

𝐸𝑖𝑘 = |𝛼𝑖𝑘 − 𝛽𝑖𝑘| (15) 

Step 7. The relative relationship matrix, [𝑅𝑅𝑖𝑘]𝐼×𝐾, is generated: 

𝑅𝑅𝑖𝑘 =
𝛼𝑖𝑘

𝛽𝑖𝑘 + 𝐸𝑖𝑘
 (16) 

Step 8. The weighted relative relationship matrix, [𝑊𝑅𝑅𝑖𝑘]𝐼×𝐾, is generated: 
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𝑊𝑅𝑅𝑖𝑘 = 𝑅𝑅𝑖𝑘 ∙ 𝜔𝑘 (17) 

Step 9. The aggregated ranking index, 𝑅𝐼𝑖, is calculated: 

𝑅𝐼𝑖 =
min ∑ 𝑊𝑅𝑅𝑖

𝐾
𝑘=1

∑ 𝑊𝑅𝑅𝑖
𝐾
𝑘=1

 (18) 

Step 10. The candidates are ranked using the RADAR method. 

The graphical representation of the proposed methodology is shown in Figure 1. The 

presented algorithm includes the main steps of the developed mathematical model. 

 

Figure 1. The proposed algorithm. 

4. Practical Implementation of the Proposed IPF-RADAR 

This chapter presents the practical implementation of the proposed model. Out of a 

total of 13 candidates, 6 members of the core PFMEA team needed to be selected. Formal 

positions within the company’s hierarchy, as well as the candidates’ job titles, were not 

considered and, therefore, are not mentioned in the paper. As previously stated, the case 

study was conducted in a company that is a Tier-1 supplier in the automotive supply 

chain. 

According to Step 1 of the proposed algorithm, the decision-makers expressed their 

assessments of the importance of the considered criteria: 

• Shift manager: w̃1
1 = V4; w̃2

1 = V5; w̃3
1 = V3; w̃4

1 = V2; 

• HR specialist: w̃1
2 = V5; w̃2

2 = V4; w̃3
2 = V3; w̃4

2 = V4; 

• Production supervisor: w̃1
3 = V5; w̃2

3 = V3; w̃3
3 = V2; w̃4

3 = V3. 

The aggregated (summed) values of the relative importance weights of criteria were 

determined by applying the IVPFN algebra rules (Step 2): 

�̃�1 = {[0.92, 1.00], [0.00, 0.03]}  

�̃�2 = {[0.90, 1.00], [0.00, 0.05]}  

�̃�3 = {[0.57, 0.81], [0.10, 0.29]}  

�̃�4 = {[0.70, 0.90], [0.05, 0.19]}  

The defuzzified and normalized criterion weights were as follows: 

𝜔1 = 0.29  
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𝜔2 = 0.28  

𝜔3 = 0.19  

𝜔4 = 0.23  

According to Step 3 of the proposed algorithm, the decision-makers evaluated the 

considered candidates by consensus, which is presented through the fuzzy decision ma-

trix (Table 1). 

Table 1. The fuzzy decision matrix. 

Candidate, 𝒊 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 

𝑖 = 1 S6 S2 S2 S4 

𝑖 = 2 S2 S5 S5 S2 

𝑖 = 3 S7 S3 S5 S7 

𝑖 = 4 S2 S5 S5 S2 

𝑖 = 5 S4 S7 S5 S4 

𝑖 = 6 S5 S5 S7 S7 

𝑖 = 7 S6 S7 S3 S5 

𝑖 = 8 S2 S6 S2 S4 

𝑖 = 9 S7 S3 S5 S7 

𝑖 = 10 S7 S6 S4 S3 

𝑖 = 11 S6 S1 S6 S4 

𝑖 = 12 S3 S4 S7 S7 

𝑖 = 13 S4 S6 S3 S6 

Based on Steps 4 and 5, determination of the maximum and minimum proportion 

matrices was performed, respectively. Both of these matrices are presented in Table 2. 

Table 2. The maximum proportion matrix, 𝜶, and the minimum proportion matrix, 𝜷. 

𝒊 
𝜶 𝜷 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

i = 1 0.43 0.73 1.00 0.60 0.57 0.27 0.00 0.40 

i = 2 1.00 0.49 0.51 1.00 0.00 0.51 0.49 0.00 

i = 3 0.00 0.67 0.51 0.00 1.00 0.33 0.49 1.00 

i = 4 1.00 0.49 0.51 1.00 0.00 0.51 0.49 0.00 

i = 5 0.60 0.00 0.51 0.60 0.40 1.00 0.49 0.40 

i = 6 0.51 0.49 0.00 0.00 0.49 0.51 1.00 1.00 

i = 7 0.43 0.00 0.71 0.51 0.57 1.00 0.29 0.49 

i = 8 1.00 0.42 1.00 0.60 0.00 0.58 0.00 0.40 

i = 9 0.00 0.67 0.51 0.00 1.00 0.33 0.49 1.00 

i = 10 0.00 0.42 0.60 0.71 1.00 0.58 0.40 0.29 

i = 11 0.43 1.00 0.43 0.60 0.57 0.00 0.57 0.40 

i = 12 0.71 0.58 0.00 0.00 0.29 0.42 1.00 1.00 

i = 13 0.60 0.42 0.71 0.43 0.40 0.58 0.29 0.57 

According to Step 6 of the proposed algorithm, the empty range matrix was formed, 

while applying Step 7 resulted in the formation of the relative relationship matrix, which 

is presented in Table 3. 

Table 3. The relative relationship matrix. 

Candidate, 𝒊 𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 

𝑖 = 1 0.61 1.00 1.00 1.00 

𝑖 = 2 1.00 0.94 1.00 1.00 

𝑖 = 3 0.00 1.00 1.00 0.00 
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𝑖 = 4 1.00 0.94 1.00 1.00 

𝑖 = 5 1.00 0.00 1.00 1.00 

𝑖 = 6 1.00 0.94 0.00 0.00 

𝑖 = 7 0.61 0.00 1.00 1.00 

𝑖 = 8 1.00 0.57 1.00 1.00 

𝑖 = 9 0.00 1.00 1.00 0.00 

𝑖 = 10 0.00 0.57 1.00 1.00 

𝑖 = 11 0.61 1.00 0.61 1.00 

𝑖 = 12 1.00 1.00 0.00 0.00 

𝑖 = 13 1.00 0.57 1.00 0.61 

By applying Step 8 of the proposed algorithm, the weighted relative relationship 

matrix was determined, while Step 9 resulted in the aggregated ranking index, which 

was used for candidate ranking (Step 10). These values are presented in Table 4. 

Table 4. Ranking of candidates using the RADAR method. 

Candidate, 𝒊 
Weighted Relative Relationship Matrix 

𝑹𝑰𝒊 Rank 
k = 1 k = 2 k = 3 k = 4 

𝑖 = 1 0.18 0.28 0.19 0.23 0.54 10–11 

𝑖 = 2 0.29 0.26 0.19 0.23 0.48 12–13 

𝑖 = 3 0.00 0.28 0.19 0.00 1.00 1–2 

𝑖 = 4 0.29 0.26 0.19 0.23 0.48 12–13 

𝑖 = 5 0.29 0.00 0.19 0.23 0.66 7 

𝑖 = 6 0.29 0.26 0.00 0.00 0.85 3 

𝑖 = 7 0.18 0.00 0.19 0.23 0.79 6 

𝑖 = 8 0.29 0.16 0.19 0.23 0.54 10–11 

𝑖 = 9 0.00 0.28 0.19 0.00 1.00 1–2 

𝑖 = 10 0.00 0.16 0.19 0.23 0.81 5 

𝑖 = 11 0.18 0.28 0.12 0.23 0.59 9 

𝑖 = 12 0.29 0.28 0.00 0.00 0.82 4 

𝑖 = 13 0.29 0.16 0.19 0.14 0.60 8 

From the presented results, it can be seen that the candidates who would be in-

cluded in the PFMEA team were 𝑖 = 3, 𝑖 = 9, 𝑖 = 6, 𝑖 = 12, 𝑖 = 10, and 𝑖 = 7. In this 

way, a PFMEA team of six members would be formed. 

Candidates 𝑖 = 3 and 𝑖 = 9 received equal evaluations across all considered crite-

ria, making it logical that they shared first and second place. These candidates had the 

highest scores for the first and fourth criteria. They were slightly below average for the 

second criterion, while they performed fairly well for the third criterion. Candidate 𝑖 = 6 

had the highest scores for the third and fourth criteria and was also rated well for the first 

and second criteria. However, slightly lower ratings in these two criteria, which are the 

most important, placed this candidate in third position. 

The last place was shared by 𝑖 = 2 and 𝑖 = 4, who received the lowest relative 

scores for the first and fourth criteria. Although they were above average for the re-

maining two criteria, the very low scores in the two most influential criteria significantly 

impacted their final ranking. 

It would be interesting to see how the ranking of candidates would change if the 

criterion weights were determined based on individual evaluations by each deci-

sion-maker. Based on these results, a sensitivity analysis of the proposed model was 

conducted. 
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Sensitivity Analysis 

Based on the individual assessments of the relative importance of each criterion by 

the decision-makers, defuzzification and normalization were performed. As a result, the 

decision-makers estimated the following criterion weights: 

• Shift manager: [0.28, 0.36, 0.21, 0.15]; 

• HR specialist: [0.32, 0.25, 0.18, 0.25]; 

• Production supervisor: [0.39, 0.23, 0.16, 0.23]. 

Table 5 presents the ranking of alternatives in four cases: when the decision-makers’ 

assessments are aggregated and in three cases when they are considered individually. 

Table 5. Sensitivity analysis. 

Candidate, 𝒊 
Rank of Candidates 

Aggregated Weights 𝒆 = 𝟏 𝒆 = 𝟐 𝒆 = 𝟑 

𝑖 = 1 10–11 11 10 10 

𝑖 = 2 12–13 12–13 12–13 12–13 

𝑖 = 3 1–2 3–4 1–2 1–2 

𝑖 = 4 12–13 12–13 12–13 12–13 

𝑖 = 5 7 6–7 7 7 

𝑖 = 6 3 5 3 4 

𝑖 = 7 6 1 6 6 

𝑖 = 8 10–11 10 11 11 

𝑖 = 9 1–2 3–4 1–2 1–2 

𝑖 = 10 5 2 4–5 3 

𝑖 = 11 9 9 9 8 

𝑖 = 12 4 6–7 4–5 5 

𝑖 = 13 8 8 8 9 

By examining Table 5, it can be concluded that changes in the criteria weights lead to 

certain ranking variations; however, these deviations are generally negligible. When cri-

teria weights are considered based solely on the evaluations of the shift manager (𝑒 = 1), 

candidate 𝑖 = 7 attains the highest rank, followed by candidate 𝑖 = 10 in second place. 

Meanwhile, candidates 𝑖 = 3 and 𝑖 = 9, who share the top rank in all other scenarios, 

are ranked jointly in third place in this case. This outcome is due to the fact that these two 

candidates performed exceptionally well according to the first and second criteria, which 

were highly rated by this decision-maker. On the other hand, the weight of the fourth 

criterion was significantly lower, reducing the prominence of alternatives 𝑖 = 3 and 𝑖 =

9. To enhance clarity and facilitate comparison, Figure 2 provides a graphical represen-

tation of all four ranking variations. 
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Figure 2. Graphical representation of ranking deviations among candidates. 

Based on Figure 2, it can be concluded that the ranking deviations are almost negli-

gible. The only change that may influence the selection of PFMEA team members in this 

case is that candidate 𝑖 = 5 shares the sixth position with candidate 𝑖 = 12. However, 

given that candidate 𝑖 = 12 ranks either fourth or fifth in all other cases, while candidate 

𝑖 = 5  consistently holds the seventh position, candidate 𝑖 = 12  is given preference. 

Therefore, the ranking obtained using the approach based on aggregated decision-maker 

assessments of criteria weights can be considered sufficiently reliable. 

The company management has adopted and confirmed the obtained results as au-

thoritative, which can be considered a practical validation of the proposed model. In this 

way, the practical applicability of the model has also been confirmed. 

5. Conclusions 

In this study, a mathematical model for the precise selection of core PFMEA team 

members was presented and tested. The objective of the research was to select six core 

PFMEA team members through an objective decision-making approach, respecting rel-

evant criteria defined in collaboration with decision-makers and based on the recom-

mendations from the current AIAG&VDA Handbook regarding the knowledge and 

competencies of team members. 

The primary reason for conducting this research stems from the fact that the auto-

motive industry does not have strictly defined criteria for determining who can or cannot 

be a member of the PFMEA team. Although the current AIAG&VDA Handbook pro-

vides certain recommendations, the final decision on team composition is left to company 

management. Since the PFMEA team plays a crucial role in identifying and analyzing 

potential failure modes, which can significantly impact production process reliability 

and, consequently, the overall business performance of a manufacturing company, this 

research problem requires special attention. 

In the relevant literature, numerous studies have addressed the problem of person-

nel/candidate selection for specific job positions within a company. However, no research 

has been conducted on the selection of PFMEA team members. This fact represents one of 

the practical contributions of this study. 

To objectively determine the composition of the core PFMEA team, this study em-

ployed the RADAR method, extended through the use of Interval-Valued Pythagorean 

Fuzzy Numbers (IVPFNs), which have not been previously applied to describe uncer-

tainty and imprecision in the domain of personnel/candidate selection. Candidates were 

evaluated based on criteria defined in collaboration with decision-makers from a Tier-1 



Algorithms 2025, 18, 342 14 of 18 
 

company in the automotive supply chain. Additionally, the same decision-makers as-

sessed a total of thirteen candidates, from which six were selected as core PFMEA team 

members. 

The proposed model offers several contributions, both in general and in comparison 

to existing models in the relevant literature: (1) The problem of PFMEA team member 

selection has not been previously explored in the relevant literature. (2) The applied 

RADAR method is relatively new and has not been extensively utilized in the literature, 

yet it has been proven to be reliable and stable. (3) The RADAR method does not require 

complex comparisons of fuzzy numbers, as the weighting process is performed in one of 

the final steps of the method, and fuzzy numbers can be easily compared based on lin-

guistic term gradation. (4) IVPFNs have been used, which have not previously been ap-

plied in the domain of personnel/candidate selection. (5) The model can be applied in 

other companies and across different industries. (6) Sensitivity analysis has confirmed the 

stability of the proposed model. 

In addition, the RADAR method was selected for solving this problem because it is 

based on identifying the most stable solution across all considered criteria. In this way, 

candidates are selected who satisfy a larger number of criteria, with particular emphasis 

on those with higher importance. Most other MADM methods tend to favour objectivity 

in a way that allows candidates with extremely low ratings on certain criteria to still be 

part of the final selection. 

The key advantage of the RADAR method compared to other existing approaches 

lies in the fact that an alternative—here, a candidate—is significantly penalized if they do 

not perform above average on the more important criteria. This approach enables the 

formation of a balanced, reliable, and versatile PFMEA team, which is highly desirable in 

practice. 

In practical terms, the proposed model provides company management with an 

objective insight into which employees are the most competent to become members of 

the PFMEA team, regardless of their formal position within the organizational structure. 

In this way, it fundamentally contributes to the formation of a competent team with 

sufficient knowledge and experience, enabling the effective implementation of the 

PFMEA analysis. Moreover, the developed model can also be used by management for 

assembling other working teams within the organization, naturally with certain adjust-

ments and modifications. 

Despite these contributions, the proposed model also has certain limitations: (1) the 

unavoidable subjectivity of decision-makers; (2) the questionable competence of deci-

sion-makers; (3) the potential consideration of additional relevant criteria, such as inter-

est in participating in the PFMEA team, workload at the primary job position, etc.; (4) the 

dynamic business environment and employee turnover, which can lead to changes in the 

composition of the PFMEA team over time; (5) limited practicality for application in 

smaller organizations. 

The subjectivity of decision-makers’ assessments can be highlighted as one of the 

most significant issues present in the considered case study. The goal in future research, 

building upon this study, is to evaluate candidates based on precise and measurable pa-

rameters. By introducing candidate testing, recording awards and achievements in their 

roles, as well as monitoring certain indicators, the influence of the decision-makers 

themselves will be reduced. However, it is important to emphasize that their influence 

cannot be completely eliminated. 

To reduce the subjectivity of the proposed model, future research directions could 

explore the possibility of introducing statistical analysis of candidates. Additionally, in-

creasing the number of decision-makers could enhance objectivity. 



Algorithms 2025, 18, 342 15 of 18 
 

A limitation of the proposed model in practice is the potential dynamic nature of the 

problem, reflected in the constant fluctuation of employees, which can affect changes in 

the composition of the PFMEA team. Therefore, future research could focus on devel-

oping a dynamic model for selecting PFMEA team members. 

Regarding the scope of application, the proposed model could be used in other in-

dustries where PFMEA analysis is frequently applied, such as the aerospace and phar-

maceutical industries, as well as in other sectors where precision and production process 

reliability are of paramount importance. 

From a methodological perspective, the proposed model could be extended by in-

corporating certain MADM methods for determining criterion weights or by comparing 

the obtained candidate ranking with rankings obtained from multiple MADM methods. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

AIAG Automotive Industry Action Group 

AP Action Priority 

ARAS Additive Ratio Assessment 

COPRAS COmplex PRoportional ASsessment 

DEMATEL Decision-Making Trial and Evaluation Laboratory 

DFMEA Design Failure Mode and Effect Analysis 

EDAS Evaluation based on Distance from Average Solution 

FMEA Failure Mode and Effect Analysis 

FMEA-MSR Failure Mode and Effect Analysis–Monitoring and System Response 

GRA Grey Relational Analysis 

IATF International Automotive Task Force 

IFSs Intuitionistic Fuzzy Sets 

IPF-RADAR Interval-valued Pythagorean Fuzzy—–ADAR 

IVPFNs Interval-Valued Pythagorean Fuzzy Numbers 

LOPCOW Logarithmic Percentage Change-driven Objective Weighting 

MADM Multi-Attribute Decision-Making 

MCDM Multi-Criteria Decision-Making 

PFMEA Process Failure Mode and Effect Analysis 

PFSs Pythagorean Fuzzy Sets 

PROMETHEE Preference Ranking Organization METHod for Enrichment Evaluation 

RPN Risk Priority Number 

QFD Quality Function Deployment 

RADAR RAnking based on the Distances And Range 

TOPSIS Technique for Order of Preference by Similarity to Ideal Solution 

VDA 
Verband der Automobilindustrie (eng. German Association of the Automotive 

Industry) 

VIKOR Multi-Criteria Optimization and Compromise Solution 

WS Weighted Similarity (Ranking Similarity Coefficient) 
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