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1. INTRODUCTION

With the advancement of materials and pro-
duction technologies in recent years, laminated 
composites have increased their application in ad-
vanced, modern engineering structures. Laminated 
composites made of advanced fibre-reinforced ma-
terials are considered as the primary materials for 
future generations of aircraft and marine structures. 
Their indispensable application will certainly be 
reflected in both, biomedicine and electronics, and 
they are also already widely used in construction. 
Laminated composite shells/panels exhibit com-
plexity due to nonlinearity and anisotropy. In prac-
tical problems, such structures are often subjected 
to different types of in-plane loads, which requires 
knowledge of their stability behaviour. Considering 
the above, the assessment of the buckling load is 
very important.

Given that in practical situations laminated 
structures are exposed to different loads, with anisot-
ropy and nonlinearity, they have become the subject 
of interest of many researchers.

The authors of paper [1] were dedicated 
to finite elements through linear analysis, while 
monograph [2] focuses on non-linear analysis. 
The researchers of paper [3] dealt with buckling of 
laminated square plates and plates made of func-
tionally graded materials. They presented calcu-
lations in the case of plates subjected to uniaxial 
compression. In the article [4], laminated compos-
ite plates were analysed using higher-order shear 
deformation theory to predict deflections and 
stresses, while in [5], a higher-order shear defor-
mation theory is used to analyse laminated aniso-
tropic composite plates for deflections, stresses, 
natural frequencies and buckling loads. The sub-
ject of the paper [6] is the buckling of rectangular 
layered plates. The effects of plate aspect ratio, 
lamination scheme, number of layers and material 
properties on the critical loads are studied. In [7] 
was analysed buckling of composite plates using 
shear deformable finite elements. [8] in addition 
to buckling, also analysed vibration of laminated 
composite plates using various plate theories. The 
attention of the authors [9] is also directed towards 
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the buckling of laminated plates, but with a vari-
ation of the boundary conditions. In addition to 
buckling, many authors also dealt with bending 
of composite plates as in article [10]. Reference 
[11] shows the uniaxial and biaxial buckling of 
rectangular plates through the application of the 
new theory of trigonometric shear and normal de-
formation. The widely known Mindlin theory is 
presented in the paper [12], while a much earlier 
research and theory that precedes the above is pre-
sented in the paper [13]. The stability of multi-lay-
ered plates was investigated in [14]. In paper [15], 
the authors dealt with the buckling of unsymmet-
rically laminated plates, emphasizing the impor-
tance of theories that include shear deformations. 
Fibre-reinforced plastic composites are used in 
many light constructions, which additionally mo-
tivated the authors to deal with this topic. With 
the help of another researcher, the authors of the 
previously published article analysed the buck-
ling of orthotropic laminate plates under uniaxial 
compression using third-order shear deformation 
theory [16]. The work produced good results in 
comparison with the results available so far. The 
great advantage of this approach is its applicabili-
ty regardless of the plate thickness, and the speed 
of calculation. [17] considered orthotropic lami-
nate plates under the influence of uniaxial load-
ing. A method for determining the buckling load 
was developed within Reddy’s third-order shear 
deformation theory. The plate is simply-supported 
with additional rotational restraints at the unload-
ed edges. The approach is simple, computationa-
lly very efficient and shows good agreement with 
available solutions. The authors of the paper [18] 
analysed the rectangular Mindlin plates consisting 
of laminated composites with symmetrical layers, 
or with isotropic materials. Axial compression was 
also considered here, and the verification of the re-
sults was done by comparing with exact solutions 
and/or solutions obtained with high-fidelity finite 
elements. [19] presents a highly efficient approx-

imate computer model that offers a valuable tool 
for the preliminary design of lightweight struc-
tures that use advanced materials and that can be 
deformed by shearing. In paper [20] an approach 
that is effective regardless of plate thickness is 
presented, and paper [21] considers the buckling 
and post-buckling behaviour of a layered compo-
site shell in a combination of temperature loading 
and applied mechanical loads. The presented nu-
merical results are based on higher-order shear de-
formation theory.

2. BUCKLING OF LAMINATED PLATE

In this section, analyses of a square layered 
plate ( )a a×  with the following material characte-
ristics were carried out:

(E – Young’s modulus, G – shear modulus, ν – Poi-
sson’s ratio).

The geometric characteristics of the plate with 
equal thickness of all layers are adopted as:

Figure 1 shows the laminate square plate with 
N layers.

Figure 1. Square layered plate 

Boundary conditions for the initially analysed 
model presenting simply-supported plates (SSSS) 
are defined in Table 1.
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Boundary conditions for the initially analysed model presenting simply-supported plates (SSSS) are defined 
in Table 1. 
Table 1. Boundary conditions, SSSS laminated square plate [3] 

Boundary 
conditions Face y = 0 Face y = a Face x = 0 Face x = a 

SSSS 0, 0yw = =  0, 0yv w = = =  0, 0xw = =  0, 0xu w = = =  
 

2.1 Ratio variation (E1/E2) 

Table 1 shows the results of the normalized critical load of simply-supported plates (SSSS) of the 
aforementioned geometric characteristics, but with different E1/E2 ratios. The analysis was carried out for 

Boundary 
conditions Face y = 0 Face y = a Face x = 0 Face x = a

SSSS 0, 0xu w θ= = =0, 0yw θ= = 0, 0yv w θ= = = 0, 0xw θ= =

Table 1. Boundary conditions, SSSS laminated square plate [3]
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2.1 Ratio variation (E1/E2)

Table 1 shows the results of the normalized 
critical load of simply-supported plates (SSSS) of 
the aforementioned geometric characteristics, but 
with different E1/E2 ratios. The analysis was carried 
out for plates with a symmetrical arrangement of la-
yers (3 and 5 layers) within the realized thickness of 
the plate. Different types of lamination, as well as 
the normalized load, are shown in Table 2. Pre-pro-
cessing and post-processing of FEA models were 
performed in the Simcentar Femap software package 
with a defined mesh size 10 10× . Structural analysis 
was conducted using NX Nastran software, which 
operates based on the finite element method.

Table 2. Normalized critical load of  
a simply-supported laminated plate

1 2/E E

Lamination 
scheme Source 20 30 40

Present 14.862 18.811 21.999
[10] 15.215 20.428 24.977
[11] 15.003 19.002 22.330
[14] 15.019 19.304 22.880

HSDT 15.300 19.675 23.339
FSDT 14.985 19.027 22.315
CPT 19.712 27.936 36.160

Present 15.678 20.345 24.293
[10] 16.234 21.435 25.976
[11] 15.828 20.643 24.756
[14] 15.653 20.466 24.593

HSDT 15.783 20.578 24.676
FSDT 15.736 20.485 24.547
CPT 19.712 27.936 36.160

HSDT – Higher-order shear deformation theory (Reddy, 
1984), FSDT – First order shear deformation theory 
(Mindlin, 1951), CPT – The classical plate theory (Kirch-
hoff, 1850)

Normalization was performed according to 
the following expression:

 (1)
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The presented results are in good agreement with the already available data in the mentioned articles. 
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the CCCC plate are shown in Table 5. 

Different types of lamination schemes were considered [3]:  

Symmetric cross-ply SYCP1  0 / 90 / 90 / 0      
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The presented results are in good agreement 
with the already available data in the mentioned arti-
cles. In addition to the good agreement of the results, 
it is noticeable that the highest load can be presented 
in the case of E1/E2 = 40, and in the following, only 
the plates with this defined ratio will be additionally 
processed.

2.2 Square plates with different layer arrange-
ments and different boundary conditions

As it was said at the end of the previous sub-
section, the analysis will be directed towards plates 
with the ratio E1/E2 = 40. The normalized critical 
load is shown in Table 3 in the case of a simply-sup-
ported plate (SSSS), while in Table 4 is presented in 
the case of all edges clamped (CCCC). The bound-
ary conditions for the CCCC plate are shown in Ta-
ble 5.

Different types of lamination schemes were 
considered [3]: 

Symmetric cross-ply 
SYCP1 [ ]0 / 90 / 90 / 0° ° ° °  

Symmetric cross-ply 
SYCP2 [ ]0 / 90 / 0 / 90 / 0° ° ° ° °

Antisymmetric cross-
ply ASCP [ ]0 / 90 / 0 / 90° ° ° °

Symmetric angle-ply 
SYAP [ ]45 / 45 / 45 / 45° − ° − ° °

Antisymmetric cross-
ply (ASAP) [ ]30 / 30 / 30 / 30° − ° ° − °

Unsymmetric cross-ply [ ]0 /15 / 30 / 45° ° ° °
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Further analysis was conducted for the ASAP 
case and for the SYCP2 case.

2.3 Changing the direction of the load

For the ASAP and SYCP2 cases, an analysis 
was carried out in terms of load action in the y direc-
tion as well. Normalized critical values   are shown in 
Table 6.

3. CONCLUSIONS

The results shown in the tables reflect a rela-
tively good agreement with the results obtained in 
the mentioned papers.

Initially, the change in ratio (E1/E2) was ana-
lysed. The variants of the ratio were 20, 30 and 40. 
The solutions, in the form of normalized critical load 
that acting in the direction of the x-axis, indicate that 
at the highest analysed ratio E1/E2 = 40, the plate 
achieves the best bearing capacity. 

Different boundary conditions, as well as 
diffe rent orientations of the layers, were then further 
analysed. The normalized values   of the critical load 
are shown in Tables 3 and 4. The lowest normalized 
critical load was obtained in the case of non-symmet-
rical distribution of UNSYM scheme for both, SSSS 
and CCCC. In the cases of the SSSS plate, the high-
est critical load appeared in the case of the ASAP 

Symmetric Antisymmetric Unsymmetric
SYCP1 SYAP ASCP ASAP UNSYM

crN

23.18(*) 27.49(*) 21.98(*) 31.29(*) 15.80(*)

23.34 [5] 24.99 [7] 22.58 [8] 31.60 [6] -
23.31 [3] 25.74 [3] 22.66 [3] 31.31 [3] 14.64 [3]

Symmetric Antisymmetric Unsymmetric
SYCP2 SYAP ASCP ASAP UNSYM

crN

41.46(*) 30.93(*) 31.07(*) 39.66(*) 23.21(*)

41.30 [6] 31.08 [5]  - 39.90 [6] -
42.58 [3] 30.38 [3] 37.10 [3] 40.15 [3] 24.46 [3]

Boundary 
conditions Face y = 0 Face y = a Face x = 0 Face x = a

CCCC 0, 0x yw θ θ= = = 0, 0, 0, 0x yv w θ θ= = = = 0, 0x yw θ θ= = = 0, 0x yu w θ θ= = = =

Table 3. Normalized critical load of a simply-supported laminated plate

Table 4. Normalized critical load of clamped plate

Table 5. Boundary conditions, CCCC laminate square plate [3]

(*) Present

(*) Present

ASAP SYCP2
SSSS CCCC SSSS CCCC

x-axis y-axis x-axis y-axis x-axis y-axis x-axis y-axis

crN
31.29(*) 22.02(*) 39.66(*) 24.53(*) 24.29(*) 19.96(*) 41.46(*) 25.664 (*)

31.60 [6] 21.60 [6] 39.90 [6] 24.60 [6] 24.40 [6] 22.50 [6] 41.30 [6] 32.30 [6]

Table 6. Normalized critical load

(*) Present
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scheme, with a normalized load of 31.29. In the case 
of the CCCC plate, the highest critical load appeared 
in the case of the SYCP2 scheme, with a normalized 
load of 41.46.  For these reasons, further analysis 
was performed on such lamination schemes.

Table 6 shows the normalized critical load in 
the case of simply-supported and clamped plates at 
ASAP and SYCP2 orientations. From the compar-
isons shown, it can be concluded that in all cases 
the bearing capacity is better if the load acts in the 
direction of the x-axis. For simply-supported plates, 
according to the results, the better choice of lamina-
tion scheme would be ASAP, while in the case of a 
clamped plate, the better choice would be SYCP2.
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ANALIZA IZVIJANJA SLOJEVITIH KOMPOZITNIH PLOČA

Sažetak: Ovaj rad se bavi laminatnim pločama podvrgnutim jednoosnoj kompresiji. Razmatraju se 
efekti sheme laminacije i svojstava materijala na kritična opterećenja, kao i varijacije graničnih uslova i 
pravca djelovanja opterećenja. Analiza izvijanja sprovedena je primjenom metoda konačnih elemenata 
kroz softverski paket Simcenter Femap. Izvršeno je poređenje dobijenih rezultata sa već dostupnim 
rezultatima.
Ključne riječi: izvijanje, laminatne ploče, kompozitni materijali.
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