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Abstract. Interdisciplinary connection of teaching content, as an approach that 
enables the deepening of knowledge in different subjects while simultaneously fostering 
various student competencies, is not sufficiently present in schools in the Republic of 
Serbia. Moreover, it is almost neglected in working with students gifted in mathematics. 
In this paper, we describe a two-lesson session on the topic Applications of Differential 
Calculus in Physics, in which we connected teaching content from Mathematical Analysis 
with Algebra and Physics in working with fourth-year high school students in Kragujevac, 
specifically those enrolled in the specialized mathematics program. Students had the 
opportunity to revisit and deepen previously acquired knowledge in Physics, and 
simultaneously recognize the application of differential calculus, which they had recently 
learned. The paper presents the problems solved by the students during the session, as 
well as the results of a survey, in which students evaluated this approach as useful, 
engaging, and they expressed that it increased their interest in studying mathematics and 
physics in greater depth. 
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1. Introduction 

The interdisciplinary connection between mathematics and physics is a 
profound testament to the synergy between these two sciences. While this 
relationship has a historical context, it can also be seen as a dynamic and 
continuous development that shapes our fundamental understanding of the world 
around us. On one hand, mathematics provides the language and tools necessary 
for physicists to formulate, solve, and interpret various laws. At the same time, 
physics offers a rich source of inspiration and application for different 
mathematical theories (Boaler 2015). 



The connection between mathematics and physics dates to ancient times, with 
Archimedes and Euclid making significant contributions to both disciplines. Later, 
during the scientific revolution, particularly through the works of Isaac Newton 
and other scientists of that era, this relationship became a cornerstone of modern 
science. Subsequently, the development of quantum mechanics and the theory of 
relativity further emphasized the deep interdependence of mathematics and 
physics. For example, Einstein’s general theory of relativity heavily relies on the 
mathematical framework of differential geometry.   

However, in education—at least in the Republic of Serbia—this connection 
seems to be underdeveloped and neglected in teaching and learning. When it 
comes to heterogeneous classrooms, teachers might justify this by arguing that 
certain students lack the necessary knowledge and skills to connect concepts from 
these two subjects. However, even when working with students enrolled in classes 
for those gifted in mathematics, this approach is not sufficiently present. 
Interdisciplinary integration of teaching content is recognized as an approach that 
fosters logical and critical thinking, collaborative skills, and creativity among high 
school students. With this paper, we aim to contribute to the interdisciplinary 
connection between mathematics and physics, specifically through the application 
of differential calculus in physics with high school students gifted in mathematics. 

2. Theoretical background 

2.1. Interdisciplinary Connection between Mathematics and Physics 
By analyzing research topics in the field of mathematics education, it is 

noticeable that insufficient attention has been given to studies exploring the 
connection between mathematics and other individual natural sciences 
(Michelsen 2005). When it comes to interdisciplinary connections with 
mathematics, physics emerges as one of the most natural choices due to the 
strong compatibility between these two subjects. However, certain authors 
emphasize that this compatibility has not been adequately reflected in curricula 
(Park, Kim & Kang 2021). As previously mentioned, throughout history, different 
theories have pointed to the same conclusion: "the formulation of physics is 
mathematics" (Pospiech 2015). Mathematics can be perceived as the language 
through which physical theories are constructed, using symbols, relations, and 
operations to understand equations and their representations in physics (Buick 
2007).   

Interdisciplinary learning integrates various concepts and methodologies from 
multiple disciplines to provide a more comprehensive understanding of complex 



phenomena (Klein 1990). In the context of mathematics and physics, this approach 
is crucial due to the significant connection between these two subjects in 
educational content. Research indicates that students learning in interdisciplinary 
environments demonstrate a deeper understanding of concepts and retain them 
more effectively and for a longer period (Jacobs 1989). Additionally, studies have 
shown that integrating mathematical problem-solving techniques with physics 
concepts enhances students' conceptual understanding and improves their 
performance in both mathematics and physics (Redish & Steinberg 1999). 
Empirical research results suggest that interdisciplinary approaches enhance 
students' problem-solving skills by encouraging them to apply mathematical tools 
for analyzing and solving problems in a physics context (Hestenes 2010). In this 
way, students not only develop essential mathematical skills to a greater extent 
but also deepen their knowledge of physics. Other studies indicate that this 
approach also increases students' motivation for learning and their engagement 
in lessons (Boaler 2015). Hestenes (2010) researched the impact of instruction 
based on the mathematical modelling of physical concepts, and the findings 
revealed that students who participated in this integrated instruction achieved 
better academic results than their peers (Hestenes 2010). 

2.2. Students gifted in mathematics 
A certain number of children have abilities that enable them to learn faster and 

more easily and to understand content more deeply than their peers (Borovik & 
Gardiner 2007; Ucar, Ucar & Calıskan 2017). Identifying individuals with such 
abilities and gaining a better understanding of how they function is important for 
determining support measures to further develop their talents. According to 
Kenderov, the focus of the educational system on the average student results in 
mathematical talent and giftedness remaining underdeveloped or even 
undiscovered (Kenderov 2006). Some authors (Altaras Dimitrijević & Tatić Janevski 
2016) believe that students with special abilities should be provided with 
appropriate environmental influences and that a specialized mathematics 
curriculum should be designed to offer tasks and activities that contribute to the 
development of gifted students' potential.   

The grouping of students with high achievements in mathematics into special 
classes, and even special schools, emerged in the United States and some 
European countries nearly 100 years ago, with the primary goal of meeting the 
specific educational needs of these students (Mihajlović 2023). Grouping students 
with special abilities creates an environment in which they are stimulated by their 



peers of the same ability level, allowing them to process complex content more 
quickly and effectively (Neihart 2007; Swiatek & Lupkowski-Shoplik 2003). In a 
previously conducted meta-analysis (Kulik & Kulik 1987), out of 25 studies 
examining the effects of teaching gifted students grouped in specialized classes, 
19 studies found that students in specialized classes achieved better results 
compared to mathematically gifted students who were in traditional, 
heterogeneous classrooms. 

In the Republic of Serbia, the Law on the Fundamentals of the Education System 
recognizes the separation of mathematically gifted students into specialized 
classes. In seven high schools (grammar schools) across seven cities in Serbia, there 
are special classes for students with exceptional mathematical abilities. Students 
interested in attending these classes must take a classification exam. In addition 
to the entrance exam results, their academic performance during elementary 
school and achievements in mathematics competitions are also considered. 
Mathematics is studied much more extensively and intensively in these students’ 
classes. Throughout all four years of high school, students have four weekly 
lessons in Mathematical Analysis with Algebra. In the first two years, they take 
Geometry with four weekly lessons. In the third year, they study Linear Algebra 
with Analytical Geometry, while in the fourth year, they take Numerical 
Mathematics and Probability and Statistics, each with two weekly lessons. Thus, in 
each of the four years, students with special mathematical abilities have a total of 
eight weekly lessons in mathematical subjects. Additionally, it is important to 
highlight that the curriculums for Physics, Informatics and Programming subjects 
are also quite demanding for classes of students gifted in mathematics. 

3. Present study 
Given that exemplary lessons for interdisciplinary connection of teaching 

content are rarely conducted in schools, and that they are almost never 
implemented in classes with students gifted in mathematics, we came up with the 
idea to hold an exemplary double lesson on the topic Applications of Differential 
Calculus in Physics. This double lesson was held on the last week of October 2023, 
in a class of fourth-year students gifted in mathematics at First Grammar School in 
Kragujevac. The lesson was attended by 14 students (the entire class) and 15 
teachers (of mathematics, physics, informatics, and chemistry), as well as a 
pedagogist and psychologist from First Grammar School.   

In the introductory part of the lesson, students reviewed the concept of 
derivatives, their geometric and mechanical interpretation, properties of 



derivatives, the derivative of a composite function, as well as Rolle’s theorem and 
Lagrange’s theorem. We used GeoGebra applets to illustrate some of these 
concepts during the introductory part of the classes. These GeoGebra applets were 
designed to allow students to visualize the definition of the derivative as the limit 
of the difference quotient—representing the ratio of the change in the function's 
value to the change in the input variable—as the increment approaches zero, 
thereby illustrating the concept of the tangent line to a function at a given point. 
The second applet enabled students to visually explore Rolle’s and Lagrange’s 
Mean Value Theorems. By selecting various functions and intervals over which the 
functions are continuous and differentiable, students could observe the existence 
of a point where the tangent line is parallel to the corresponding secant line (as 
stated in Lagrange’s Theorem), or, in the case of Rolle’s Theorem, a point where 
the tangent line is horizontal, i.e., parallel to the x-axis. 

 

 

Figure 1. Review of Derivatives and the Most Important Theorems of Differential 
Calculus 

In the main part of the lesson, students solved specific problems illustrating the 
application of differential calculus to solving physics problems.   

In the fourth-year class of students gifted in mathematics, nine students had an 
average grade of 5 (which is the highest grade) in the group of mathematics 



subjects in the fourth year (Mathematical Analysis with Algebra, Numerical 
Mathematics, and Probability and Statistics), three students had an average grade 
of 4, and two students had an average grade of 3. A similar distribution of grades 
was observed in physics: nine students had an average grade of 5, two students 
had an average grade of 4, and three students had an average grade of 3. No 
student had an average grade of 1 or 2 in either the mathematics group of subjects 
or physics.   

Considering the small differences in student achievement in mathematics and 
physics, an individualized approach to teaching was applied. Each student worked 
on three problems aligned with their level of achievement. A total of seven 
problems (Irodov 2000) were prepared (three from mechanics, three from 
thermodynamics, and one from electromagnetism) for the class. 

Below, we present three problems with solutions from the field of mechanics 
that students solved during the exemplary classes. 

1. Two cars are moving at constant velocities with magnitudes 𝑣1 and 𝑣2 along 
two mutually perpendicular streets toward an intersection—point 𝑂, where the 
streets cross. At time 𝑡 = 0, the cars were at distances 𝑙1 and 𝑙2 from point 𝑂. 
Determine after what time 𝜏 from the initial moment the distance between the 
cars will be minimal and find the value of this minimum distance 𝑙𝑚𝑖𝑛. 

Solution: If 𝑙1 and 𝑙2 are the initial distances of the first and second car from 
the intersection, and the magnitudes of their velocities are 𝑣1 and 𝑣2, then after 
a time 𝑡, these distances are given by:  

𝑙1(𝑡) = 𝑙1 − 𝑣1𝑡,  𝑙2(𝑡) = 𝑙2 − 𝑣2𝑡. 

Using the Pythagorean theorem, the distance between the cars at time 𝑡 is: 

𝑙(𝑡) = √(𝑙1 − 𝑣1𝑡)2 + (𝑙2 − 𝑣2𝑡)2 

Let 𝜏  be the moment when the distance is minimized. The conditions for 
minimality are: 

𝑑𝑙(𝑡)

𝑑𝑡
|𝑡=𝜏 = 0 and 

𝑑2𝑙(𝑡)

𝑑𝑡2 |𝑡=𝜏 > 0. 



Applying differentiation rules and knowing that 𝑙1, 𝑙2, 𝑣1 and 𝑣2 are constants, 
we obtain: 

0 =
𝑑(√(𝑙1 − 𝑣1𝜏)2 + (𝑙2 − 𝑣2𝜏)2)

𝑑𝑡
⟹ 𝑣1(𝑙1 − 𝑣1𝜏) = −𝑣2(𝑙2 − 𝑣2𝜏). 

Solving for 𝜏, we get 𝜏 =
𝑙1𝑣1+𝑙2𝑣2

𝑣1
2+𝑣2

2 . Thus, the minimum distance is: 

𝑙𝑚𝑖𝑛 = 𝑙(𝑡 = 𝜏) =
|𝑙1𝑣2 − 𝑙2𝑣1|

√𝑣1
2 + 𝑣2

2
. 

Notice that 𝑙𝑚𝑖𝑛 = 0 (which corresponds to a collision) if 𝑙1𝑣2 = 𝑙2𝑣1.  

Homework assignment: Verify that the condition 
𝑑2𝑙(𝑡)

𝑑𝑡2 |𝑡=𝜏 > 0 is satisfied. 

2. From the point 𝐴, which is located on a road, 
it is necessary to reach the point 𝐵, which is situated 
on a flat meadow beside the road, in the shortest 
possible time by car. The car moves at a constant 
speed both on the road and across the meadow. 
Therefore, it must leave the road at the point (fig. 
2).  

If 𝑙  is the shortest distance between points 𝐵 
and 𝐷, and if the speed of the car is 𝑛 times greater when traveling on the road 
than when traveling across the meadow, determine the distance  𝑥  between 
points 𝐶 and 𝐷 such that the travel time is minimized. 

Solution: Let 𝑥 denote the distance 𝐶𝐷, 𝑠 the distance 𝐴𝐷, 𝑙 the distance 𝐷𝐵, 
and let 𝑣2 = 𝑣 be the speed of the car on the meadow. Then, the speed of the car 
on the road is 𝑣1 = 𝑛𝑣 (𝑛 > 1), while the distances traveled on the road and the 

meadow are 𝑠1 = 𝐴𝐶 = 𝑠 − 𝑥 and 𝑠2 = 𝐶𝐵 = √𝑙2 + 𝑥2. 
From this, the total travel time of the car is given by: 

𝑡(𝑥) =
𝑠 − 𝑥

𝑛𝑣
+

√𝑙2 + 𝑥2

𝑣
. 

The conditions for minimizing this time are: 
𝑑𝑡(𝑥)

𝑑𝑥
= 0 and 

𝑑2𝑡(𝑥)

𝑑𝑥2 > 0. 

Since 𝑠, 𝑙 and 𝑣 are constant values, applying differentiation rules yields: 

 

Figure 2. Problem 2 



0 = −
1

𝑛𝑣
+

𝑥

𝑣√𝑙2 + 𝑥2
, 

from which the required distance is obtained as: 

𝑥 =
𝑙

√𝑛2 − 1
. 

Homework assignment: Verify the condition 
𝑑2𝑡(𝑥)

𝑑𝑥2 > 0   for 𝑥 =
𝑙

√𝑛2−1
 and 

determine the minimum travel time 𝑡𝑚𝑖𝑛 = 𝑡(𝑥 =
𝑙

√𝑛2−1
). 

 
3. A child slides down a slide in the form of an 

inclined plane, starting from rest at point A, 
which is located above vertical support that 
allows the incline 𝛼 of the slide to be adjusted. 
The coefficient of friction between the child and 
the slide is 𝜇 = 0.14.  For what value of the slide's 
incline angle will the child reach the bottom the 
fastest (fig. 3)? 

Solution: Let us orient the 𝑥 -axis along the 
inclined plane and the 𝑦-axis perpendicular to it, directed upward. The equations 
of motion for the child along these axes are: 

● 𝑥-axis: 𝑚𝑎 = 𝑚𝑔sin 𝛼 − 𝐹𝑡𝑟 
● 𝑦-axis: 𝑁 = 𝑚𝑔cos 𝛼, 

where 𝑚 is the mass of the child, 𝛼 is the 
incline angle of the plane, and 𝑚𝑔, 𝐹𝑡𝑟 = 𝜇𝑁, 
and 𝑁 are the magnitudes of the gravitational 
force, the kinetic friction force, and the normal 
force, respectively (these are the forces acting 
on the child in this system; 𝑔 is the magnitude 
of gravitational acceleration). 

From these equations, we obtain the 
acceleration of the child as: 

𝑎 = 𝑔(sin 𝛼 − 𝜇 cos 𝛼). 

We observe that the condition for the child to slide down the slide is 𝑎 > 0, 
which means that for a given friction coefficient 𝜇, the condition tan 𝛼 > 𝜇  must 
be satisfied for any value of the acute angle. 

 

Figure 3. Problem 3 

 

Figure 4. Solution to Problem 
3 



Let the point 𝐶 be on the horizontal plane, directly below the starting point 𝐴, 
and let 𝑙 be the distance between this point and the base of the inclined plane 𝐵, 
while 𝑠 is the distance traveled by the child from the starting point to the base. 

Note that according to the problem conditions, 𝑙 is constant, whereas 𝑠 =
𝑙

cos 𝛼
 is 

not constant, since the incline angle 𝛼  can change, while the point 𝐶  always 
remains directly below the point 𝐴 (fig. 4). 

Since the child moves with uniform acceleration from rest, we have 𝑠 =
𝑎𝑡2

2
. 

Solving for the sliding time, we obtain: 

𝑡(𝛼) = √
2𝑠

𝑎
= √

2𝑙

𝑔
(sin 𝛼 · cos 𝛼 − 𝜇cos2𝛼 )−

1
2 = 

√
2𝑙

𝑔
(

1

2
sin 2𝛼 − 𝜇cos2𝛼 )

−
1

2
. 

The conditions for minimizing the child's sliding time are: 
𝑑𝑡(𝛼)

𝑑𝛼
= 0  and 

𝑑2𝑡(𝛼)

𝑑𝛼2 > 0. 

Applying differentiation rules, we obtain: 

0 = −
1

2
√

2𝑙

𝑔
(

1

2
𝑠𝑖𝑛 2𝛼 − 𝜇𝑐𝑜𝑠2𝛼)

−
3
2

(cos 2𝛼 + 2𝜇sin 𝛼cos 𝛼   ) ⟹ 

cos 2𝛼 + 𝜇sin 2𝛼 = 0  . 

From this, we derive the required angle tan 2𝛼 = −
1

𝜇
= −

100

14
 . 

Now we have 2𝛼 =  −82°.  According to the conditions of the problem, the 
angle should lie in the first quadrant. Тaking into account the periodicity of the 
function 𝑦 = tan 2𝛼 and the physical formulation of the problem, the solution is 
𝛼 = 49°. 

Below, we provide the formulations of the remaining 4 tasks. 

4. We know that pressure 𝑝, temperature 𝑇, and air density 𝜌 change with 
altitude. If we assume that at low altitudes above the Earth's surface, pressure 

and air density are related by the equation 
𝑝

𝜌𝑛 = 𝑐𝑜𝑛𝑠𝑡 , which 𝑛 = 𝑐𝑜𝑛𝑠𝑡 , 

determines the temperature gradient 
𝑑𝑇

𝑑ℎ
, i.e., the change in air temperature with 

altitude. The molar mass of air is 𝑀, the universal gas constant is 𝑅 , and the 
gravitational acceleration is 𝑔 =  𝑐𝑜𝑛𝑠𝑡. Consider air as an ideal gas. 



5. Two moles of an ideal gas transition from state 1 to state 2 through a process 

that can be represented on the 𝑝𝑉  diagram by the line 
𝑝

𝑎
+

𝑉

𝑏
= 1, where 𝑎 =

1 𝑀𝑃𝑎 and 𝑏 = 16 𝑙. What is the maximum temperature 𝑇𝑚𝑎𝑥 that the gas can 

reach in this process? The universal gas constant is 𝑅 = 8.3
𝐽

𝑚𝑜𝑙 𝐾
. 

6. A stationary container is given, which 
contains a piston, which is connected  to the right 
wall of the container by a light elastic spring. 
When the container is empty, the piston is 
pressed against the left wall of the container, and 
in this position, the spring (fig. 5) is undeformed. 
Then, 𝑛𝑚  moles of an ideal gas are introduced 
into the left side of the container, where the 
molar isochoric heat capacity is 𝐶𝑉, while the right side remains in a vacuum. The 
gas is then slowly heated by a heater inserted through the right wall. If the 
container walls and the piston do not conduct heat, and friction is negligible, prove 
that the molar heat capacity 𝐶 of the gas during this heating process is constant. 

7. A thin ring of radius 𝑅 is given, which is uniformly charged with a charge 𝑞 >
0. Determine the dependence of the electric field intensity 𝐸 on the axis of the 
ring, normal to its plane, at a distance 𝑙 from its center. At what distance 𝑙0 from 
the center does the electric field intensity reach its maximum value 𝐸𝑚𝑎𝑥, and 
what is its value? Try to sketch the graph of the dependence 𝐸(𝑙). 

4. Students’ impressions of the classes 
In the final part of the lesson, a survey was conducted with the students to 

obtain their feedback. For this purpose, a questionnaire was created using Google 
Forms and distributed to the students during the lesson. The students were 
presented with statements related to the lesson itself and the interdisciplinary 
connection of teaching content. They were expected to respond honestly about 
the extent to which they agreed with the statements using a five-point Likert scale. 
Table 1 presents the students' responses. 

Table 1. Results of the survey 

 

 

Figure 5. Problem 6 



Statement I strongly 
disagree 
(n, %) 

I some-
what 
disagree 
(n, %) 

I am 
unde-
cided  
(n, %) 

I some-
what 
agree 
(n, %) 

I 
strongly 
agree  
(n, %) 

Total   
(n, %) 

The lesson was 
interesting to 
me. 

0  
(0%) 

1  
(7.1%) 

0  
(0%) 

5  
(35.7%) 

8  
(57.2%) 

14  
(100%) 

I believe that 
the lesson was 
useful. 

0  
(0%) 

0  
(0%) 

0  
(0%) 

5  
(35.7%) 

9  
(64.3%) 

14  
(100%) 

I believe that 
the tasks I 
solved were 
difficult. 

0  
(0%) 

7  
(50%) 

6  
(42.9%) 

1  
(7.1%) 

0  
(0%) 

14  
(100%) 

The work in the 
class increased 
my interest in 
physics. 

0  
(0%) 

2  
(14.3%) 

2  
(14.3%) 

9  
(64.3%) 

1  
(7.1%) 

14  
(100%) 

The work in the 
class increased 
my interest in 
mathematics. 

0  
(0%) 

1  
(7.1%) 

3  
(21.4%) 

9  
(64.3%) 

1  
(7.1%) 

14  
(100%) 

I would like 
teachers to hold 
joint lessons 
more often. 

0  
(%) 

0  
(%) 

3  
(21.4%) 

7  
(50%) 

4  
(28.6%) 

14  
(100%) 

 
Based on the analysis of student responses, it can be observed that 13 out of 

14 students found the lesson, in which they had the opportunity to see the 
application of mathematical concepts—specifically differential calculus in 
physics—interesting. All students consider the activities conducted during the 
lesson useful. Moreover, as many as 9 students completely agree with this 
statement. However, it cannot be said that the tasks students solved during the 
lesson were quite difficult for students. Specifically, 7 students disagreed with this 
statement, while 6 were undecided on the matter, and one student found the 
exercises difficult. The meaningfulness of integrating mathematical content—
particularly Mathematical Analysis with Algebra—with physics is evident in the 
fact that 9 students somewhat agree that their interest in learning both 
mathematics and physics has increased as a result of the lesson. The other 
responses show a similar distribution. Students recognize the importance and 
benefits of interdisciplinary connections, as 11 students agree or completely agree 



that they would like teachers to collaborate more frequently and conduct joint 
lessons integrating different subjects. Three students were undecided on this 
question, while there were no negative responses on this topic.  

In the last open-ended question, students were asked to answer which two 
subjects they would like their teachers to integrate into the lessons. The students' 
responses were as follows: Mathematical Analysis with Algebra and Physics (5 
responses); Mathematical Analysis with Algebra and Informatics (1 response); 
Geometry and Physics (2 responses); Mathematical Analysis with Algebra and 
Probability and Statistics (1 response); Mathematical Analysis with Algebra and 
Numerical Mathematics (1 response); Physics and Biology (1 response). Three 
students did not provide an answer to this question. 

5. Discussion and Conclusion 
By actively participating in the lesson, students gifted in mathematics solved 

physics problems from areas they had studied in previous years of their secondary 
education. Thus, the physics content was not new to them. However, what was 
novel in their approach was the application of differential calculus, which they had 
been introduced to in the lessons preceding the described exemplary lesson. 
Previously, students solved given problems by estimating the values of algebraic 
expressions and using algebraic transformations such as the square of a binomial 
and the difference of squares to determine the maximum and minimum values of 
the required expressions to answer the given questions successfully.   

After acquiring knowledge of differential calculus, students had the 
opportunity to see how it could be applied, particularly in determining the extreme 
values of functions of a single variable, to solve physics problems. This significantly 
simplified the problem-solving process, making the solutions more elegant. By 
applying mathematical analysis in solving physics problems, students had the 
chance to develop problem-solving competencies while simultaneously 
reinforcing their physics knowledge (Hestenes 2010).   

Students had a positive opinion of the exemplary lesson, stating that their 
interest in learning both mathematics and physics had increased. This aligns with 
previous research findings, which suggest that interdisciplinary connections 
between mathematics and physics enhance students' interest in learning (Boaler 
2015). Moreover, students expressed various ideas about which subjects teachers 
could integrate into interdisciplinary research, demonstrating their awareness 
that school subjects are not isolated but can be meaningfully connected.   



With this paper, we aim to enrich the body of research indicating that 
integrating mathematics and physics, while focusing on the development of 
problem-solving skills, critical thinking, and transferable skills, can help educators 
foster a deeper understanding among students, increase their motivation, and 
enhance their engagement. The main advancement compared to previous studies 
is that most research has focused on students in heterogeneous classrooms, 
whereas we examined a homogeneous group—students gifted in mathematics. 
We believe that the problems presented in this paper will be useful to educators 
in planning lessons that are based on the interdisciplinary integration of 
mathematics and physics. A potential focus for future research could be the 
interdisciplinary connection between trigonometry and physics for younger high 
school students, with findings discussed in collaboration with educators, 
curriculum designers, and policymakers to enhance STEM engagement among 
high-achieving students. 
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