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aDepartment of Electrical Engineering and Computer Science, Faculty of Engineering,
University of Kragujevac, Kragujevac, Serbia

bDepartment of Electronics, Faculty of Electronic Engineering, University of Nǐs, Nǐs,
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Abstract

This paper proposes two methods for designing linear-phase infinite impulse

response integrators. The first method, referred to as the maximally-flat one,

imposes flatness conditions on the frequency response error function, leading to

a system of linear equations that have to be solved to determine unknown coeffi-

cients. Furthermore, a relation is established between the proposed maximally-

flat integrators and existing integer-order linear-phase integrators derived using

the algebraic polynomial-based quadrature rules, demonstrating that the latter

represent special cases of the proposed integrators. The second method, referred

to as the optimal one, minimizes the complex frequency response error function

in the weighted Chebyshev sense, which is achieved by an efficient exchange al-

gorithm that exhibits rapid convergence. The proposed linear-phase integrators

are also compared with several existing linear- and nearly linear-phase integra-

tors.

Keywords: digital integrators, linear-phase, maximally-flat design, optimal

design

1. Introduction

Digital integrators are used in various engineering applications where the

computation of the time-integral of an input signal from its discrete-time sam-
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ples is required. These applications include voltage and current measurement

devices [18], acceleration sensor data processing [14], and magnetic field mea-

surements [7], among others. Additionally, digital integrators are essential build-

ing blocks for Prism signal processing [13]. Based on the duration of the impulse

response, digital integrators can be classified into finite impulse response (FIR)

and infinite impulse response (IIR) filters. On the other hand, since numerical

integration can be interpreted as the recursive digital filtering [11], it comes as

no surprise that the majority of existing digital integrators are of IIR type.

There are two main approaches to the IIR integrator design. Methods of

the first approach [6, 23, 25, 20, 24, 8, 4, 5, 17] employ numerical quadra-

ture rules to derive IIR integrators transfer functions. For instance, design of

IIR integrators using Newton-Cotes, Gauss-Legendre, and Romberg integration

rules is consider in [20, 23, 24]. While the integer-order Newton-Cotes IIR

integrators from [23], including the well-known rectangular, trapezoidal, Simp-

son 1/3, Simpson 3/8 and Boole’s integrators [11], are linear-phase filters, the

other integrators from [23, 24] utilize fractional delay elements, whose design

have to be treated separately. In [8], modified Newton-Cotes rules are used

to derive integer-order linear-phase IIR integrators with improved magnitude

responses. To address the inherent limitation of integrators obtained by the

algebraic polynomial-based quadrature rules, which is the increasing behavior

of the magnitude response error, the design of the linear-phase IIR integrators

using numerical integration rules constructed to integrate trigonometric poly-

nomials is proposed in [6]. Additionally, several nonlinear-phase IIR integrators

with improved magnitude responses at midband and high frequencies have been

obtained by interpolating trapezoidal integration rule with rectangular [4, 17],

Simpson 1/3 [5], Simpson 3/8 [5], and Simpson 1/3 and Boole’s rules [5].

Methods of the second approach formulate the IIR integrator design prob-

lem as the frequency domain constrained optimization problem, solved using

either classical [21, 19, 16, 2] or metaheuristic [1, 10, 3] optimization techniques.

In [21] and [2], second-order [21] and arbitrary-order [2] linear-phase integrators

are designed by minimizing the weighted Chebyshev norms of the magnitude re-
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sponse error over a specified frequency range using linear programming. On the

other hand, nearly linear-phase IIR integrators [19, 16] are designed by minimiz-

ing the phase response linearity error subject to the constraints imposed on the

magnitude response error function, while the second-order integrators [10] are

obtained by minimizing the magnitude error subject to the constraints imposed

on the phase response linearity error. In [3], second-, third-, and fourth-order

IIR integrators are obtained by inverting transfer functions of differentiators

that were designed by minimizing the L1 norm of the complex frequency re-

sponse error function. Another optimization-based design method is discussed

in [1], where nearly linear-phase is indirectly achieved by minimizing the varied

Lk norm of the absolute magnitude response error.

In this paper, starting from the suitably chosen expression for the linear-

phase IIR transfer function and its frequency response, two new linear-phase IIR

integrator design methods are proposed. Since the highest accuracy around a

particular frequency ω0 is achieved through a maximally-flat design, this method

is discussed first. Additionally, it will be shown that magnitude responses of

integer-order linear-phase IIR integrators from [8, 23] are maximally flat at

ω = 0, meaning that these integrators are special cases of the proposed ones.

For the convenience of the filter designers, closed form expressions or exact coef-

ficients values (in the case of ω0 = 0) are tabulated for various filter orders. The

second proposed design method minimizes the Chebyshev norm of the complex

frequency response error over the frequency range of interest. This is achieved

using an iterative algorithm that typically converges in a few iterations. There-

fore, the integrators designed in this way can be regarded as optimal, with the

second-order IIR integrators from [21], including the well-known Tick’s integra-

tor [12], representing special cases.

The rest of the paper is structured as follows. Linear-phase IIR integrator

design problem is formulated in Sec. 2, while the maximally-flat and optimal

design methods are described in Sec. 3. A relation between the proposed and

existing maximally-flat linear-phase integrators (although not explicitly treated

as such in the available literature) is established in Sec. 4, along with the deriva-
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tion of a closed-form expression for the coefficients of the proposed integrators

when ω0 = 0. Design examples and comparison with the existing linear- and

nearly linear-phase integrators, both of IIR and FIR types, are given in Sec. 5,

while concluding remarks are provided in Sec. 6.

2. Problem formulation

Phase response of digital integrator, whose frequency response in ideal case

is given by

Hd

(
ejω

)
=

1

jω
e−jωτ , (1)

where τ is group delay, exhibits a discontinuity of π radians at ω = 0, as it jumps

between π/2 an −π/2. This behavior can be achieved by a transfer function

with a pole placed at z = ej0 = 1, which, since on the unit circle, does not

compromise the linearity of the filter’s phase response. Therefore, one possible

form of the transfer function of the linear-phase integrator is

H (z) =
B (z)

1− z−K
, (2)

where K ≥ 1 is the feedback delay, and B (z) is a linear-phase finite impulse re-

sponse transfer function whose roots are not canceled by the roots of
(
1− z−K

)
.

Therefore, B (z) has to be a type I or II transfer function, and if B (z) is type

II transfer function (with a zero inherently placed at z = ejπ = −1), K has

to be odd. Additionally, for K > 1, magnitude response of integrator tends to

infinity at frequencies 2kπ/K, for k = 1, 2, . . . , K − 1. Note that, without loss

of generality, the sampling frequency is assumed to be equal to 1 Hz in (1).

Denoting the length of the linear-phase FIR filter B (z) by L, and its impulse

response samples by bk, k = 0, 1, . . . , L− 1, frequency response B
(
ejω

)
can be

expressed as

B
(
ejω

)
= 2e−jτ̃ωc (ω) · g, (3)

where

τ̃ =
L− 1

2
(4)
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is the group delay of B (z), while vectors c (ω) and g are

c (ω) =
[
cos (τ̃ω) cos ((τ̃ − 1)ω) . . . cos ((τ̃ − ⌊τ̃⌋)ω)

]
, (5)

g =





[
b0 b1 . . . bτ̃−1

1
2bτ̃

]T
, L odd

[
b0 b1 . . . bτ̃−1/2

]T
, L even

. (6)

The superscript T in defined vectors denotes the transposition operation. Note

that for L even, ⌊τ̃⌋ = τ̃ − 1/2, while for L odd, ⌊τ̃⌋ = τ̃ .

Substituting z = ejω and (3) in (2), frequency response of proposed linear-

phase integrators can be formulated as

H
(
ejω

)
= e−j(τ̃−K/2)ω c (ω) · g

j · sin
(
Kω
2

) , (7)

i.e. the group delay of H (z) is constant and equal to

τ = τ̃ − K

2
. (8)

Therefore, if B (z) is type I (II) linear-phase FIR transfer function, and K is

even (odd), τ is an integer. On the other hand, if τ is integer, magnitude

response of H (z) equals zero (L even) or tends to infinity (K even) at ω = π.

In this paper, we propose methods to derive the unknown vector g, and

consequently coefficients of the linear-phase FIR transfer function B (z), such

that frequency response error function of the corresponding linear-phase IIR

integrator

ε (ω) = H
(
ejω

)
−Hd

(
ejω

)
(9)

is either maximally-flat at some frequency ω0, or minimized in the weighted

Chebyshev sense. Substituting (1) and (7) in (9), complex frequency response

error function ε (ω) can be rewritten as

ε (ω) =
e−jωτ

jω

[
2c (ω) · g

K sinc
(
Kω
2

) − 1

]
=

e−jωτ

jω
εr (ω) , (10)

where

sinc (x) =




sin (x)/x, x ̸= 0

1, x = 0

.
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Notably, εr (ω), as defined in the previous equation, cannot have an infinite

value, in contrast to ε (ω), and it represents the relative magnitude response

error of the proposed linear-phase IIR integrators if K ≤ 2.

3. Design methods

This section provides an explanation of the proposed methods for the design

of linear-phase IIR integrators, whose transfer function is given by (2). These

methods are referred to as the maximally-flat and optimal.

3.1. Maximally-flat method

Maximally-flat design method starts from the maximal linearity constraints

of frequency response error function

dnε (ω)

dωn

∣∣∣∣
ω=ω0

= 0, (11)

for n = 0, 1, . . . , N − 1, where N is degree of flatness. Now, since utilization of

Leibniz derivative rule gives

dnεr (ω)

dωn
=

n∑

k=0

(
n

k

)
dk

(
jωejωτ

)

dωk

dn−kε (ω)

dωn−k
, (12)

while

dk
(
jωejωτ

)

dωk
=




jωejωτ , k = 0

j (jτ)
k−1

(k + jωτ) ejωτ , k ̸= 0

, (13)

flatness conditions given by (11) can be rewritten as

dnεr (ω)

dωn

∣∣∣∣
ω=ω0

= 0, (14)

for n = 0, 1, . . . , N − 1.

In the next step εr (ω), defined by (10), is reformulated as

K sinc

(
Kω

2

)
εr (ω) = 2c (ω) · g −K sinc

(
Kω

2

)
, (15)

and left- and right-hand sides of this relation are differentiated n times

K
dn

dωn

[
sinc

(
Kω

2

)
εr (ω)

]
= 2

dnc (ω)

dωn
· g −K

dn sinc
(
Kω
2

)

dωn
. (16)
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Again, application of Leibniz derivative rule on the left-hand side of (16) gives

K

n∑

k=0

(
n

k

)
dkεr (ω)

dωk

dn−k sinc
(
Kω
2

)

dωn−k
= 2

dnc (ω)

dωn
· g −K

dn sinc
(
Kω
2

)

dωn
, (17)

leading to the following formulation of the flatness conditions, note (14),

dnc (ω)

dωn

∣∣∣∣
ω=ω0

· g =
K

2

dn sinc
(
Kω
2

)

dωn

∣∣∣∣∣
ω=ω0

, (18)

for n = 0, 1, . . . , N − 1.

Having in mind that

dn cos (kω)

dωn
=




(−1)

n/2
kn cos (kω) , n even

(−1)
(n+1)/2

kn sin (kω) , n odd

, (19)

n−th derivative of c (ω), defined by (5), can be expressed as 1×(⌊τ̃⌋+ 1) vector

sn (ω) =
[
s
(n)
i (ω)

]
with elements

s
(n)
i (ω) =




(−1)

n/2
(τ̃ − i+ 1)

n
cos ((τ̃ − i+ 1)ω) , n even

(−1)
(n+1)/2

(τ̃ − i+ 1)
n
sin ((τ̃ − i+ 1)ω) , n odd

. (20)

Therefore, unknown vector g can be determined as a solution to a system

of linear equations given by (18). However, as will be discussed in the following

subsections, the cases when ω0 = 0 and ω0 ̸= 0 have to be treated separately,

as (18) is always satisfied for ω0 = 0 and n odd, regardless the values of FIR

filter B (z) coefficients, i.e. vector g.

3.1.1. The case when ω0 = 0

As n−th derivative of sinc
(
Kω
2

)
at ω = 0 equals

dn sinc
(
Kω
2

)

dωn

∣∣∣∣∣
ω=0

=





(
K
2

)n (−1)n/2

n+1 , n even

0, n odd

, (21)

while n−th derivative of c (ω) at ω = 0 becomes zero vector for n odd, note (20),

flatness conditions given by (18), in case of ω0 = 0, read

d2kc (ω)

dω2k

∣∣∣∣
ω=0

· g =
(−1)

k

2k + 1

(
K

2

)2k+1

, (22)
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for k = 0, 1, . . . , ⌊τ̃⌋. Therefore, when ω0 = 0, degree of flatness N equals

2 ⌊τ̃⌋+ 1.

Using (20), previous system of linear equations reduces to

[
τ̃2k (τ̃ − 1)

2k
. . . (τ̃ − ⌊τ̃⌋)2k

]
· g =

1

2k + 1

(
K

2

)2k+1

, (23)

for k = 0, 1, . . . , ⌊τ̃⌋, or alternatively

V · g = d, (24)

where V =
[
vki = λk−1

i

]
is (⌊τ̃⌋+ 1) × (⌊τ̃⌋+ 1) Vandermonde matrix, and

d =
[
dk

]
is (⌊τ̃⌋+ 1)× 1 vector, with elements λi and dk equal to

λi = (τ̃ − i+ 1)
2
, dk =

1

2k − 1

(
K

2

)2k−1

.

Note that Vandermonde system of linear equations (24) can be solved us-

ing various methods, e.g. the ones discussed in [9, 22]. However, as only IIR

integrators of relatively low orders are of practical interest, the exact solution

for the coefficients vector can be easily obtained by matrix inversion and us-

ing rational number arithmetic supported by various programming languages.

Therefore, coefficients of the linear-phase integrators designed using the pro-

posed maximally-flat method for ω0 = 0, along with their performance metrics,

can be systematically cataloged.

Coefficients of B (z) for L up to 8, and K ≤ 2, are given in Table 1. As

the case when K = 2 and B (z) is type II transfer function reduces to the

case when K = 1 and B (z) is type I transfer function, corresponding cells in

Table 1 are left empty. From Table 1 it can be concluded that proposed IIR

integrators designed with K = 1 and L ≤ 8, for ω0 = 0, are the same as the

ones proposed in [8], while for L = K = 1, (L, K) = (2, 1), and (L, K) =

(3, 2), backward Euler (rectangular), trapezoidal and Simpson integrators are

obtained, respectively. Moreover, as will be shown in Section 4, arbitrary-order

linear-phase IIR integrators from [8, 23] are just special cases of the proposed

integrators.
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Table 1: Coefficients b0, b1, . . . , b⌊τ̃⌋ of the linear-phase FIR transfer function B (z) when
ω0 = 0, for K = 1, 2.

L\K 1 2
1 1 2

2
1

2

3
1

24
,
11

12

1

3
,
4

3

4 −
1

24
,
13

24

5 −
17

5760
,

77

1440
,
863

960
−

1

90
,
17

45
,
19

15

6
11

1440
, −

31

480
,
401

720

7
367

967680
, −

281

53760
,

6361

107520
,
215641

241920

1

756
, −

2

105
,
167

420
,
1172

945

8 −
191

120960
,

1879

120960
, −

353

4480
,

68323

120960

3.1.2. The case when ω0 ̸= 0

For ω0 ̸= 0, unknown vector g can be determined from a system of linear

equations given by (18) for n = 0, 1, . . . , ⌊τ̃⌋, where degree of flatness N obvi-

ously equalsN = ⌊τ̃⌋+1. By replacing sinc
(
Kω
2

)
term in (18) with 2

Kω sin
(
Kω
2

)
,

its n−th derivative can be expressed using Leibniz derivative rule as

dn sinc
(
Kω
2

)

dωn
=

n∑

k=0

(
n

k

)
dk

(
2

Kω

)

dωk

dn−k sin
(
Kω
2

)

dωn−k
. (25)

Now, since
dk

(
2

Kω

)

dωk
=

2

K

(−1)
k
k!

ωk+1
(26)

and

dn−k sin
(
Kω
2

)

dωn−k
=




(−1)

(n−k)/2 (K
2

)n−k
sin

(
Kω
2

)
, n− k even

(−1)
(n−k−1)/2 (K

2

)n−k
cos

(
Kω
2

)
, n− k odd

, (27)

after some mathematical manipulations, flatness conditions given by (18) are

rewritten in matrix form as

A · g = e, (28)

where A =
[
aki

]
is (⌊τ̃⌋+ 1) × (⌊τ̃⌋+ 1) square matrix, and e =

[
ek

]
is
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(⌊τ̃⌋+ 1)× 1 vector with elements

aki =




(τ̃ − i+ 1)

k−1
cos ((τ̃ − i+ 1)ω0) , k odd

(τ̃ − i+ 1)
k−1

sin ((τ̃ − i+ 1)ω0) , k even

, (29)

ek =




k−1

[(
K
2

)k
cos

(
Kω0

2

)
+ γk

]
, k odd

ω−1
0 γk−1, k even

, (30)

while γk is defined by

γk =
k!

ωk
0

⌊k/2⌋∑

m=0

(−1)
m
βk−2m, (31)

βk =
1

k!

(
Kω0

2

)k [
k sinc

(
Kω0

2

)
− cos

(
Kω0

2

)]
. (32)

By closely observing (30), it follows that only values of γk (and conse-

quently βk) with odd indices need to be determined. Additionally, these val-

ues do not depend on length L of the FIR transfer function B (z). For ex-

ample, it is sufficient to determine γ1 = β1/ω0, γ3 = 6 (β3 − β1) /ω
3
0 , and

γ5 = 120 (β5 − β3 + β1) /ω
5
0 for L = 10.

Closed form expressions for coefficients of B (z) for L up to 4, and K ≤ 2

are given in Table 2. Again, since the case when K = 2 and L is even reduces

to the case when K = 1 and B (z) is type I transfer function, certain number of

cells in Table 2 are left empty.

3.2. Optimal method

In order to minimize the complex frequency response error function ε (ω),

given by (10), in the weighted Chebyshev sense, an appropriate weighting func-

tion has to be defined first. In the paper, we choose the following function

W (ω) =




1, ω ∈

[
ωp1

, ωp2

]

0, otherwise

, (33)

where ωp1
and ωp2

are lower and upper boundaries of the frequency range of

interest. Therefore, having in mind the linearity of arg {ε (ω)}, optimization
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Table 2: Coefficients of the linear-phase FIR transfer function B (z) for L ≤ 4, K ≤ 2, and
ω0 ̸= 0.

L\K 1 2

1 b0 = sinc
(ω0

2

)
b0 = 2 sinc (ω0)

2 b0 =
sinc

(ω0

2

)
2 cos

(ω0

2

)

3
b0 =

sinc
(ω0

2

)
− cos

(ω0

2

)
2ω0 sin (ω0)

b1 = sinc
(ω0

2

)
− 2b0 cos (ω0)

b0 =
sinc (ω0)− cos (ω0)

ω0 sin (ω0)

b1 =
2 (1− sinc (2ω0))

ω0 sin (ω0)

4

b0 =
sinc (ω0)− 1

2ω0 (1 + cos (ω0)) sin (ω0)

b1 =

sinc
(ω0

2

)
− 2b0 cos

(
3ω0

2

)
2 cos

(ω0

2

)

problem that characterizes the proposed optimal method can be formulated as

minimize
δ, g

δ

subject to: −δ ≤ εr (ω, g)

ω
≤ δ, ω ∈

[
ωp1

, ωp2

] , (34)

where notation εr (ω, g) is used to emphasize dependence of εr (ω) on unknown

coefficients vector g, while δ is weighted Chebyshev norm.

Since εr (ω, g) is linear in g, (34) can be formulated as the ordinary linear

programming optimization problem in N = ⌊τ̃⌋+2 = ⌊L+3
2 ⌋ unknowns if semi-

infinite inequality constraints are replaced by their evaluations at M discrete

frequency points from the closed interval
[
ωp1

, ωp2

]
. Assuming linear spacing,

M should be chosen to satisfy M ≥ 15N [26], i.e. the number of constraints is at

least 15 (L+ 3). On the other hand, it shows that computationally less intensive

exchange algorithm can be used for coefficients vector g determination, instead

of the linear programming, while the cases when ωp1
= 0 and ωp1

̸= 0 have to

be treated separately, note the ratio εr (ω, g) /ω in (34). Note that when the

width of the frequency range of interest, i.e. ωp2
−ωp1

, approaches zero, optimal

method reduces to the maximally-flat one.

It should be noted here that method presented in [21] also formulates the

linear-phase second-order IIR integrator design problem as the linear program-

ming one given by (34). Therefore, integrators from [21], including the well-
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known Tick’s integrator [12], are the special cases of the proposed ones, and

they are obtained when L = 3 and K = 2.

3.2.1. The case when ωp1
= 0

For ω = 0, the ratio εr (ω, g) /ω is finite if εr (0, g) = 0, i.e. if

c (0) · g =
K

2
, (35)

note (10), where c (0) is a vector of ones, see (5). On the hand, for εr (0, g) = 0

one has

lim
ω→0

εr (ω, g)

ω
=

dεr (ω, g)

dω

∣∣∣∣
ω=0

= 0, (36)

regardless the value of coefficients vector g, note (14), (18) and (21). Therefore,

the first equation that needs to be considered when ωp1
= 0 is given by (35).

Since the proposed linear-phase IIR integrators have magnitude responses

approximating the ideal one in the weighted Chebyshev sense, additional ⌊τ̃⌋+1

equations are given by

εr (ωk, g) = (−1)
k+p

ωk · δ, (37)

for k = 1, 2, . . . , ⌊τ̃⌋+ 1, note (34), or alternatively

2c (ωk)

K sinc
(
Kωk

2

) · g − 1 = (−1)
k+p

ωk · δ, (38)

for k = 1, 2, . . . , ⌊τ̃⌋ + 1, note (10), where εr (ω, g) exhibits ⌊τ̃⌋ + 1 sign-

alternating extremal values at frequencies ωk, k = 1, 2, . . . , ⌊τ̃⌋ + 1, satisfying

0 < ω1 < ω2 < · · · < ω⌊τ̃⌋+1 ≤ ωp2
, while p denotes whether first extremal value

is minimum (p = 0) or maximum (p = 1).

If the extremal frequencies positions ωk, for k = 1, 2, . . . , ⌊τ̃⌋ + 1, were

known in advance, then (35) and (38) would form a square system in ⌊τ̃⌋ + 2

unknowns: coefficients vector g and weighted Chebyshev norm δ. However, as

the extremal frequencies positions are not known initially, following exchange

algorithm is proposed:

1. Set t = 0. Determine initial coefficients vector g0 such that εr (ω, g0) /ω

exhibits ⌊τ̃⌋ + 1 extremal values in interval
(
0, ωp2

]
. Additionally, (35)
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should be satisfied, i.e. εr (0, g0) = 0. Mentioned can be achieved by

setting εr (ω, g0) to zero at ⌊τ⌋+ 1 distinct frequencies

ω′
k =

kπ

ατ̃
, (39)

for k = 0, 1, . . . , ⌊τ̃⌋, where parameter α should be chosen such that

ω′
⌊τ̃⌋ < ωp2

, i.e. α > π/ωp2
. In other words, initial coefficients vector can

be determined by solving following system of linear equations

c (ω′
k) · g0 =

K

2
sinc

(
Kω′

k

2

)
, (40)

for k = 0, 1, . . . , ⌊τ̃⌋, note (10).

Plots of εr (ω, g0) /ω for L = 10, K = 1, and ωp2
= 0.8π is shown in

Fig. 1, where a sufficient number of extremal points can be observed.

0 0.2 0.4 0.6 0.8
−2

−1

0

1

2
·10−2

ω/π

εr (ω, g0) /ω

Figure 1: Ratio εr (ω) /ω that corresponds to the initial solution of the optimal design method,
for L = 10, K = 1, α = 1.15, ωp1

= 0, ωp2
= 0.8π (dashed line), and L = 5, K = 2,

ωp1
= 0.2π, ωp2

= 0.8π (solid line). Note that for K ≤ 2, εr (ω) /ω is absolute magnitude
response error of proposed linear-phase IIR integrators.

Note that initial linear-phase IIR integrator H (z, g0) of the proposed

optimal method correspond to the linear-phase IIR integrator based on

trigonometric quadrature rules [6], whose coefficients can be expressed in

closed form as function of α [6, equation (11)].
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2. Update current iteration, t = t + 1. Based on known coefficients vector

gt−1 determine frequencies ω
(t−1)
k , 1 ≤ k ≤ ⌊τ̃⌋+1, where extremal values

of εr (ω, gt−1) /ω occur in
(
0, ωp2

]
.

3. Determine new coefficients vector gt by solving square system of linear

equations

c (0) · gt =
K

2
,

2c
(
ω
(t−1)
k

)

K sinc

(
Kω

(t−1)
k

2

) · gt − (−1)
k+p

ω
(t−1)
k · δ = 1,

(41)

for k = 1, 2, . . . , ⌊τ̃⌋+ 1, note (35) and (38).

4. If max {|gt − gt−1|} ≤ ∆tol, where ∆tol is the prescribed tolerance, un-

known coefficients vector is g = gt, otherwise proceed from the step 2.

The main step within the considered iterative algorithm is solving the square

system of ⌊τ̃⌋ + 2 = ⌊L+3
2 ⌋ linear equations. Since the linear solver has the

polynomial-time complexity of the third-order with respect to the number of

unknown variables, and the proposed exchange algorithm is iterative, it may

be concluded that the overall complexity of the proposed optimal algorithm is

high. However, since only linear-phase IIR integrators of relatively low orders

(and consequently low L) are of practical interest, while the proposed algorithm

exhibits rapid convergence (as will be discussed in Sec. 5), the computational

complexity of the optimal method does not present a practical limitation. For

example, the square system of linear equations (41) consists of only 6 equations

for L = 10. Additionally, the proposed optimal method is significantly compu-

tationally less intensive compared to the linear programming solvers that can

be used to solve (34).

3.2.2. The case when ωp1
̸= 0

Since for ωp1
̸= 0, function εr (ω, g) /ω is finite in closed interval

[
ωp1

, ωp2

]
,

proposed linear-phase IIR integrators have magnitude responses approximating

the ideal one in the weighted Chebyshev sense if

εr (ωk, g) = (−1)
k+p

ωk · δ, (42)

14



for k = 1, 2, . . . , ⌊τ̃⌋ + 2, where εr (ω, g) exhibits ⌊τ̃⌋ + 2 sign-alternating ex-

tremal values at frequencies ωk, k = 1, 2, . . . , ⌊τ̃⌋ + 2, satisfying ωp1
≤ ω1 <

ω2 < · · · < ω⌊τ̃⌋+2 ≤ ωp2
.

Again, similar to the case when ωp1
= 0, as the extremal frequencies posi-

tions are not known in advance, following exchange algorithm is proposed:

1. Set t = 0. Determine initial coefficients vector g0 such that εr (ω, g0) /ω

exhibits ⌊τ̃⌋ + 2 extremal values in closed interval
[
ωp1

, ωp2

]
, which can

be achieved by setting εr (ω, g0) to zero at ⌊τ⌋+1 equidistant frequencies

ω′′
k = ωp1

+ k ·
ωp2

− ωp1

⌊τ̃⌋+ 2
, (43)

for k = 1, 2, . . . , ⌊τ̃⌋ + 1. Consequently, initial coefficients vector can be

determined by solving following system of linear equations

c (ω′′
k ) · g0 =

K

2
sinc

(
Kω′′

k

2

)
, (44)

for k = 1, 2, . . . , ⌊τ̃⌋+ 1, note (10).

Plot of εr (ω, g0) for L = 5, K = 2, ωp1
= 0.2π, and ωp2

= 0.8π is shown

in Fig. 1.

2. Update current iteration, t = t + 1. Based on known coefficients vector

gt−1 determine frequencies ω
(t−1)
k , 1 ≤ k ≤ ⌊τ̃⌋+2, where extremal values

of εr (ω, gt−1) /ω occur in
[
ωp1

, ωp2

]
.

3. Determine new coefficients vector gt by solving square system of linear

equations

2c
(
ω
(t−1)
k

)

K sinc

(
Kω

(t−1)
k

2

) · gt − (−1)
k+p

ω
(t−1)
k · δ = 1, (45)

for k = 1, 2, . . . , ⌊τ̃⌋+ 2, note (42).

4. If max {|gt − gt−1|} ≤ ∆tol, where ∆tol is the prescribed tolerance, un-

known coefficients vector is g = gt, otherwise proceed from the step 2.

Regarding the computational complexity of the optimal method for ωp1
̸= 0,

the same conclusions apply as in the case when ωp1
= 0.
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4. Relation between the proposed and existing maximally-flat linear-
phase integrators

In this section, we argue that arbitrary-order linear-phase Newton-Cotes in-

tegrators [23] and integrators from [8] are maximally flat at ω = 0, i.e. that they

are special cases of proposed maximally-flat integrators. In order to establish a

relation between these integrators, let us consider difference equation

y [n]− y [n−K] =

L−1∑

k=0

bkx [n− k] (46)

that corresponds to the transfer function given by (2), where x [n] and y [n]

are nth sample at input and output, respectively. As the group delay of H (z)

is constant and equal to τ = (L− 1−K) /2, note (8), in ideal case, y [n] and

y [n−K] correspond to the areas up to the (n− τ)th and (n− τ −K)th input

sample, respectively. Therefore, since, without loss of generality, the sampling

frequency can be set to 1 Hz, coefficients of the FIR filter B (z) should be

determined such that

n−τ∫

n−τ−K

fn (t) dt =

L−1∑

k=0

bkx [n− k] , (47)

where fn (t) is interpolating function satisfying fn (m) = x [m], for m = n, n−

1, . . . , n− (L− 1) = n− 2τ̃ .

Now, if fn (t) is (L− 1)th degree Lagrange interpolating polynomial, un-

known coefficients can be obtained from (47) as [11, 9]

bL−1−k = bk =

τ̃+K/2∫

τ̃−K/2

L−1∏

i=0, i ̸=k

(u− i)

(k − i)
du, (48)

for k = 0, 1, 2, . . . , L − 1. Note that coefficients of the linear-phase Newton-

Cotes integrators (including trapezoidal, Simpson’s 1/3, Simpson’s 3/8 and

Boole’s integrators) [23] and integrators from [8] can be obtained using (48)

if K = L − 1 and K = 1, respectively. On the other hand, since the area
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between (−K/2)th and (K/2)th input sample can be expressed as

K/2∫

−K/2

fτ̃ (t) dt =

L−1∑

k=0

bkfτ̃ (τ̃ − k) , (49)

note (47), coefficients of the FIR transfer function B (z) satisfy

L−1∑

k=0

bk (τ̃ − k)
m

=
1

m+ 1

[(
K

2

)m+1

−
(
−K

2

)m+1
]
, (50)

for m = 0, 1, . . . , L − 1. Due to the symmetry of the coefficients b2τ̃−k = bk,

previous equation is always satisfied for m odd, and it can be reformulated as

L−1∑

k=0

bk (τ̃ − k)
2i

=
2

2i+ 1

(
K

2

)2i+1

, (51)

for i = 0, 1, . . . , ⌊τ̃⌋, which is essentially (23).

Therefore, it can be concluded that linear-phase integrators from [8, 23] are

special cases of proposed integrators designed with ω0 = 0, i.e. their magnitude

responses are maximally flat at ω = 0. Additionally, it follows that coefficients of

the proposed integrators can be also calculated using the closed form expression

given by (48).

5. Design examples and comparison with the existing integrators

In this section, proposed linear-phase IIR integrators are compared among

themselves, as well as with the linear- and nearly linear-phase integrators from [1,

6, 10, 15]. Comparison with the existing linear-phase maximally-flat IIR inte-

grators from [23, 8], among which are rectangular, trapezoidal, Simpson’s 1/3,

Simpson’s 3/8 and Boole’s integrators, is unnecessary as these integrators are

just special cases of proposed maximally-flat integrators. The same applies to

the second-order linear-phase integrators from [21], including Tick’s integra-

tor [12, 21], as they can be obtained by the proposed optimal method.

The comparison among integrators is based on several performance metrics:

(average) group delay τ , maximum phase response linearity error in degrees

η =
180

π
max
ω

∣∣∣arg
{
H

(
ejω

)}
−
(
−π

2
− τω

)∣∣∣ , (52)
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and required number of multiplications and delay elements for direct form imple-

mentation. Additionally, maximally-flat integrators are also compared in terms

of the width of the frequency band about frequency ω0, denoted by ∆ω, where

absolute magnitude response error is below 40 dB, while optimal integrators are

compared in terms of weighted Chebyshev norm δ.

We adopt K ≤ 2 in all examples, as, otherwise, amplification of proposed

integrators would be infinite at frequency 2π/K < π. Therefore, εr (ω) can be

treated as the relative magnitude response error, while

20 log10 |ε (ω)| = 20 log10

∣∣∣∣
εr (ω)

ω

∣∣∣∣

becomes absolute magnitude response error in dB. In other words, magnitude

response of optimal linear-phase IIR integrators is minimized in the weighted

Chebyshev sense if K ≤ 2. In considered examples, optimal integrators are

designed using ∆tol = 10−8.

In the first example, we consider the maximally-flat linear-phase IIR inte-

grators obtained for 2 ≤ L ≤ 8, K ≤ 2, and ω0 ∈ {0, 0.45π, 0.6π, 0.75π}. From

the results given in Table 3 and Figs. 2 and 3, it follows that even-order integra-

tors with non-integer delays (K = 1, L odd) outperform odd-order integrators

of orders higher by one, which is somewhat expected as magnitude response

of type II transfer function B (z) equals 0 at Nyquist frequency, regardless its

coefficients values, Fig. 2. Additionally, mentioned even-order integrators also

outperform the even-order integer delay integrators (K = 2, L even) that in-

herently have infinite amplification at Nyquist frequency, Fig. 3. On the other

hand, the even-order integrators with integer delays outperform the odd-order

integrators of orders higher by one, but their applicability is limited to the cases

when spectrum of input signal does not contain high frequency components.

From Table 3 it can be also concluded that with the increase of ω0, the width

of the frequency band where absolute magnitude response error is below 40 dB,

∆ω, decreases.

In the second example, optimal linear-phase IIR integrators are designed

for 2 ≤ L ≤ 8, K ≤ 2, ωp1
= 0, and various ωp2

. Initial solutions were
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Table 3: Example 1, maximally-flat method: design results
ω0 = 0 ω0 = 0.45π ω0 = 0.6π ω0 = 0.75π

L K mult.(delays) τ ∆ω/π ∆ω/π ∆ω/π ∆ω/π
2 1 1(1) 0 0.038 0.03 0.023 0.015
3 1 2(2) 0.5 0.477 0.428 0.343 0.259
4 1 2(3) 1 0.280 0.172 0.120 0.073
5 1 3(4) 1.5 0.636 0.638 0.480 0.330
6 1 3(5) 2 0.417 0.301 0.200 0.120
7 1 4(6) 2.5 0.717 0.751 0.547 0.358
8 1 4(7) 3 0.499 0.397 0.259 0.153
3 2 2(2) 0 0.366 0.283 0.202 0.126
5 2 3(4) 1 0.523 0.491 0.336 0.202
7 2 4(6) 2 0.603 0.616 0.411 0.240

0 0.2 0.45 0.6 0.8 1
0

1/π

1

2

3

4

ω/π

(A)
∣∣H (

ejω
)∣∣

L = 5, ω0 = 0

L = 6, ω0 = 0

L = 5, ω0 = 0.45π

L = 6, ω0 = 0.45π

0 0.2 0.45 0.6 0.8 1
−120

−80

−40

−20 log10 π

0

ω/π

(B) 20 log10 |ε (ω)|, dB

Figure 2: Example 1, K = 1. (A) Magnitude responses, and (B) absolute magnitude response
error functions in dB.

obtained using α = 1.1π/ωp2
, and proposed exchange algorithm converged to

the solution in no more than 5 iterations. From the design results given in

Tab. 4 and Fig. 4, conclusions similar to those from the previous example can

be drawn. Namely, even-order integrators with non-integer delays outperform

both odd- and even-order integrators with integer group delays, while even-order

integrators with integer delay outperform odd-order ones. Furthermore, with

the increase of ωp2
, δ also increases, and K = 2 cannot be used if ωp2

= π, due

to the infinite amplification at Nyquist frequency. Results given in Table 4 also
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Figure 3: Example 1, L = 3. (A) Magnitude responses, and (B) absolute magnitude response
error functions in dB.

suggests that with the increase of ωp2
, δ increases, while odd-order integrators

with integer group delays have absolute magnitude response error at Nyquist

frequency equal to −20 log10 π = −9.94 dB, which is expected since type II FIR

filter B (z) exhibits a zero at z = ejπ.

Table 4: Example 2, optimal method, ωp1
= 0: design results

ωp2
= π/4 ωp2

= π/2 ωp2
= 3π/4 ωp2

= π
L K mult.(delays) τ δ, dB δ, dB δ, dB δ, dB
2 1 1(1) 0 −23.59 −17.29 −13.26 −9.94
3 1 2(2) 0.5 −68.74 −50.09 −38.48 −29.38
4 1 2(3) 1 −54.27 −34.96 −21.96 −9.94
5 1 3(4) 1.5 −102.62 −71.36 −51.62 −35.56
6 1 3(5) 2 −83.98 −51.95 −30.52 −9.94
7 1 4(6) 2.5 −134.68 −90.75 −62.76 −39.67
8 1 4(7) 3 −113.24 −68.47 −38.70 −9.94
3 2 2(2) 0 −62.97 −43.36 −29.55
5 2 3(4) 1 −97.49 −65.18 −42.85
7 2 4(6) 2 −129.81 −84.78 −54

In the third example, odd-length FIR maximally-flat integrators for midband

frequencies [15] are compared to the proposed maximally flat integrators whose

orders are lower by one and K = 1. In this way, both FIR integrators [15] and

their IIR counterparts have integer group delays, and require the same number
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Figure 4: Example 2, ωp1
= 0, ωp2

= π/2. Absolute magnitude response errors in dB of the
proposed optimal linear-phase IIR integrators obtained for L = 3, K = 1 (solid line), L = 4,
K = 1 (dashed line), L = 3, K = 2 (dotted line).

of multiplications for direct form implementation. Widths of the frequency band

where absolute magnitude response error is below 40 dB, i.e. ∆ω, as functions

of ω0, for two lengths of FIR integrators [15] and ω0 ∈ [0.2π, 0.8π], are shown

in Fig. 5(A), while absolute magnitude response error functions of several pro-

posed integrators and their FIR counterparts [15] are presented in Fig. 5(B).

General conclusion is that proposed maximally-flat IIR integrators are signifi-

cantly better compared to FIR counterparts [15] for low ω0. On the other hand,

values of ∆ω become comparable as ω0 increases. However, compared to the

FIR counterparts [15], proposed integrators have group delay values lower by

one.

In the fourth example, proposed optimal linear-phase integrators are com-

pared to the FIR compensator-based integrators from [2]. It shows that these

integrators can be obtained by modification of the optimal method by adopting

weighting function W (ω) = Kω sinc (Kω/2) in the frequency range of interest
[
0, ωp2

]
. Results of comparison between two optimal fourth-order integrators
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Figure 5: Example 3, K = 1. (A) ∆ω as function of ω0, for ω0 ∈ [0.2π, 0.8π], and (B) absolute
magnitude response error functions in dB of the proposed maximally-flat IIR integrators
obtained for L = 6, and their FIR counterparts [15] of lengths 7.

designed using K = 1(2), ωp1
= 0 and ωp2

= 3π/4,

H1 (z) =
−0.0076

(
1 + z−4

)
+ 0.0662

(
z−1 + z−3

)
+ 0.8828z−2

1− z−1
, (53)

H2 (z) =
−0.0297

(
1 + z−4

)
+ 0.4244

(
z−1 + z−3

)
+ 1.2106z−2

1− z−2
, (54)

and corresponding integrators from [2]

H
(1)
Abed (z) =

−0.0085
(
1 + z−4

)
+ 0.0672

(
z−1 + z−3

)
+ 0.8827z−2

1− z−1
, (55)

H
(2)
Abed (z) =

−0.0298
(
1 + z−4

)
+ 0.4240

(
z−1 + z−3

)
+ 1.2116z−2

1− z−2
, (56)

are summarized in Table 5, while their magnitude response error functions are

shown in Fig. 6. Obviously, while requiring the same number of multiplications

and delay elements, proposed integrators outperform existing ones from [2] in

terms of minimum absolute magnitude response error.

As the fifth example, second-order integrator from [6]

HAli (z) =
0.3366

(
1 + z−2

)
+ 1.3268z−1

1− z−2
, (57)
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Figure 6: Example 4, L = 5, ωp1
= 0, ωp2

= 3π/4. Absolute magnitude response errors in
dB of optimal and linear-phase integrators from [2].

designed to integrate the input signal limited to the digital frequency range of

[π/128, 3π/16], is compared to the proposed optimal IIR integrator designed

using L = 3, K = 2, ωp1
= π/128, and ωp2

= 3π/16,

H3 (z) =
0.3364

(
1 + z−2

)
+ 1.3273z−1

1− z−2
. (58)

Results of the comparison are given in Table 5. Both integrators have the group

delay equal to 1, and require two multiplications and two delay elements. On

the other hand, the proposed integrator outperforms the existing one in terms of

minimum absolute magnitude response error in dB (−71.06 vs. −69.29), which

is expected result, as the absolute magnitude response error of the proposed

optimal integrators is minimized in the Chebyshev sense.

In the sixth example, second-order nearly linear-phase IIR integrator from [10]

HGarg (z) = 0.05578
1 + 15.5885z−1 + 8.4692z−2

1− 0.5361z−1 − 0.4639z−2
(59)

is compared to two optimal integrators designed using L = 5(7), K = 1, ωp1
=
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0(0.22π), and ωp2
= π,

H4 (z) =
−0.0177

(
1 + z−4

)
+ 0.0825

(
z−1 + z−3

)
+ 0.8704z−2

1− z−1
, (60)

H5 (z) =




0.0149

(
1 + z−6

)
− 0.0138

(
z−1 + z−5

)

+0.0828
(
z−2 + z−4

)
+ 0.8787z−3





1− z−1
. (61)

Results of comparison are summarized in Table 5, while phase response linearity

error of existing integrator from [10] and absolute magnitude response error

functions are shown in Figs. 7(A) and 7(B), respectively. Obviously, due to

the linear-phase restriction and a pole placed at z = ej0, proposed competing

integrators are of higher orders (and consequently with higher group delays),

however, they require less multiplications for direct form implementation. In

Fig. 7(B) it can be seen that curve of the sixth-order integrator magnitude

response error function is below that of existing integrator from [10], almost up

to the Nyquist frequency.

Table 5: Examples 4, 5, 6, and 7: design results.
mult.(delays) τ η, deg. δ, dB |ε (π)|, dB

H
(1)
Abed (z) 3(4) 1.5 0 −47.55
H1 (z) 3(4) 1.5 0 −51.62

H
(2)
Abed (z) 3(4) 1 0 −41.60
H2 (z) 3(4) 1 0 −42.85
HAli (z) 2(2) 1 0 −69.29
H3 (z) 2(2) 1 0 −70.06

HGarg (z) 5(2) 0.5 5.67 −88
H4 (z) 3(4) 1.5 0 −35.56 −35.56
H5 (z) 4(6) 2.5 0 −40.38 −40.38

HAbab (z) 5(2) 0.5 4.83 −35.03
H6 (z) 4(6) 2.5 0 −86.23 −25.82

Finally, in the seventh example, we consider the second-order nearly linear-

phase IIR integrator from [1]

HAbab (z) =
0.098 + 1.5024z−1 + 0.6582z−2

1.6844− 1.1103z−1 − 0.5741z−2
, (62)

and compare it with two optimal integrators designed using L = 5(7), K = 1,
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Figure 7: Example 6, K = 1, ωp2
= π. (A) Phase response linearity error of HGarg (z), and

(B) absolute magnitude response error functions in dB.

ωp1
= 0 (0.085π), and ωp2

= π(0.55π), i.e. with H4 (z) and

H6 (z) =




0.001

(
1 + z−6

)
− 0.0077

(
z−1 + z−5

)

+0.0643
(
z−2 + z−4

)
+ 0.8849z−3





1− z−1
. (63)

Phase response linearity error of integrator from [1], and absolute magnitude

response error functions of all considered integrators are shown in Figs. 8(A)

and 8(B), while results of comparison are given in Table 5. From Table 5 and

Fig. 8(B) it can be concluded that Chebyshev norm of the proposed optimal

fourth-order integrator is lower than that of the existing nearly linear-phase in-

tegrator [1], while the opposite is true for the magnitude response error function

values over almost the entire frequency range. On the other hand, magnitude

response error function of the proposed sixth-order optimal integrator H6 (z) is

below that of the existing integrator [1] up to 0.58π. Regarding the computa-

tional complexity of considered integrators, the orders (i.e. numbers of required

delay elements) of the linear-phase IIR integrators are higher compared to the

existing nearly linear-phase IIR integrator [1], while required number of multi-
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Figure 8: Example 7. (A) Phase response linearity error of HAbab (z), and (B) absolute
magnitude response error functions in dB.

plications is lower due to the coefficients symmetry.

6. Conclusion

In this paper, starting from the frequency response of the linear-phase IIR

integrator, two design methods are proposed. While integrators obtained using

the noniterative maximally-flat method (where coefficients can be obtained as a

solution to a system of linear equations) are suitable for processing narrowband

signals, true optimality (in the Chebyshev sense) is achieved by utilization of the

iterative optimal design method which typically converges in a few iterations.

Furthermore, existing integer-order linear-phase IIR integrators [23, 8], among

which are the well-known rectangular, trapezoidal, Simpson 1/3, Simpson 3/8,

and Boole’s integrators, are shown to be maximally flat at ω = 0, i.e. just a

special cases of the proposed maximally-flat integrators. The similar conclusion

can be drawn for the second-order integrators from [21], including the well-

known Tick’s integrator [12], as they can be obtained using the proposed optimal

method.
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Coefficients of the proposed maximally-flat integrators, either their exact

values if ω0 = 0 or closed-form expressions if ω0 ̸= 0, are tabulated for various

orders to facilitate filter designers. Results of comparison between proposed and

existing linear-phase integrators show that proposed maximally-flat integrators

can serve as an effective alternative to the FIR midband integrators. Addition-

ally, the proposed optimal integrators outperform those from [6], which can be

obtained as the initial solution in the proposed exchange algorithm. Finally,

compared to the nearly linear-phase IIR integrators, the proposed integrators,

due to the linear-phase restriction and a pole placed at z = ej0 = 1, have to be

of higher orders, i.e. their group delays are higher. On the other hand, they

require fewer multiplications for realization. One possible direction of the future

research is the utilization of the proposed linear-phase integrators in practical

signal processing applications.
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