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Abstract

Failure Mode and Effects Analysis (FMEA) is a proactive management technique widely
used to improve the reliability of products and processes across various business sectors.
Due to rapid changes stemming from uncertain environments, numerous studies have
proposed different approaches to enhance the effectiveness of the FMEA method. However,
there is a lack of systematic literature reviews and classification of research on this topic.
The purpose of this paper is to systematically review the literature on the integration of
FMEA with Multi-Attribute Decision-Making (MADM) theories and various mathematical
models. This study analyses a total of 68 papers published between 2015 and 2024, selected
from 51 peer-reviewed journals indexed in Scopus and/or Web of Science. Furthermore,
a bibliometric analysis was conducted based on the frequency of different mathematical
theories used to model existing uncertainties, methods for determining the weighting
vectors of risk factors (RFs), the use of MADM theories extended with uncertain numbers
for weighting RFs and prioritizing identified failure modes, publication years, journals,
and application domains. This research aims to support both researchers and practitioners
in effectively adopting uncertain MADM methods to address the limitations of traditional
FMEA and provide insight into the current state of the art in this field.

Keywords: Failure Mode and Effect Analysis; uncertain environments; Multi-Attribute
Decision-Making; literature review

MSC: 90B25; 90B50; 03E72

1. Introduction
As customer requirements evolve rapidly and continuously, maintaining competitive-

ness has become a crucial management objective for industrial companies. Based on on-site
data from industry practitioners, it can be inferred that failures occurring during production
constitute the primary causes leading to either non-fulfilment or partial fulfilment of this
business objective. Numerous well-established methods can be found in the literature
to measure and analyse failures within manufacturing processes, aiming to eliminate or
reduce their likelihood and associated safety risks. Examples include Fault Tree Analysis
(FTA), Failure Mode and Effects Analysis (FMEA), Root Cause Analysis (RCA), and Event
Tree Analysis (ETA) [1,2].

In practice, the most commonly used method for identifying and prioritizing known
or potential failures before they occur is FMEA. This method was initially introduced
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in the aerospace industry during the 1960s and was applied to the naval aircraft flight
control system at Grumman Aircraft Corporation [3]. FMEA is particularly prevalent in
the automotive industry, as it is mandated by the IATF 16949 standard [4]. In companies
within the automotive industry, the FMEA analysis is carried out by the FMEA team [5].
Also, FMEA has been widely adopted as a powerful tool for risk assessment and reliability
analysis across various industries [6].

In conventional FMEA, it is assumed that identified failures can be evaluated based on
three risk factors (RFs), severity, occurrence of failure realization, and difficulty of failure
detection, using a standardized measurement scale defined within the interval [1–10]. The
risk priority number (RPN) is calculated as the product of these three RFs—occurrence (O),
severity (S), and detection (D)—where O and S represent the likelihood and severity of
a failure, respectively, and D denotes the probability that the failure will not be detected
before reaching the customer [7]. Failures are then ranked according to their RPN values.
Numerous researchers have described the application of the FMEA method across various
industrial enterprises [8].

Numerous studies highlight the existing limitations of conventional FMEA. Several
significant shortcomings of the FMEA approach should be emphasized.

Many papers can be found advocating that there are existing disadvantages of conven-
tional FMEA. Some of the important shortcomings of FMEA should be pointed out [9,10].

• The relative importance of the considered RFs, as well as their specific aspects, is not
equal.

• Natural language is often employed to assess the relative importance and values of
the RFs in order to express the subjective perceptions of decision makers (DMs). It
is well known that natural language expressions may lack clear and well-defined
meanings. Therefore, using precise numerical values for quantification is not always
appropriate. The development of mathematical theories has allowed predefined
linguistic expressions to be represented in a fairly quantitative manner. In the analyzed
literature, linguistic terms are modeled by (1) fuzzy set theory [11–18], (2) rough set
theory [19], (3) cloud theory [20], and (4) Fuzzy Belief Structure (FBS) [21,22], among
others.

• Many authors express doubts regarding the reliability of the mathematical formula
used for calculating the RPN. Numerous studies emphasize different approaches
proposed to address the shortcomings of FMEA, including methods that integrate
(1) Multi-Attribute Decision-Making (MADM) techniques combined with fuzzy set
theory [23,24] and rough set theory [25,26], as well as (2) methodological modifications
defined in the latest FMEA manual for the automotive industry, published in 2019,
titled the FEMA Handbook [27]. Consequently, improving the efficiency and effective-
ness of FMEA has attracted increasing attention from both academic and practical
domains. Many authors emphasize that the shortcomings of FMEA may negatively
impact its reliability and consistency.

A substantial number of studies can be found in the literature where various MADM
methods have been applied for the evaluation and ranking of different items under un-
certainty [28] across diverse domains such as engineering, technology, and management
science. In recent decades, MADM approaches extended with mathematical theories for
modeling uncertainty have received considerable attention from both practitioners and
researchers. This paper aims to document the growing interest in the application of MADM
under uncertainty and to provide a state-of-the-art review of the literature regarding their
applications and methodologies. In [29], a classification of MADM methods is proposed,
and the analysis in this paper is based on this classification.
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The reviewed papers are classified based on the year of publication, application
domains, and the MADM approaches integrated with mathematical theories for modeling
uncertainty. In this study, the literature published between 2015 and 2024, related to
the descriptors of FMEA, MADM, and mathematical theories, has been comprehensively
reviewed using academic databases of Scopus and Web of Science. A total of 68 papers
published across 51 journals were analyzed in the scope of this research.

Nowadays, the FMEA framework for identifying and analyzing failure modes, com-
bined with MADM methods extended by the use of uncertain numbers, is applied to
problems existing in various economic sectors. It should be noted that this combination
of methods is mostly used in different types of industries, such as manufacturing, energy
and chemical, automotive, etc. Researchers and practitioners consider the application of
this approach to be suitable for improving the reliability of products and processes in
other economic sectors as well, such as project management, waste management, transport,
and others.

The research gap addressed by this study is that there is no existing review in the liter-
ature covering papers where FMEA analysis is combined with MADM methods extended
by various theories for modeling uncertainty, specifically within the last 10 years.

The present paper aims to address the following research questions. (1) Which types
of uncertain numbers have been frequently used for modeling the relative importance and
values of RFs? (2) Which MADM methods have been combined with FMEA, and in which
research domains have they been applied? (3) What is the publication trend of papers
integrating FMEA and MADM under uncertainty?

The rest of the paper is organized as follows. Section 2 introduces the research
methodology and the review process employed in this study. Section 3 analyzes the selected
papers focusing on the modeling of uncertainty in the relative importance and values of
RFs. Section 4 presents MADM methods extended with uncertain data in combination
with FMEA, which have been applied for determining the weights of RFs and prioritizing
failures. Section 5 discusses the key findings based on the reviewed literature. Finally,
Section 6 provides conclusions and directions for future research.

2. Research Methodology
A systematic review of the MADM methods under uncertain environments was

conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) protocol (see Figure 1), as was performed in the study by [30,31]. This
procedure includes a literature search, selection, and analysis of the papers.

In the present research, a total of 68 papers were considered reliable, as they were
indexed in the Scopus and Web of Science electronic databases. These databases were
selected due to their relevance and wide acceptance within the scientific community. They
index peer-reviewed journals that have undergone rigorous scientific evaluation prior
to being included. Therefore, such journals can be considered reliable sources. Another
criterion for selecting papers was that they be written in English.

The reasons why the Scopus and Web of Science databases were used in this research
can be justified by the following facts:

• These databases include journals and publications from various fields such as engi-
neering, medicine, natural sciences, and others. In other words, they are not limited to
a single scientific discipline, unlike some other databases.

• They represent the most prominent databases of scientific journals and publications.
All journals indexed in these databases must be peer-reviewed and undergo a rigorous
quality control process.
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• All journals indexed in these databases have a review process, which serves as a guar-
antee that the paper has undergone an initial check and that the research is validated.

• They contain adequate and accurate data about authors, affiliations, publications,
and journals.

 

Figure 1. Search and sorting methodology of the publications.

As can be seen in Figure 1, the process of selecting and analyzing publications was
carried out through six main steps. In the first step, the search was conducted in the two
mentioned databases, Scopus and Web of Science. The search was filtered for the period
from 2015 to 2024. The following keywords were used during the search:

• Fuzzy FMEA;
• Fuzzy FMEA MADM;
• FMEA + name of each individual MADM method;
• FMEA + name of each individual approach for describing uncertainty.

The search was conducted each time up to a maximum of the twentieth page of results,
although often no (relevant) papers were found even after the fifth page. After completing
the search, in the second step, the identified papers were compared. Through all the
presented search methods, a total of 125 papers were found in Scopus and 116 papers in
the Web of Science database, including duplicates. After duplicates were eliminated, a total
of 80 papers were retrieved from the Scopus database and 74 from Web of Science. Among
these, 71 papers overlapped. In the Scopus database, there were 9 papers not found in Web
of Science, while 3 papers appeared only in Web of Science but not in Scopus.

To verify the search in these two databases, a search was also conducted in Google
Scholar in the third step. A total of 96 papers were found, including those published in
non-indexed journals and conferences. All papers found in the Scopus and Web of Science
databases were also found in Google Scholar. This served as an additional verification of
the initial search.

In the fourth step, a final check and selection of the papers to be included in the
analysis was carried out. All papers that did not meet any of the following criteria were
excluded from further analysis.

• The FMEA framework was not applied;
• No approach for modeling uncertainty was used;
• No MADM method was applied, nor the RPN parameter.
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In the fifth step, a final list of 68 publications was compiled. All these papers were
considered in the conducted analysis. The applied MADM approaches, approaches for
modeling uncertainty, and the research application domain, as well as the publications and
authors themselves, were analyzed in the sixth step.

The review included papers published from 2015 up to those published in 2024,
including articles that were available online in the selected databases and had been assigned
a DOI number by December 2024.

3. Modeling of Risk Factors
In this section, the improvement of the analyzed research papers is conducted through

a systematic review. A set of 68 articles published in prestigious journals between 2015
and 2024 was identified. The analysis of RFs, as well as the modeling of their relative
importance and values, is carried out.

3.1. Analysis of Risk Factors and Their Aspects

In 51 (75%) of the analyzed papers, the authors consider that the identified failures can
be adequately evaluated using the RFs defined in conventional FMEA. In [32], the authors
argue that these RFs should be decomposed into sub-risk factors. In [33], the authors
also suggest that RFs should be decomposed, where severity is broken down into safety,
environment, production losses, performance losses, labor cost, and spare cost; detection is
divided into visibility and inspection; and occurrence does not have a hierarchical structure.

Some authors evaluate the alternatives using four RFs (11.76%). The majority of them
introduce Cost as the fourth RF [34–36]. In [37], the authors expand the set of RFs from the
conventional method by including maintenance costs. In [36], the authors introduce the
assumption that all considered RFs are hierarchically structured.

In five articles (7.35%), five RFs are considered. In addition to the RFs defined in
the conventional FMEA method, the following RFs are introduced: range and cost [38];
internal severity of failure to the internal customer and external severity of the failure to the
external customer [39]; and severity with quality, cost, and time [40–42]. In [43], the authors
considered the following RFs: severity time, severity cost, severity quality, occurrence, and
detection.

In one study, the assumption was introduced that alternatives are evaluated based
on six RFs. The first three factors were taken from the FMEA model. The additional RFs
are time, cost, and quality [44], as well as complexity of failure resolution and impact on
business [45].

It should be noted that in conventional FMEA, severity is considered primarily from
the quality perspective and only partially from the safety perspective. For example, in a
large number of the analyzed papers, severity is examined from multiple aspects. In [46],
the authors divided severity into social, economic, and environmental aspects. In [47], the
authors considered severity through the following aspects: product importance, cost, and
quality. In [33], severity is decomposed into the following components: safety, environment,
production losses, performance losses, labor cost, and spare cost. The same authors argued
that the RF referred to as detection has a hierarchical structure, including visible and
inspection. Occurrence is analyzed in the same way as in the conventional FMEA method.

3.2. Modeling of Uncertainties

Due to rapid and continuous changes occurring in the environment, various uncer-
tainties exist in almost all management problems. It can be stated that uncertainty is a key
characteristic of decision-making models. Reasoning without appropriate modeling tools
may lead to inaccurate conclusions [48].
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The development of many mathematical theories, such as the fuzzy set theory, rough
set theory, probability theory, uncertainty theory [49], etc., has enabled verbal phrases to be
quantitatively described in an adequate manner.

In this section, special attention is given to the fuzzy set theory, as it is widely ap-
plied in modeling and handling uncertainties in the relevant literature. In addition, the
application of some other mathematical theories is considered in modeling and process-
ing uncertain data in problems aimed at improving the reliability and effectiveness of
decision-making processes.

3.2.1. Fuzzy Set Theory

The fuzzy set theory was introduced by Zadeh [50]. This theory is designed to model
the vagueness or imprecision of the human cognitive process. The basic characteristics of
fuzzy sets are the membership function, granularity, and domain. The degree of member-
ship typically takes values between 0 and 1. If the membership degree of an element in a
set is zero, that element is completely excluded from the set, whereas if it is equal to one,
the element is fully included.

A fuzzy number is a specific type of fuzzy set in which at least one value in the domain
has a membership degree of 1. Granularity refers to the number of fuzzy numbers assigned
to represent relative importance parameters, their values, and their level of effectiveness.
Lootsma [51] suggested that no more than seven categories should be used. The domain of
fuzzy sets can be defined on different measurement scales.

In real-world problems, uncertainties are often modeled using fuzzy numbers, as they
require significantly less computational effort and complexity compared to fuzzy sets.

Different types of fuzzy membership functions, such as triangular, trapezoidal, and
Gaussian fuzzy numbers, have been employed in modeling the relative importance and
values of RFs. Higher-type fuzzy sets and higher-level fuzzy sets have not yet played a
significant role in practical applications of fuzzy set theory [52].

Type-1 fuzzy numbers (FNs) and the associated fuzzy algebra rules [11,12] are well
suited for representing the linguistic assessments of experts and are widely used in MADM
studies. However, with increasing vagueness and uncertainty in the evaluation information
provided by DMs, type-1 fuzzy sets often become inadequate for handling subjective
assessments of high complexity.

To address this, interval type-2 fuzzy sets (IT2FSs) were introduced by Zadeh [50] as an
extension of the classical fuzzy set concept. IT2FSs provide more accurate and robust results
and offer greater design flexibility than type-1 fuzzy sets [53]. To overcome this, interval
type-2 fuzzy numbers (IT2FNs) have been proposed as a simplified alternative. IT2FNs
reduce computational burden while retaining key advantages. Therefore, introducing
IT2FNs into FMEA and MADM frameworks can significantly enhance the applicability of
these methods in dealing with highly uncertain problems.

An intuitionistic fuzzy theory was proposed by Atanassov and Gargov [54] to describe
cognitive uncertainty and human hesitancy in decision-making. The advantages of using
intuitionistic fuzzy sets (IFSs) include (1) the ability to represent interim stages during the
decision-making process through intuitionistic indices and (2) the possibility of forecasting
both best and worst-case outcomes.

An IFS is defined by three parameters, a membership function, a non-membership
function, and an intuitionistic fuzzy index (or degree of uncertainty), which are all defined
on a finite set. Intuitionistic fuzzy numbers (IFNs) represent special cases of IFSs [55],
and they are defined over the real number line within the range (0,1). In the literature,
two basic forms of IFNs are most commonly used: those with triangular and trapezoidal
membership and non-membership functions. In [56], the authors introduced fuzzy soft
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numbers for representing uncertainty, and this approach has been increasingly applied in
decision-making problems in recent years.

It should be emphasized that based on IFNs, several extensions have been developed:
Pythagorean fuzzy numbers (PFNs), second-order intuitionistic fuzzy numbers [15]; Fer-
matean fuzzy sets (FFNs), third-order intuitionistic fuzzy numbers [17]; q-rung orthopair
fuzzy sets (q-ROFSs), where q > 0; and p,q-rung orthopair fuzzy sets (p,q-ROFSs), where
p > 0 and q > 0.

Many authors consider PFNs to be a novel tool for handling uncertainty and vague
information. Compared with intuitionistic fuzzy sets, certain similarities as well as differ-
ences can be observed. A characteristic of both IFNs and PFNs is that they consider the
membership degree and non-membership degree to describe the fuzzy characteristics of
DMs. In PFNs, the assumption is introduced that the sum of the squares of the membership
degree and non-membership degree is less than or equal to 1. On the other hand, IFSs
only consider the sum of the membership degree and non-membership degree to be less
than or equal to 1. This represents the fundamental difference between PFNs and IFSs.
Therefore, PFNs fully consider the “true psychological” behavior of decision experts, and
PFNs can adapt to more situations and have more practical applications [57]. These sets are
generalized IFSs and are used in some cases where IFSs cannot address uncertainty [38].
PFNs present a more powerful method to resolve the uncertainty of real-world projects [58].

The concept of q-ROFSs was proposed by [59]. These fuzzy sets emerged from IFSs
and PFNs but provide a more extensive range for decision makers to express imprecise and
uncertain data compared to IFSs and PFNs. The interval-valued q-rung orthopair fuzzy
sets (IVq-ROFSs) adopted for modeling uncertainties were introduced by [60] and have
been applied in the relevant literature [36].

The Fermatean fuzzy sets (FFSs) were defined by Senapati and Yager [17]. One of the
most significant elements of FFSs is the introduction of a new independent component:
the degree of non-membership in IFSs. The novel q-ROFS concept, denoted as FFSs, is
established with q = 3. The term “q” is used interchangeably with “level,” referring to
the rung of the complement. FFSs grant decision makers greater autonomy in expressing
their assessments through the articulation of agreement (membership) or disagreement
(non-membership) with viewpoints regarding the current state of a particular subject [61].

The Z-number theory was proposed by Zadeh [18] as a generalized version of uncer-
tainty theory to handle unreliable numbers. This theory takes the concept of reliability into

consideration. A Z-number can be defined as an ordered pair of two fuzzy sets Z = (
∼
A,

∼
B).

The first fuzzy number,
∼
A, is a fuzzy subset of the domain X, and it is considered the

“value” or “assessment.” The second component,
∼
B, is a fuzzy subset of the unit interval

representing the reliability of component
∼
A, and it is considered the “certainty” or “confi-

dence.” The ordered triple (X,
∼
A,

∼
B) is referred to as a Z-valuation, which corresponds to

an assignment statement and is defined as a general constraint on X [62]. This constraint is
known as a probabilistic constraint, representing a random variable X that has a certain
possibility distribution.

The spherical fuzzy sets (SFSs) and neutrosophic sets (NFSs) were introduced in [16]. A
fundamental characteristic of NFSs is their membership functions, which are defined based
on three components called truth-membership, falsity-membership, and indeterminacy-
membership. The sum of the values of these three components lies within the interval
from 0 to 3. The membership functions of neutrosophic sets are defined so that the squared
degrees of each component, separately, can vary between 0 and 1, allowing independent
definition of each parameter within this range [63]. The degrees of membership functions in



Mathematics 2025, 13, 2216 8 of 38

spherical fuzzy sets effectively express decision makers’ awareness and accurately represent
the extent of decision-making information [24].

The concept of picture fuzzy sets presents direct extensions of fuzzy set theory IFSs
developed in [64]. Picture fuzzy sets can be represented by four membership functions:
positive membership degree, neutral membership degree, negative membership degree,
and refusal membership degree. These fuzzy sets may be suitable in situations where
human opinions involve multiple possible responses, such as yes, abstain, no, refusal.

The concept of soft sets was defined as a new mathematical theory for handling
uncertainty by [65]. A soft set is defined as a set characterized by an approximate function
representing a mapping of elements of the universe. This function can be arbitrary, empty,
or non-empty. It should be noted that the parameters and approximate functions are
described by precise numbers. In fuzzy soft sets, parameters are crisp, and approximate
functions are fuzzy subsets of the universe.

Fuzzy Belief Structure (FBS) presents an extension of the Belief Structure (BS) intro-
duced by [21,22]. It can be said that FBS is defined as an extension of ordinal fuzzy sets. In
BS, the linguistic variables of evaluation grades are considered as crisp values. In order to
increase the accuracy of the assessment of ambiguity and vagueness that exist in real-world
problems, [66] introduces FBS. In FBS, evaluation grades deal with fuzziness or vagueness,
while the belief degrees handle incompleteness or ignorance. In fact, an FBS is a combina-
tion of fuzzy set theory and the evidence combination rule of Dempster–Shafer theory and,
therefore, it is a powerful method for dealing with uncertainty [67].

Probabilistic interval-valued hesitant fuzzy sets (PIV-HFSs) were developed from
probabilistic hesitant fuzzy sets (P-HFSs) in [68]. When probability information is provided
by decision makers, interval values are widely used to express evaluation information.
Utilizing PIV-HFSs to express information requires less skill and experience. The main
characteristics of PIV-HFSs are the membership function and hesitant fuzzy element. In the
relevant literature, PIV-HFSs have been applied in [32,69].

3.2.2. Rough Set Theory

Rough set theory was introduced by Pawlak [19]. It can be defined as an effective and
efficient tool to handle imprecision, vagueness, and ambiguous information from DMs.
According to rough set theory, it enables DMs to express true and objective evaluations
without any prior information. Objects are classified into similarity clusters (elementary
sets) by rough set theory. The objects in a cluster may have relationships with the cor-
responding attributes. These similarity clusters are then employed to determine hidden
patterns, as in data mining [70].

The rough number was first proposed in [71], inspired by rough set theory, with
the purpose of handling subjective judgments of customers and determining boundary
intervals. A rough number usually contains a lower limit, an upper limit, and the rough
boundary interval, which depends solely on the original data. Thus, it does not require
any auxiliary information and can better capture experts’ real perceptions and improve the
objectivity of decision-making [26].

Certain researchers advocate combining two or more mathematical areas to determine
quantitative values of treated uncertainties more precisely [25]; for instance, fuzzy set
theory and rough set theory. In [72], the authors considered the problem of the evaluation
and ranking of failures for the oblique multi-petal envelope check valve. According to
the authors, during normal operation, the disc of the check valve remains open to allow
forward flow. When the fluid changes direction, the disc closes under hydraulic pressure to
prevent reverse flow and protect critical equipment from damage. The relative importance
of RFs, as well as their values at the level of identified failures, are described by fuzzy rough
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numbers. The weight vector is determined by applying the proposed Analytic Hierarchy
Process (AHP) with fuzzy rough numbers. The priority of critical equipment protection
from damage is determined using the multi-criteria optimization and compromise solution
(the acronym in Serbian is VIKOR) method with fuzzy rough numbers.

3.2.3. Cloud Theory

The cloud model theory is based on probability theory and fuzzy set theory, which
considers randomness by randomizing the fuzzy membership. This theory was proposed
in [20]. It represents a new approach for reciprocal conversion between qualitative concepts
and quantitative representation based on the interaction between probability theory and fuzzy
mathematics [73]. Uniquely considering randomness and uncertainty, the cloud model is
able to represent qualitative concepts with uncertainty. In this way, distortion and loss of
information in linguistic information processing can be significantly reduced. According to
many authors, the cloud theory has exceptional capability in handling uncertainty.

3.2.4. Other Approaches

The concept of Probabilistic Linguistic Term Set (PLTS) was proposed in [74] by com-
bining linguistic terms and their respective probabilities. PLTS can be defined as a useful
extension of fuzzy sets, which fully expresses the hesitation of DMs as well as the probabil-
ity that the hesitation of DMs occurs. The linguistic terms should be converted into certain
semantic values during the evaluation, and different values should be assigned according
to different usage situations [75]. A new linguistic function was defined in [76], through
which linguistic terms are converted into numerical scales. It should be emphasized that
the fact that the same linguistic terms can express different semantics in different situations
is ignored, which leads to problems of information loss and distortion [77].

Evaluations of different uncertain data using different linguistic term sets bring diffi-
culties in calculating evaluations by fuzzy logic. Linguistic variables obtained by applying
any algebraic rule are converted into elements that are difficult to compare with predefined
linguistic expressions. Furthermore, this approximation will lead to information loss and a
lack of precision in the final results [78]. In order to overcome these deficiencies, based on
symbolic transformation, in [79] an interval 2-tuple linguistic variable (ITLV) composed of
two linguistic terms and two crisp numbers is proposed. The advantages of ITLV are as
follows: decision makers use different linguistic term sets to express their evaluations, and
its computations can be compared without an approximation process [80].

4. Failure Mode and Effect Analysis Integrated with Multi-Attribute
Decision-Making Under Uncertainty

In this section, all analyzed papers are classified according to two criteria: (1) methods
for determining the weights of RFs and (2) methods for prioritizing failure modes. In
Section 4.1, MADM methods, as well as some subjective methods, extended with uncertain
numbers and used for determining the weights of RFs, are analyzed. In Section 4.2, MADM
methods extended with uncertain numbers, which have been used in combination with the
FMEA framework for prioritizing failure modes, are analyzed. The order of these MADM
methods is based on the classification provided in studies [29,81].

It makes sense to apply conventional FMEA if it is assumed that RFs have equal
weights and if it is possible to assess the RFs using the standard evaluation prescribed
in the conventional FMEA method. However, best practice experience shows that in
companies operating across different economic sectors, it is more realistic to assume that
RFs do not have equal weights. Due to rapid and continuous changes occurring in an
uncertain business environment, the values of RFs cannot be described using precise
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numerical values. Based on these facts, it follows that the assessment and ranking of failure
modes should be based on the application of FMEA combined with MADM methods
extended by uncertain numbers, especially in companies that operate under uncertainty
and belong to various economic sectors.

4.1. Determination of Weight Vectors

Generally, the weights of RFs can be determined using subjective and objective meth-
ods. In this research, special attention is focused on MADM methods with uncertain data
that have been used in the analyzed papers.

All methods for determining weight vectors can generally be divided into two groups:
subjective and objective methods. It should be emphasized that the accuracy of the solutions
obtained using subjective methods depends entirely on the knowledge and experience of
the decision makers. These methods are easy to understand and apply for practitioners,
which is why they are frequently used in solving real-life problems. On the other hand,
obtaining weight vectors in an exact manner, i.e., using objective methods, requires more
complex calculations and greater expertise from decision makers, but at the same time,
the accuracy of the resulting weights is higher. The following section presents some basic
characteristics of the objective methods analyzed in this paper.

The AHP method is based on the assumption that DMs can more easily assess the
relative importance of attributes when comparing each pair of attributes individually. In the
Best Worst Method (BWM), two matrices are constructed: one for the Best-to-Others and one
for the Worst-to-Others comparisons. The main characteristic of these two MADM methods
is that the input data depend on the knowledge and experience of the DMs. Both methods
include procedures for consistency checking, which makes it possible to assess whether the
errors made by DMs affect the accuracy of the solution. By applying the Decision-Making
and Trial Evaluation Laboratory (DEMATEL) method, in addition to determining the
weight vectors, it is also possible to assess the strength of the interrelationships among RFs.
The weight values of RFs obtained using the Entropy and Criteria Importance Through
Inter-criteria Correlation (CRITIC) methods are not influenced by the subjective opinions
of DMs. However, this statement does not hold in cases where the values in the decision
matrix are described using linguistic terms. It can be said that the main drawback of the
Entropy and CRITIC methods is the absence of a procedure for evaluating how decision
makers’ estimation errors affect the accuracy of the solution.

4.1.1. Analytic Hierarchy Process

AHP was introduced by Saaty in the 1970s. This method is one of the most widely used
MADM techniques for solving various managerial problems, primarily for determining the
weights of attributes. The consistency of the DMs’ assessments is verified by applying the
eigenvalue method [82].

Today, various extensions of the AHP method based on the fuzzy set theory exist.
The extent analysis method [83] is widely used in the literature to address uncertainty
and has been applied in [43,84]. In this method, a fuzzy pairwise comparison matrix is
constructed to evaluate the relative importance of attributes based on the consensus of
DMs [43,84,85]. The authors examined the consistency of the constructed fuzzy pairwise
comparison matrices.

In [85], the authors obtained representative scalars of FNs describing the weights of
RFs by applying a defuzzification procedure. In a large number of studies found in the
literature, this method is used to determine the weights of attributes regardless of the type
of fuzzy numbers used to handle the uncertainty of attribute importance. The weights
vector is provided through the application of this method in [39,86–88].
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The weights vector is determined by the proposed AHP method extended with
Pythagorean Fuzzy Sets (PFSs) in [89]. The aggregation of evaluations of failure modes is
performed using the Fermatean fuzzy weighted average operator by [61], and the weights
are determined by AHP with FFSs.

4.1.2. Ranking-Based Procedure Using Fuzzy Numbers

In some of the analyzed studies [90,91], the relative importance of RFs is expressed
using a fuzzy pairwise comparison matrix, following the FAHP approach. These authors
argue that the determination of the weights vector should be based on a procedure for
comparing fuzzy numbers.

In the analyzed studies, it was assumed that multiple DMs evaluate the relative
importance of each pair of RFs using predefined linguistic variables, which are modeled by
interval type-2 trapezoidal fuzzy numbers (IT2TrFNs). The aggregated value is obtained by
applying the fuzzy arithmetic mean. By applying the proposed procedure, the RF weights
are determined and expressed as crisp values.

4.1.3. Best Worst Method

The BWM was introduced by Rezaei [92]. Many authors suggest that it is much easier
for DMs to assess the relative importance of attributes using the logic behind the BWM
than when using pairwise comparison matrices as in AHP. In [34], the authors determined
the weights vector by applying the conventional BWM.

In the analyzed studies, many authors extended the BWM with FNs and determined
the weights vector using the developed procedure [93] (e.g., [41,94]). It should be noted
that the authors in [94] considered the assessment of the relative importance of RFs as a
fuzzy group decision-making problem. Using a fuzzy weighted averaging operator, the
assessments of the DMs were aggregated into a single evaluation.

Several authors of the analyzed papers extended the BWM with IT2FNs [47,95,96].
In [47,95], it is assumed that multiple DMs evaluate the relative importance of the RFs. The
aggregation of the DMs’ assessments was performed by the fuzzy geometric mean in [95]
and by the fuzzy arithmetic mean in [47]. By applying the proposed procedure [97], a fuzzy
weights vector was determined in both [95,98].

In [47], the authors determined the weight of an RF component denoted as severity.
These authors first transformed the two BWM matrices with IT2FNs into conventional
BWM matrices using a defuzzification procedure [99] and then determined the weights of
the components using the conventional BWM.

Some authors used the BWM for determining the RF weights by extending it with dif-
ferent fuzzy sets: (i) the BWM with SFSs in [100], (ii) the BWM with Z-numbers in [42], and
(iii) the BWM with PLTS in [101]. These authors used the multiple semantics probabilistic
linguistic averaging operator to aggregate the evaluations of the DMs.

4.1.4. Decision-Making and Trial Evaluation Laboratory

The DEMATEL [102] method is one of the widely used methods for determining
attribute weights. The elements of the influence matrices are modeled by IT2TrFNs in [46].
The aggregated values of this matrix are obtained using weighted averaging methods. The
normalized direct-relation matrix is derived by applying a linear normalization procedure.
The total relation matrix with IT2FNs, structural correlation analysis, and weights vector is
provided by following the procedure of conventional DEMATEL combined with type-2
fuzzy algebra rules [13].



Mathematics 2025, 13, 2216 12 of 38

4.1.5. Step-Wise Weight Assessment Ratio Analysis

The Step-Wise Weight Assessment Ratio Analysis (SWARA) approach for assigning
appropriate weights to the attributes was introduced in [103]. Mavi [104] suggests that
various factors, such as incomplete information, qualitative judgments of DMs, inacces-
sible data, and uncertainty, make decision-making challenging in a fuzzy environment.
Therefore, the determination of the weights vector significantly depends on the knowl-
edge and experience of the DMs. The coefficient of an RF for each DM is determined by
(i) applying the weighted averaging operator with PFSs [105] in [38], (ii) following the
conventional SWARA procedure combined with Z algebra rules in [40], and (iii) using
the spherical weighted geometric mean [106] in [41]. The initial and relative weights are
calculated according to the proposed procedure of the conventional SWARA approach,
the (i) Pythagorean fuzzy algebra rules [105] in [38], and (ii) the spherical fuzzy algebra
rules [16] in [41]. In this way, the weights of the RFs are described by precise (crisp) values.
In [40], SWARA with Z-numbers is proposed, and by applying it, a fuzzy weights vector
is obtained.

4.1.6. Entropy Method

Shannon’s entropy (see [107,108]) is a measure of information uncertainty defined
within probability theory. In this way, the uncertainties of DMs evaluating the relative
importance of RFs in the analyzed papers can be adequately expressed. Many authors
argue that this method can be successfully applied to determine the objective weights of
RFs [37,109–111]. The entropy method with triangular fuzzy numbers (TFNs) is applied
in [110]. The authors converted the fuzzy decision matrix into crisp values using the
simple gravity method. Then, the weights vector was determined using the conventional
entropy method.

In [112], the authors introduced the assumption that the relative importance of RFs
was formulated as a fuzzy group decision-making problem. The aggregated values were
obtained using the fuzzy geometric mean and the proposed procedure, respectively. In
the remaining four analyzed papers, the weights vector was determined according to
the procedure proposed in the conventional entropy method. In [109], the evaluations
of DMs were aggregated using the fuzzy number intuitionistic fuzzy geometric opera-
tor. The weights were then derived using the procedure proposed in the conventional
entropy method combined with a distance-based approach. Similarly, in [113], the authors
determined the RF weights using the fuzzy entropy method combined with the interval
intuitionistic fuzzy distance [114]. By applying the similarity degree based on cross-entropy
with interval-valued neutrosophic sets (IVNSs) [115], the weights of RFs were determined
in [111]. The cloud entropy method was proposed and applied in [37].

4.1.7. Subjective Methods

In some papers, the authors determined the RF weights by applying subjective meth-
ods. Many authors [33,73,116–118] assumed that the weights are described by precise
numbers and are mutually equal. Several authors [119–121] defined the RFs by consensus
using predefined linguistic expressions, which were modeled by type-1 fuzzy numbers.
Many authors formulated the evaluation of the relative importance of RFs as a fuzzy group
decision-making problem. The weights of RFs were determined by applying (i) the fuzzy
averaging method [122], (ii) the power average operator method in [90], (iii) a fuzzy geo-
metric mean with IFNs in [123], a fuzzy geometric mean with type-1 fuzzy numbers [45],
(iv) the spherical weighted arithmetic mean operator [16] in [124], (v) the interval-valued
q-rung orthopair fuzzy weighted Maclaurin symmetric mean operator [125] in [36], and
(vi) the Delphi technique with TFNs in [44].
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4.1.8. Other Methods

In many of the analyzed papers, the authors used various proposed methods to de-
termine the weights vector, which are briefly presented below. Many authors assessed
the relative importance of RFs by consensus [56,67,72,113,126–130]. The assessment of
the relative importance of RFs is stated as a fuzzy group decision-making problem in
many papers [75,131–134]. Aggregation was carried out using different operators; for
instance, the intuitionistic fuzzy weighted averaging operator [131,132], the interval-valued
Pythagorean fuzzy priority power weight average operator [133], the 2-tuple weighted
average in [75], and the interval-valued intuitionistic fuzzy weighted averaging [134]. The
weights vector was determined by applying different methods as follows: (i) the normal
distribution technique is adopted to derive these weights [56,132], (ii) the maximization
deviation model [129,130,133,134], (iii) the proposed procedure [75,131], (iv) combining
Fuzzy Analytic Hierarchy Process (FAHP) and Shannon entropy [72,126], (v) combining
the maximum deviation method and AHP [113], (vi) logarithmic fuzzy preference program-
ming [127], (vii) the combination weighting model of game theory, and (viii) a non-linear
programming model [135]. In [69], the authors proposed a new FMEA framework in
combination with hesitant fuzzy aggregation tools and the CRITIC method.

4.2. Determination of Priorities

The MADM methods extended with uncertain numbers represent a branch of op-
erations research that has been extensively used by researchers to overcome one of the
shortcomings defined by [9,10]. As is well known, the implementation of any MADM
method—whether conventional or extended with uncertain data—is carried out through
several steps: (1) construction of the decision matrix, (2) construction of the aggregated
decision matrix, (3) construction of the normalized decision matrix, and (4) application of
the proposed algorithms.

In this section, each of the above-mentioned steps is analyzed separately. The applied
algorithms of MADM methods are analyzed according to the categories given in the
classification of MADM [29,81]. The main characteristics of MADM methods belonging
to the following classes are as follows. (1) Outranking methods are characterized by
comparing the values of each pair of alternatives at the level of each criterion. (2) Distance-
based methods are defined by calculating the distance of each alternative’s value for each
attribute from the maximum and minimum values of the considered attribute. (3) Utility-
based methods are characterized by ranking alternatives based on a utility function, which
is defined differently for each method. (4) For MADM methods classified under the fourth
category (other methods), no general characteristic can be defined.

4.2.1. Decision Matrix Under Uncertainty

In the analyzed papers, the authors have used different theories for handling uncertain
elements of the decision matrix: (i) FNs [43–45,84,94,110,113,118–120,122,126,127,136–142],
(ii) IT2FNs [46,47,86,90,91,95,143,144], (iii) PFNs [38,89,132,133], (iv) IFNs [123,128,131,134,
135,137,145–148], (v) other fuzzy numbers [24,34,36,39–41,56,61,62,100,111,116], (vi) cloud
theory [33,37,73], (vii) crisp [85,87,149], and (viii) other mathematical theories [67,75,101,
109,117,129,130].

4.2.2. Aggregated Decision Matrix Under Uncertainty

In the 27 analyzed papers, the authors assumed that the evaluation of RFs was obtained
by consensus. In the remaining 41 papers, these values were defined as a group decision-
making task. The used aggregation operators are as follows:
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• Fuzzy averaging mean: (i) with FNs and IT2FNs [43,44,120,122,137], (ii) with PFSs [89,134],
(iii) with the fuzzy soft number [56], and (iv) with Z-numbers [42].

• Fuzzy geometric mean: (i) with FNs [112], (ii) with intuitionistic fuzzy numbers [109],
(iii) with Z-numbers [39], and (iv) the single-valued spherical geometric mean
weight [100].

• The weighted operator: (i) with FNs and IT2FNs [73,120], (ii) the interval intuitionistic
weighted averaging operator [113,128], (iii) with PFSs [132] and the interval-valued
Pythagorean fuzzy priority power weight average operator [133], (iv) the picture fuzzy
weighted arithmetic average operator [34], (v) with FFSs [61], (vi) the single-valued
neutrosophic weighted averaging operator [116], the interval-valued neutrosophic
weighted averaging operator [111], and the spherical weighted geometric mean [41],
(vii) the interval-valued q-rung orthopair fuzzy weighted geometric operator [36],
(viii) the cloud weighted averaging operator [33], (ix) the 2-tuple weighted average
operator [75], and (x) the probabilistic interval-valued hesitant fuzzy weighted average
operator [32].

• Others: (i) the individual belief degree [67], (ii) the single semantic probabilistic linguis-
tic averaging operator [101], (iii) the cloud hybrid aggregation operator [37], (iv) the
different proposed procedures [45,84,117], (v) the power aggregation operator [90],
and (vi) IFNs [150].

4.2.3. Normalization Procedures

The RFs, as well as their components, can be of both benefit and cost types. In order
for the values of the decision matrix elements to be comparable, a normalization procedure
must be applied. When assessing the values of the decision matrix elements, many authors
suggest that DMs should take into account the type of attribute. On the one hand, this
approach requires DMs to invest greater effort during the evaluation, which increases
the likelihood of errors that may be unacceptable. On the other hand, the computational
complexity and workload are significantly reduced.

In many studies, the authors did not apply a normalization procedure. Also, numer-
ous proposed normalization procedures exist. The choice of a normalization procedure
represents a problem in itself. The following are the normalization procedures used in the
analyzed studies:

• The linear normalization procedure [42,43,45,46,56,84,110,120,126];
• The vector normalization procedure [40,41,62,118];
• The max–min normalization procedure [110];
• The min–max normalization procedure [100];
• Weitendorf’s linear normalization [110];
• Other proposed normalization procedures [34,36,38,39,41,46,61,67,95,117,128,149].

4.2.4. Outranking Methods

In this section, an analysis of the papers is presented in which failures were ranked
using the proposed outranking MADM methods.

Preference Ranking Organization METHod for Enrichment of Evaluations

The Preference Ranking Organization METHod for Enrichment of Evaluations
(PROMETHEE) was proposed by [151]. This method can be efficiently applied when
alternatives are compared in pairs. It adopts the concept of rank-no-lower relationship
as its core idea, uses a preference function to compare alternatives, and incorporates the
objective assessment of DMs. There are six commonly used criteria for determining the
preference function.
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In [135], the authors employed the Gaussian preference function, which exhibits a
non-linear variation characteristic. In [130], the authors first converted the decision matrix
with linguistically labeled numbers into a numerical decision matrix. The preference of an
alternative was then described using a linear function defined over an interval.

In [73], the elements of the decision matrix using cloud theory are described. The
distances between intervals were characterized by the second-type preference function [151].
The net flows were calculated following the procedure of the conventional PROMETHEE
method [73,130,135]. The ranking of the considered alternatives was determined based on
the global risk index, which was expressed using precise numbers.

Decision-MAking Trial and Evaluation Laboratory

The DEcision-MAking Trial and Evaluation Laboratory (DEMATEL) method with
triangular fuzzy numbers (TFNs) was applied in [121], while DEMATEL with trapezoidal
fuzzy numbers (TrFNs) was applied in [136]. In these studies, the fuzzy initial direct-relation
matrix is constructed. Normalization is carried out using the adopted max normalization
procedure. In this way, the elements of the normalized initial direct-relation matrix are
described by TrFNs.

The fuzzy total relation matrix, as well as the causal diagram, are obtained following
the procedure proposed in the conventional DEMATEL method and the fuzzy algebra
rules [12]. The ranking of alternatives is determined based on the crisp coefficient values.

Interactive and Multi-Criteria Decision-Making Method

The Interactive and Multi-criteria Decision-Making method (the acronym in Por-
tuguese is TODIM) [152] is based on prospect theory. The core idea of this method is to
determine the dominance degree of each alternative over the others using a utility function
derived from prospect theory.

The dominance of each alternative relative to the others at the level of each attribute is
calculated according to the procedure proposed in the conventional TODIM method, em-
ploying different distance measures: Hamming distance with IVFs in [111], a combination
of Hamming and Hausdorff distances with IVFSs [48] in [120], a novel Hausdorff distance
for PLTSs [74] in [101], and distance measures between two probabilistic interval-valued
hesitant fuzzy sets (PIV-HFEs) [68] in [129].

In [153], the authors applied the TODIM method in combination with IT2TFNs. In all
the aforementioned papers, the dominance degree of each alternative, the overall domi-
nance degree, and the global prospect values of the alternatives are computed following
the procedure proposed in the conventional TODIM approach.

Measurement of Alternatives and Ranking According to COmpromise Solution

The Measurement of Alternatives and Ranking according to COmpromise Solution
(MARCOS) method was developed in [154]. The MARCOS method was extended with
IT2FNs [46]. In that study, the weighted normalized fuzzy decision matrix is converted into
a crisp weighted normalized decision matrix by applying a defuzzification procedure [155].

The ideal and anti-ideal solutions, as well as the utility functions with respect to the
reference values, are calculated in accordance with the procedure defined in the conven-
tional MARCOS method. The ranking of the alternatives is then determined based on the
obtained utility function values.

Organization, Ranking, and Synthesis of Relational Data

The Organization, Ranking, and Synthesis of Relational Data (the acronym in French
is ORESTE) method was proposed by [156]. The ORESTE method does not require the
quantification of criteria weights or the exact evaluation of alternatives but rather relies
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solely on their ordinal assessment. In this way, a global preference structure over the
alternatives is constructed. This method is particularly useful in situations where decision
makers are unable to provide precise evaluation data.

The ORESTE method was extended with IT2FNs in the studies by [90,143]. In both
analyzed papers, Besson’s ranks and the global preference scores were calculated following
the conventional ORESTE procedure. The determination of the global weak ranking was
carried out according to the approach proposed in [153] and the comparison procedure
for two IT2FNs developed in [157]. The preference intensities and the partial information
ranking structure were established in accordance with the standard ORESTE methodology.

4.2.5. Distance-Based Methods

Distance-based methods have a wide application in solving evaluation and failure
selection problems that exist across different domains. Furthermore, an analysis is presented
of the considered papers in which the proposed methods belong to this class.

Technique for Order Preference by Similarity to Ideal Solution

The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is one of
the most powerful and widely used MADM methods for ranking various alternatives [28].
It was introduced by [158]. The best alternative is defined as the one with the greatest
distance from the negative ideal solution and the smallest distance to the positive ideal
solution.

In the analyzed papers, many authors have suggested the use of the TOPSIS method
extended with FNs for the ranking of failures [43,84,119,120,126,127]. The fuzzy posi-
tive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) can be determined in
two ways: (i) the procedure proposed by [157], as applied in [84,119], and (ii) the veto
concept [159], used in [43,120,126,127].

The distances between the elements of the weighted normalized fuzzy decision matrix
and FPIS/FNIS are determined using the Euclidean distance [160] in all analyzed papers.
In this way, the closeness coefficient values are described by precise numbers. The rank of
alternatives is determined according to the procedure proposed in conventional TOPSIS.

Some authors [46,91] have proposed the use of TOPSIS with IT2FNs for ranking
failures. The fuzzy positive ideal solution with IT2FNs (IT2FPIS) and the fuzzy negative
ideal solution with IT2FNs (IT2FNIS) are determined according to the veto concept [46,91],
which transformed the weighted normalized fuzzy decision matrix into a decision matrix
with precise numbers by applying a defuzzification procedure.

The distances to IT2FPIS and IT2FNIS are calculated according to the procedure
proposed in conventional TOPSIS combined with fuzzy algebra rules [13], as in [91]. In
this way, the closeness coefficient values are modeled using IT2FNs. The ranking of
alternatives is given using representative scalars obtained through the defuzzification
procedure proposed in [155]. The distances and ranking of alternatives are determined by
applying conventional TOPSIS in [46].

Some authors have proposed TOPSIS with IFNs [131]. The PIS and NIS with IVFNs can
be denoted as IFPIS and IFNIS, which are determined by respecting the procedure proposed
in [157] combined with intuitionistic fuzzy sets and applied in [131]. The distances from
IFPIS and IFNIS are calculated using the Intuitionistic Fuzzy Hybrid Weighted Euclidean
Distance [137].

In [132], TOPSIS with PFNs is proposed. The positive ideal solution (PIS) with PFNs–
PFPIS—and the negative ideal solution (NIS) with PFNs–PFNIS—are determined according
to the procedure proposed in [157] combined with PFSs. The distances from PFPIS and
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PFNIS are determined using the procedure given in [137]. The ranking of failures is
obtained by applying the procedure proposed in conventional TOPSIS.

Using single-valued neutrosophic sets (SVNSs), which are a special version of neutro-
sophic sets (NSs), the conventional TOPSIS method was extended in [116]. It is known that
SFSs represent an integration of PFSs and NSs, as introduced by [16]. TOPSIS with SFSs
was proposed by [24].

The fuzzy positive ideal solution with SFSs (IVSFPIS) and with SVNSs (RNPIS) and
the fuzzy negative ideal solution with SFSs (IVSFNIS) and with SVNSs (RNNIS), as well as
the distances to IVSFPIS or RNPIS and IVSFNIS or RNNIS, are defined in [16] or [161,162].
The ranking of failures is determined according to the procedure of conventional TOPSIS.

TOPSIS extended with cloud theory was proposed in [33]. The cloud positive ideal
solution (CPIS) and the cloud negative ideal solution (CNIS) are defined by an analogy
procedure [157]. In this paper, the distance used between arbitrary clouds is defined in [163].
The ranking of failures is given according to conventional TOPSIS.

In [75], the authors extended the TOPSIS method with 2-tuple linguistic variables
(ITLVs). The positive ideal solution with ITLVs and the fuzzy negative ideal solution with
ITLVs are constructed by analogy to the conventional TOPSIS procedure. The ranking of
failures is based on crisp closeness coefficient values.

TOPSIS with Fermatean bipolar sets was proposed in [117]. The positive ideal solution
with Fermatean bipolar sets (PIBSs) and the negative ideal solution with Fermatean bipolar
sets (NIBSs) are defined by analogy to conventional TOPSIS. The values of PIBSs and NIBSs
are the maximum and minimum values, respectively, with respect to each RF. Separation
measures from PIBSs and NIBSs are calculated according to the procedure proposed
in [164].

Multi-Criteria Optimization and Compromise Solution

VIKOR stands for multi-attribute optimization and compromise solution, which was
developed in [165]. Many authors of the analyzed papers proposed VIKOR with FNs,
which they used for ranking different failures. The FIS and NIS are determined according
to the procedure proposed by [157], combining fuzzy set theory [44,94,113,118,122,137].
The fuzzy group utility value, the fuzzy minimum individual regret value for each failure,
and the fuzzy index values are calculated using the proposed conventional VIKOR and
fuzzy algebra rules [12] in [44,94,118,122]. The group utility values and minimum individ-
ual regret values are given by applying the proposed VIKOR combined with Euclidean
distance [94,113,137]. The representative scalar values are obtained using graded mean
integration [166] according to the performed ranking of failures [44,94,118,122]. The index
values are crisp and provided according to the proposed VIKOR [94,113,137].

In [84], the authors transformed the weighted normalized fuzzy decision matrix
into a decision matrix by graded mean integration [166]. After that, the conventional
VIKOR method was applied to determine the ranking. The set of compromise solutions is
determined by applying both condition rules in all the above analyzed papers.

The extension of VIKOR with IT2FNs is proposed in [95]. The IT2FPIS and IT2FNIS
are determined according to the veto concept. The group utility values and the minimum
individual regret values are calculated respecting the conventional VIKOR method com-
bined with type-2 fuzzy algebra rules [13] so that these values are modeled by IT2FNs.
Using distances between two interval type-2 triangular fuzzy numbers (IT2TFNs) [167] and
the conventional VIKOR, the index values are calculated and described by precise numbers.
The set of compromise solutions is determined by applying both condition rules.

VIKOR with IFNs is suggested in some analyzed papers [109,123,128], proposing
VIKOR extended with Interval Type-2 Intuitionistic Fuzzy Numbers (IT2IFNs). The FPIS
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and FNIS are determined according to the procedure proposed in [168] in studies applying
IFNs and IT2FNs. The fuzzy group utility value, fuzzy minimum individual regret value
for each failure, and fuzzy index values are calculated using the proposed conventional
VIKOR method combined with fuzzy algebra rules. The crisp index values are obtained by
applying the graded mean integration with IFNs. The group utility values and minimum
individual regret values are calculated by applying the proposed VIKOR combined with
distance measures between two IFNs as follows: (i) according to [160] in [123], (ii) according
to [169] in [128], and (iii) according to [170] in [109] so that the index values are crisp and
given according to the proposed VIKOR method. The set of compromise solutions is
determined by applying the condition rules [123,128],

In [72], the authors proposed VIKOR with fuzzy rough sets. The FPIS and FNIS are
determined according to the procedure proposed in their paper. The fuzzy group utility
value, the fuzzy minimum individual regret value for each failure, and the fuzzy index
values are calculated using the proposed conventional VIKOR method combined with
fuzzy rough algebra rules. The crisp index values are obtained by applying the procedure
proposed in [25].

VIKOR extended with cloud theory is proposed in [37]. The FPIS and FNIS are
determined according to the procedure in conventional VIKOR combined with cloud theory.
The procedure for determining the fuzzy group utility value and the fuzzy minimum
individual regret value for each failure is proposed in [171]. The index values are calculated
by applying the conventional VIKOR method using the Hamming distance [170].

Using FFSs, in [67], the VIKOR method is extended. The elements of the PIS and NIS
with FFSs are evaluation grades consisting of crisp numbers in ordinal FFSs. The group
utility value and the minimum individual regret value for each failure are calculated by
applying the conventional VIKOR procedure and the distance between two FFSs [164]. The
crisp index values are obtained by applying the conventional VIKOR procedure.

Multi-Attributive Border Approximation Area Comparison

The Multi-Attributive Border Approximation Area Comparison (MABAC) method
was introduced in [172]. The fundamental concept of the MABAC method involves defin-
ing the distance of the criteria function for each considered alternative from the border
approximation area. The weighted decision matrix and the border approximation area
vector are determined by applying the proposed procedure within conventional MABAC
combined with fuzzy algebra rules [13]. Based on the Euclidean distance between two
PFNs [34], membership to the upper or lower approximation areas is determined. The
closeness coefficient to the border approximation areas and the ranking of alternatives are
provided according to the conventional MABAC method.

Multi-Attributive Ideal Real Comparative Analysis

The Multi-Attributive Ideal Real Comparative Analysis (MAIRICA) [173] was ex-
tended with IT2FNs in [46]. The preferences for alternative selection are calculated accord-
ing to conventional MAIRICA. It is assumed that decision makers (DMs) are unbiased
towards the selection of alternatives, and each alternative has an equal probability of being
chosen as the most critical one. The fuzzy matrix of theoretical weights and the fuzzy
matrix of actual weights are constructed following the proposed MAIRICA procedure
and fuzzy algebra rules [13]. The total gap matrix is obtained using the defuzzification
procedure developed in [155]. The criteria function values and the ranking of alternatives
are determined by analogy with conventional MAIRICA.
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4.2.6. Utility-Based Methods

The analyzed papers in which utility-based methods are proposed are presented in
this section.

Weighted Aggregates Sum Product ASsessment

The Weighted Aggregates Sum Product ASsessment (WASPAS) method was intro-
duced in [174]. The weighted fuzzy decision matrix is constructed using FNs in [118].
The ranking of identified failures is performed using a crisp common criterion, which is
calculated by applying the graded mean integration method [166]. In [61], the authors
considered the problem of risk assessment for occupational hazards in aquaculture opera-
tions with respect to RFs defined in conventional FMEA analysis. The values of the fuzzy
decision matrices are modeled by FFSs. The aggregated fuzzy decision matrix is obtained
by applying the Fermatean fuzzy weighted average operator [17]. The common criteria
values are calculated by applying the conventional WASPAS procedure and fuzzy algebra
rules [17]. The ranking of identified occupational hazards is determined according to crisp
values of the common criterion, which are obtained by the score function.

COmplex PRoportional ASsessment

The preference ranking method of COmplex PRoportional ASsessment (COPRAS)
was proposed in [175]. It assumes direct and proportional dependencies between the
significance and utility degree of the available alternatives in the presence of mutually
conflicting criteria.

COPRAS with FNs was proposed in [176]. The sums of benefit-type RF values, which
are larger values, and the sums of cost-type RF values, which are smaller values, are
calculated according to the procedure proposed in conventional COPRAS combined with
fuzzy set theory.

Similarly, the relative weight of each alternative is calculated so that these values are
described by FNs. The ranking of failures is given according to the representative scalar
values of the calculated relative weights. These representative scalar values are obtained
using the simple gravity method.

In [86], the authors proposed COPRAS with IT2FNs. These authors transformed
the weighted fuzzy decision matrix into a decision matrix using a defuzzification proce-
dure [155]. The sum of benefit-type values, the sum of cost-type values, the relative weight
values, and the ranking of failures are calculated by applying the procedure proposed in
conventional COPRAS.

The ranking of failures is performed by COPRAS with PFSs in [38]. These authors
determined the sum of benefit-type and sum of cost-type values based on the weighted
normalized fuzzy decision matrix, whose elements are described by PFSs. Thus, the
calculated values are represented by PFNs. The determination of relative weight values is
based on the basic concept of PFSs and their functions [177].

COPRAS with fuzzy soft sets was proposed in [56]. The sum of benefit-type and sum of
cost-type values is determined based on the procedure proposed in conventional COPRAS
and fuzzy algebra rules [65]. Using the Choquet integral and based on the normalized
fuzzy soft sets [65], the relative weight values are described by fuzzy soft numbers. The
ranking of failures is given according to crisp relative weight values, which are obtained by
applying the graded mean integration method [166].

Combined Compromise Solution

The Combined Compromise Solution (CoCoSo) was proposed in [178]. In [110], the
authors proposed the CoCoSo with FNs. The CoCoSo with spherical fuzzy numbers
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(SFNs) [16,63] is proposed in [41,100]. The sum of weighted comparability sequences and
the sum of powered weights of comparability sequences for each alternative, as well as
relative weights, are calculated according to the conventional CoCoSo combined with
fuzzy set theory [12] in [110] and with spherical fuzzy numbers [16] in [41]. In [100],
the authors transformed the fuzzy decision matrix into a crisp decision matrix. The
ranking of alternatives is provided using the conventional CoCoSo method in all three
analyzed papers.

4.2.7. Other Methods

Many MADM methods cannot be classified into any of the previously mentioned
groups. In [29], the authors introduced a fourth group, labeled “other MADM.” This
section presents the proposed MADM methods that belong to this group and that have
been developed in the analyzed papers.

Additive Ratio ASsessment

The Additive Ratio Assessment (ARAS) method was introduced in [179]. There are
numerous papers in which the ARAS is extended with FNs [45,110,118]. The utility function
values are calculated according to the procedure proposed in the conventional ARAS
combined with fuzzy algebra rules [12], and they are also described by FNs [45,110,118].
The fuzzy utility function values are transformed into crisp values by applying the moment
method in [118] or the defuzzification procedure [180] in [45]. The ranking of failures is
performed according to the defined rules in the conventional ARAS. In [110], the authors
transformed the weighted normalized fuzzy decision matrix into a decision matrix using
the moment method. After that, these authors calculated the utility function values and
ranking of failures according to the procedure proposed in the conventional ARAS.

The weighted normalized fuzzy decision matrix is constructed respecting the assess-
ment of DMs and fuzzy algebra rules [181]. The ranking of failures is performed according
to the degree of criticality values, which are described by precise numbers. The degree
of criticality values is calculated as the Minkowski distance between the fuzzy overall
criticality index and the fuzzy score function of the overall criticality index of the optimal
failure. The distance used is the Minkowski distance [182].

In [39,42], the authors calculated the utility function values according to the conven-
tional ARAS method and fuzzy algebra rules. The transformation of fuzzy values into crisp
values was performed using the procedure by [183] in [39] and the graded mean integration
method [166] in [42]. The ranking of failures is given with respect to the conventional
ARAS method.

Multi-Objective Optimization on the Basis of Ratio Analysis

Multi-Objective Optimization on the basis of Ratio Analysis (MOORA) is the process
of optimizing two or more conflicting attributes concurrently with reference to certain con-
straints, developed in [184]. The traditional MOORA and MULTIMOORA (Multi-Objective
Optimization on the basis of Ratio Analysis and the full MULTIplicative form) method
consists of three submethods: the ratio system method, the reference point method, and
the full multiplicative form method. MOORA focuses on identifying one or more feasible
solutions that correspond to extreme values of one or more objectives. The MULTIMOORA
method is characterized by simple calculations and strong robustness [184].

Some authors determined the rank of failures by applying the MOORA method
extended with various types of fuzzy numbers. In [89], the authors proposed MOORA
with PFSs. The ranking of failures is given according to crisp values.

In [40,62], three submodels of MOORA with Z-numbers were proposed. The difference
between the sum of weighted benefit attribute values and the sum of weighted cost attribute
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values is calculated according to fuzzy algebra rules. The representative scalar values are
obtained using the simple gravity method. The ranking of failures is determined according
to the conventional MOORA.

In the second submodel, the authors defined a reference point whose elements are Z-
numbers, following the procedure proposed in [157]. The derivation between the reference
point and the elements of the weighted normalized fuzzy decision matrix is determined
using the Euclidean distance. The failure with the smallest derivation value is ranked first.

The third submodel is proposed following the conventional MOORA procedure com-
bined with Z-numbers. Representative scalars are obtained using the simple gravity
method, and the ranking of failures is performed accordingly.

In [134], the authors proposed MULTIMOORA with IFNs. In this paper, the ratio
method is constructed using the conventional MULTIMOORA procedure combined with
fuzzy algebra rules. The score function is obtained by applying a defuzzification procedure.
The distance between failures and the reference point is determined using the Minkowski
metric method [185] combined with IFNs. The ranking of failures is given by applying the
conventional MULTIMOORA.

MULTIMOORA with PFNs is proposed in [133]. The ratio submodel is constructed
according to the conventional procedure with PFNs. Representative scalars are determined
by a defuzzification procedure [186]. In the reference point submodel, the determination
of the reference point is based on the veto concept. The distance between the reference
point and the elements of the weighted normalized fuzzy decision matrix is calculated.
The robust optimal solution is given using the Minkowski metric. The full multiplicative
method with PFNs is determined according to the conventional MULTIMOORA with fuzzy
algebra rules [15].

Risk Priority Number

The classification of failures in conventional FMEA is performed according to the
RPN, which is calculated as the product of the values of the three defined RFs. Many
authors, primarily [9,10], emphasize that this way of determining classification criteria is
not mathematically justified. The literature contains a large number of studies in which
authors have suggested various procedures to improve the RPN and, consequently, the
classification process. The authors argued that classification of failures based on the FMEA
approach is more understandable and easier to apply for practitioners.

In [85], the authors improved the procedure for calculating the RPN by considering
the weights of the RFs. The overall RPN is calculated as the sum of the weighted RF values,
which belong to the interval [1–10]. The ranking of failures is performed according to the
conventional FMEA method.

In [136], the values of the risk RFs are described by fuzzy numbers (FNs). A formula
was proposed for calculating the fuzzy risk priority number (FRPN) value as the product
of the weighted RF values. It should be noted that the weighting is based on the principle
of exponentiation. The representative scalars of the FRPNs were obtained by applying a
defuzzification procedure known as the alpha-cut method [11]. The ranking of failures is
performed according to the rules defined in conventional FMEA.

In [96], the authors assumed that the RF values are described by IT2TFNs. By applying
a fuzzy inference system extended with supremum composition [187], the RPN with
IT2FNs was determined. The representative scalars were obtained using a defuzzification
procedure [155]. The ranking of failures is given according to the procedure defined in
conventional FMEA.

In [47], the authors introduced the assumption that severity can be viewed from three
aspects: the relative importance of products, quality, and cost. In this way, severity has three
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components. Severity assessments from the aspect of product importance and severity
from the aspect of cost are performed by DMs who use predefined linguistic expressions.
These linguistic variables are modeled by IT2FNs. Severity from the aspect of quality, as
well as occurrence and detection at the level of each failure, were taken from the FMEA
reports. The overall severity values were calculated by applying the fuzzy weighted order
operator and are described by IT2FNs. Using the defuzzification procedure mathematical
rules, the overall severity values are represented by precise integer values. The ranking of
the considered failures is given using the procedure proposed in conventional FMEA as
well as the Action Priority procedure proposed by [27].

In [87], the problem of classifying failures that can be identified in different products
is discussed, considering both the RPN and product importance. The assumption was
introduced that the total importance of a product depends on the weights of the RFs as
well as the importance of the product within each RF. In this work, the total importance of
the product is described by FNs. The RF values were taken from FMEA reports and are
described by precise numbers within the interval (1-10). The RPN is calculated at the level
of each product by applying the conventional FMEA method. The classification criterion is
calculated as the product of the total product importance and the RPN. According to fuzzy
algebra rules [12], the classification criterion is described by fuzzy numbers. By applying
the defuzzification procedure [155], the classification criterion values are represented by
precise numbers. Classification is performed using conventional Pareto analysis.

5. Results and Discussion
Many authors have proposed different approaches to overcome the limitations of

conventional FMEA. In this paper, a comprehensive overview is provided of studies that
employed MADM methods with uncertain numbers for assessing and ranking failure
modes in FMEA published in international journals between 2015 and 2024. Furthermore,
the results of the analysis of the considered papers are subsequently presented.

The following section of this chapter presents the analysis of the reviewed studies,
including the frequency of applied MADM methods, approaches to modeling uncertainty,
the domains of application, and the analysis of authors and publications.

5.1. Analysis of MADM Methods Integrated with Uncertainty Modeling Approaches

In all the reviewed studies that passed the rigorous screening process outlined by the
PRISMA protocol, numerous extended MADM approaches were employed in combination
with the FMEA framework. MADM methods, enhanced by various uncertainty model-
ing techniques, were used for two main purposes: determining the weights of RFs and
establishing the prioritization/ranking of failure modes. Table 1 presents the connection
between the MADM methods applied for these two purposes. In other words, it illustrates
the combinations of these methods used to form hybrid MADM approaches.

In Table 1, it can be concluded that the TOPSIS method was used in the majority of
studies, often in combination with the AHP method, and most frequently alongside various
subjective methods and approaches for aggregating the evaluations of decision makers.
The second most commonly used method is VIKOR, which is most frequently combined
with the AHP method in the literature. As for the methods used to determine the weights
of RFs, AHP and the BWM are the most prevalent.
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Table 1. Applied MADM approaches extended with uncertainty modeling techniques in combination
with the FMEA method.

RFs Weights/Failure
Modes Priority AHP BWM DEMATEL Entropy SWARA Other/Subjective/

Aggregation

ARAS [45] [36,39,45,118]

BWM [99]

CoCoSo [100] [41]

COPRAS [86] [38] [56,176]

DEMATEL [121,136]

EDAS [142]

ELECTRE [132]

MABAC [34] [148]

MAIRICA [46]

MARCOS [46]

MOORA [89] [62] [40] [63]

MULTI-
MOORA [133,134]

ORESTE [90,143]

PROMETHEE [73,130,135]

RPN/AP [85] [47] [144]

TODIM [111] [101,113]

TOPSIS [43,84,126] [35] [46] [126]
[24,33,75,116,117,119,
120,124,127,131,132,
137,140,147,150,176]

VIKOR [84,112,123,
128,139] [94,95] [109,112] [37,44,118]

WASPAS [61] [98] [110] [118]

Other [87,88] [69]

5.2. Approaches Used for Uncertainty Modeling

In this section, the results of different MADM methods under uncertain environments
used for determining the weights of RFs and the priority of failure modes in the analyzed
papers are presented. This analysis is shown in Table 2.

Table 2. Combination of MADM methods and uncertainty modeling approaches.

MADM
Method FSs IT2FSs IFSs SFSs PFSs Z-Numbers Other FSs Other

Theories

AHP [43,45,84,85,87,99,126,142] [86,88] [123] [89] [45] [61]

ARAS [45,118] [45] [36]

BWM [62,94,99] [47,95,98] [35]

CoCoSo [41,100]

COPRAS [176] [86] [38] [56]

DEMATEL [121,136] [46]

EDAS [142]

ELECTRE [132]
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Table 2. Cont.

MADM
Method FSs IT2FSs IFSs SFSs PFSs Z-Numbers Other FSs Other

Theories

Entropy [94,110]

MABAC [148] [34]

MAIRICA [46]

MARCOS

MOORA [63] [89] [40,62]

MULTIMOORA [134] [133]

ORESTE [90,143]

PROMETHEE [135] [130] [73]

RPN/AP [144]

SWARA [41] [38] [40]

TODIM [113] [111] [101]

TOPSIS [43,84,117,119,120,126,
127,137,140,176] [46] [131,147,150] [124] [24,75,116] [33,35]

VIKOR [44,84,94,112,118,139] [95,128] [109,123] [37]

WASPAS [110,118] [98] [61]

Other [45] [69]

By examining Table 2, it is clear that in the majority of papers, MADM approaches
were extended through the application of basic FSs. Furthermore, IT2FSs and IFSs were
frequently used by the authors. Other uncertainty modeling methods were not widely
represented in the reviewed studies. Rarely used uncertainty modeling methods include
SFSs, PFSs, and Z-numbers.

5.3. Application Domains of the Analyzed Approaches

This section presents the application domains of FMEA combined with MADM using
uncertain numbers (Figure 2).

 

Figure 2. Applied research domains.
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If the analyzed application domains are considered separately, it is possible to de-
termine which MADM methods are most frequently used for each specific domain. This
analysis is presented in Table 3.

Table 3. Distribution of MADM methods across application domains.

MADM
Method

Manufacturing
Industry

Energy and
Chemical
Industry

Healthcare Marine
Industry

Electronic
Industry

Automotive
Industry

Project
Management

Information
Technology Other

AHP [84,85,123,128] [45,142] [61] [87,88] [89] [86,126] [43]

ARAS [36,39] [45] [118]

BWM [94,95,98] [34] [99,100] [35] [47,62]

CoCoSo [41] [100]

COPRAS [56,176] [38] [86]

DEMATEL [46] [136] [121]

EDAS [142]

ELECTRE [132]

Entropy [94] [126]

MABAC [148] [34]

MAIRICA [46]

MARCOS

MOORA [40] [63] [62] [89]

MULTI-
MOORA [133,134]

ORESTE [143] [90]

PROME-
THEE [130] [73] [135]

RPN/AP [144]

SWARA [40] [38,41]

TODIM [111] [101,113]

TOPSIS
[24,33,46,75,84,

117,124,127,
140,176]

[119,131,150] [116] [35,137] [120,126] [43,147]

VIKOR [84,94,95,123,
128] [44] [112,118] [37] [139] [109]

WASPAS [46,98,110] [118] [61]

Other [45,69]

Figure 2 and Table 3 present the distribution of applied MADM methods across
different domains, as well as the number of distinct methods (without duplication) used in
each application domain. As shown in Figure 2, the majority of studies were conducted in
the manufacturing industry domain. In other words, the most frequent application was in
production processes across various branches of manufacturing—such as furniture, food,
metal products, etc.—all grouped under one category related to manufacturing activities.
The automotive industry stands alone, being considered the original domain of FMEA
application. FMEA was also found to be highly useful in the energy and chemical industry
and healthcare domains.

When it comes to the representation of MADM methods by category (see Table 3),
TOPSIS clearly dominates in the manufacturing industry. It is also the most frequently
used method overall, appearing in 20 studies. TOPSIS is likewise the most commonly used
method in the energy and chemical industry. In second place is the VIKOR method, which
ranks second in the manufacturing industry domain and first in healthcare. In addition,
COPRAS, ARAS, and MOORA each appear four times across the studies.

The analysis of application domains can also be viewed from the perspective of the
applied uncertainty modeling approaches, as presented in Table 4.
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Table 4. Distribution of uncertainty modeling approaches by application domain.

Applied
Research
Domain

FSs IT2FSs IFSs SFSs PFSs Z-Numbers Other FSs Other
Theories

Manufacturing
industry

[84,85,94,110,117,
127,140,176] [46,95,98,128] [123,148] [124] [39,40] [24,36,56,75,111] [33]

Energy and
chemical
industry

[44,45,119,142] [143,144] [113,131,150] [41] [38] [34,69,130] [101]

Healthcare [99,112,118] [63,100] [73]

Marine
industry [136] [90] [61,116] [37]

Electronic
industry [121,137] [135] [132] [35]

Automotive
industry [62,87] [47,88] [62]

Project
management [139] [134] [89,133]

Information
technology [120,126] [86]

Other [43] [109,147]

It was previously stated that basic FSs are used in the majority of studies. However,
from the perspective of application domains, it is clearly evident in Table 4 that FSs are
most commonly applied in the manufacturing industry and the energy and chemical
industry. IT2FSs are predominantly used in the manufacturing industry, while IFSs are
mostly applied in the energy and chemical industry.

5.4. Analysis of Authors and Publications

This section presents the number of publications, countries of origin of the authors,
and the distribution of studies that combine FMEA and MADM with uncertain numbers
during the observed period (2015 to 2024).

As previously mentioned, this study identified 68 papers using the PRISMA protocol
in which the authors combine FMEA and MADM with various approaches to modeling
uncertainty. The analyzed papers appear in a total of 51 different scientific journals, as
shown in Table 5.

Table 5. Distribution of selected articles according to the journal of publication.

Journal Name Count Journal Name Count

Agriculture 1 International Journal of Intelligent Computing
and Cybernetics 1

Applied Soft Computing 6 International Journal of Productivity and
Quality Management 1

Axioms 1 International Journal of Quality and Reliability
Management 1

Complex and Intelligent Systems 1 Journal of Digital Information Management 1

Complexity 1 Journal of Engineering, Design and Technology 2

Computers and Industrial Engineering 1 Journal of Fuzzy Extension and Application 1

Decision Making: Applications In Management
and Engineering 1 Journal of Intelligent and Fuzzy Systems 1
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Table 5. Cont.

Journal Name Count Journal Name Count

Decision Science Letters 1 Journal of Loss Prevention In The Process
Industries 1

Energies 1 Journal of Petroleum Science and Engineering 1

Entropy 1 Journal of the Operational Research Society 1

Environment, Development and Sustainability 1 Kybernetes 1

Environmental Science and Pollution Research 1 Mathematics 1

Expert Systems 1 Maritime Policy and Management 1

Expert Systems with Applications 1 Neural Computing and Applications 1

Facta Universitatis, Series: Mechanical
Engineering 3 Plos One/Public Library Of Science 1

Human And Ecological Risk Assessment 1
Proceedings of the Institution of Mechanical

Engineers, Part B: Journal of Engineering
Manufacture

1

IEEE Access 1
Proceedings Of The Institution Of Mechanical

Engineers, Part D: Journal Of Automobile
Engineering

1

IEEE Transactions on Fuzzy Systems 1
Proceedings Of The Institution Of Mechanical

Engineers, Part E: Journal of Process
Mechanical Engineering

1

IEEE Transactions on Reliability 1 Process Safety And Environmental Protection 3

Informatica 1 Quality and Reliability Engineering
International 5

Information 1 Quality Engineering 1

International Journal of Advanced
Manufacturing Technology 1 Risk Analysis 1

International Journal of Computational
Intelligence Systems 2 Soft Computing 3

International Journal of Computer Integrated
Manufacturing 1 Symmetry 1

International Journal of Fuzzy Systems 1 Water Supply 1

International Journal of Industrial Ergonomics 1

A total of 176 different authors were identified across the reviewed studies. Table 6
presents the distribution of authors by country. This analysis was conducted based on the
affiliations provided by the authors in the reviewed publications. The authors are affiliated
with institutions from a total of 24 countries.

Table 6. Distribution of authors by country based on institutional affiliation.

Rank Country Number of Authors Percentage

1 China 73 41.5%

2 Iran 29 16.5%

3 Turkey 19 10.8%

4 Serbia 9 5.1%

5 India 8 4.5%
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Table 6. Cont.

Rank Country Number of Authors Percentage

6 Australia 5 2.8%

7 Indonesia 4 2.3%

8 Malaysia 3 1.7%

9
Bosnia, Canada, Croatia,

Pakistan, Peru, Poland, Spain,
Taiwan, Thailand, USA

2 1.1%

10 Austria, Czech Republic, France,
Hungary, Qatar, United Kingdom 1 0.6%

It should be noted that some authors appear in multiple publications. Table 7
presents the frequency of occurrence for authors who appear three or more times in the
reviewed studies.

Table 7. Most frequently appearing authors.

Name Country Number of Publications Publications

Komatina, N. Serbia 6 [47,86–88,95,123]

Liu, H.-C. China 6 [33,56,73,112,121,137]

Ghoushchi, S.J. Iran 5 [40,41,62,63,100]

Tadić, D. Serbia 5 [47,86–88,95]

Aleksić, A. Serbia 4 [47,87,88,95]

Li, H. China 4 [113,133,134,139]

Wang, L. China 4 [113,133,134,139]

Wang, W. China 4 [69,90,109,143]

You, J.-X. China 4 [56,112,121,137]

Gul, M. Turkey 3 [24,116,124]

Li, F. China 3 [113,133,139]

Li, G. China 3 [75,128,130]

Panchal, D. India 3 [131,150,176]

The distribution of papers presenting proposed hybrid models that include a combina-
tion of FMEA and MADM with uncertain data over the last 10 years is shown in Figure 3.

It can be concluded that the number of publications significantly increased during
the period from 2019 to 2022, with approximately 68% of all analyzed papers over the
ten-year period published within these four years. Although a decline in the number of
papers is observed in 2023 and 2024 compared to the previous four years, the increase in
publications in 2024 relative to 2023 may indicate that this research problem will continue
to be addressed in the near future.
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Figure 3. Distribution of publication years of the analyzed papers.

6. Conclusions
In this research, a systematic literature review was conducted in the domain of ex-

tending FMEA through integration with MADM methods and various approaches to
uncertainty modeling. A total of 68 papers were analyzed, published in Scopus- and/or
Web of Science-indexed journals. The review covered a ten-year period, specifically from
2015 to 2024. The analysis included papers that were accepted and/or published during
this period in relevant journals.

Through the analysis of the selected papers, it was found that the number of studies
combining the FMEA-MADM approach with various uncertainty modeling techniques has
gradually increased year by year. However, in the last two years, a slight decline in the
number of such papers has been observed, although the decrease is not significant.

In their studies, the authors most commonly used FNs for modeling uncertainty, as
well as their extended forms, such as IT2FNs. Other frequently used approaches included
IFNs, PFNs, and Z-numbers.

Based on the analysis, it was identified that AHP and BWM are most frequently used
for determining the weights of RFs, while TOPSIS and VIKOR are most commonly applied
for ranking failure modes and determining their priorities. In terms of application domains,
the reviewed studies were mostly conducted in the manufacturing industry, the energy
and chemical industry, the healthcare industry, and the automotive industry.

It can be considered that the number of 68 published papers over a 10-year period
indicates that the FMEA-MADM approach under uncertainty represents a highly relevant
and trending research direction. Furthermore, it holds significant potential for practical
application across various industrial sectors.

Future research directions aimed at addressing existing research gaps should include
(1) the verification of the consistency of solutions obtained using the analyzed methods
due to the use of different uncertain numbers in modeling the relative importance and
values of RFs. (2) It is known that applying different MADM methods with uncertain
numbers can lead to inconsistent solutions. Therefore, in the future, two or more MADM
methods should be combined to reduce risk in the decision-making process. (3) Enhanced
FMEA requires a complex calculation procedure, making it very difficult for practitioners
to understand. Hence, it is necessary to develop user-friendly software that practitioners
can easily comprehend and use, thereby improving the decision-making process.
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Abbreviations
The following abbreviations are used in this manuscript:

AHP Analytic Hierarchy Process
ARAS Additive Ratio Assessment
BS Belief Structure
BWM The Best Worst Method
CNIS Cloud Negative Ideal Solution
CoCoSo Combined Compromise Solution
COPRAS COmplex PRoportional ASsessment
CPIS Cloud Positive Ideal Solution
CRITIC Criteria Importance Through Inter-criteria Correlation
D Detection
DEMATEL Decision-Making and Trial Evaluation Laboratory
DMs Decision Makers
ETA Event Tree Analysis
FBS Fuzzy Belief Structure
FEMA Failure Mode and Effect Analysis
FFNs Fermatean Fuzzy Sets
FFSs Fermatean Fuzzy Sets
FMEA Failure Mode and Effect Analysis
FNIS Fuzzy Negative Ideal Solution
FPIS Fuzzy Positive Ideal Solution
FRPN Fuzzy Risk Priority Number
FTA Fault Tree Analysis
IFNIS NIS with IVFNs
IFNs Intuitionistic Fuzzy Numbers
IFPIS PIS with IVFNs
IT2FNIS Fuzzy Negative Ideal Solution with IT2FNs
IT2FNs Interval Type-2 Fuzzy Numbers
IT2FPIS Fuzzy Positive Ideal Solution with IT2FNs
IT2IFNs Interval Type-2 Intuitionistic Fuzzy Numbers
IT2TFNs Interval Type-2 Triangular Fuzzy Numbers
IT2TrFNs Interval Type-2 Trapezoidal Fuzzy Numbers
ITLV Interval 2-Tuple Linguistic Variable
ITLVs 2-Tuple Linguistic Variables
IVFNs Interval-Valued Fuzzy Numbers
IVNSs Interval-Valued Neutrosophic Sets
IVq-ROFSs Interval-Valued q-Rung Orthopair Fuzzy Sets
IVSFNIS Fuzzy Negative Ideal Solution with SFSs
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IVSFPIS Fuzzy Positive Ideal Solution with SFSs
MABAC Multi-Attributive Border Approximation Area Comparison
MADM Multi-Attribute Decision-Making
MAIRCA Multi-Attributive Ideal Real Comparative Analysis
MARCOS Measurement of Alternatives and Ranking according to COmpromise Solution
MOORA Multi-Objective Optimization on the basis of Ratio Analysis

MULTIMOORA
Multi-Objective Optimization on the basis of Ratio Analysis and the full MULTI-
plicative form

NFSs Neutrosophic Sets
NIBS Negative Ideal Solution with FBS
NSs Neutrosophic Sets
O Occurrence
ORESTE Organization, Ranking, and Synthesis of Relational Data
PFNIS Negative Ideal Solution with PFNs
PFNs Pythagorean Fuzzy Numbers
PFSs Pythagorean Fuzzy Sets
PFPIS Positive Ideal Solution with PFNs
PHFSs Probabilistic Hesitant Fuzzy Sets
PIBS Positive Ideal Solution with FBS
PIS Positive Ideal Solution
PIV-HFSs Probabilistic Interval-Valued Hesitant Fuzzy Sets
PLTS Probabilistic Linguistic Term Set
PROMETHEE Preference Ranking Organization METHod for Enrichment of Evaluations
q-ROFSs q-Rung Orthopair Fuzzy Sets
RCA Root Cause Analysis
RFs Risk Factors
RNNIS Fuzzy Negative Ideal Solution with SVNSs
RNPIS Fuzzy Positive Ideal Solution with SVNSs
RPN Risk Priority Number
S Severity
SFNs Spherical Fuzzy Numbers
SFSs Spherical Fuzzy Sets
SVNSs Single-Valued Neutrosophic Sets
SWARA Step-Wise Weight Assessment Ratio Analysis
TFNs Triangular Fuzzy Numbers
TODIM Interactive and Multi-criteria Decision-Making Method
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
TrFNs Trapezoidal Fuzzy Numbers
VIKOR Multi-Criteria Optimization and Compromise Solution
WASPAS Weighted Aggregates Sum Product Assessment
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5. Komatina, N.; Marinković, D. Optimization of PFMEA Team Composition in the Automotive Industry Using the IPF-RADAR

Approach. Algorithms 2025, 18, 342. [CrossRef]
6. Liu, H.-C.; Chen, X.-Q.; Duan, C.-Y.; Wang, Y.-M. Failure Mode and Effect Analysis Using Multi-Criteria Decision Making

Methods: A Systematic Literature Review. Comput. Ind. Eng. 2019, 135, 881–897. [CrossRef]

https://doi.org/10.1002/qre.3271
https://doi.org/10.1007/s10845-024-02376-5
https://doi.org/10.3390/a18060342
https://doi.org/10.1016/j.cie.2019.06.055


Mathematics 2025, 13, 2216 32 of 38

7. Liu, H.-C.; Liu, L.; Bian, Q.-H.; Lin, Q.-L.; Dong, N.; Xu, P.-C. Failure Mode and Effects Analysis Using Fuzzy Evidential Reasoning
Approach and Grey Theory. Expert Syst. Appl. 2011, 38, 4403–4415. [CrossRef]

8. Huang, J.; You, J.-X.; Liu, H.-C.; Song, M.-S. Failure Mode and Effect Analysis Improvement: A Systematic Literature Review and
Future Research Agenda. Reliab. Eng. Syst. Saf. 2020, 199, 106885. [CrossRef]

9. Liu, H.-C.; Liu, L.; Liu, N. Risk Evaluation Approaches in Failure Mode and Effects Analysis: A Literature Review. Expert Syst.
Appl. 2013, 40, 828–838. [CrossRef]

10. Liu, H.C. FMEA Using Uncertainty Theories and MCDM Methods. In FMEA Using Uncertainty Theories and MCDM Methods;
Springer: Singapore, 2016; pp. 13–27, ISBN 978-981-10-1465-9.

11. Dubois, D.; Prade, H. An Introduction to Fuzzy Systems. Clin. Chim. Acta 1998, 270, 3–29. [CrossRef]
12. Zimmermann, H.-J. Fuzzy Set Theory. WIREs Comput. Stat. 2010, 2, 317–332. [CrossRef]
13. Mendel, J.M. Uncertain Rule-Based Fuzzy Systems: Introduction and New Directions, 2nd ed.; Springer International Publishing:

Cham, Switzerland, 2017; ISBN 978-3-319-51369-0.
14. Atanassov, K.T. Intuitionistic Fuzzy Sets. In Intuitionistic Fuzzy Sets; Studies in Fuzziness and Soft Computing; Physica-Verlag

HD: Heidelberg, Germany, 1999; Volume 35, pp. 1–137, ISBN 978-3-7908-2463-6.
15. Peng, X.; Yang, Y. Fundamental Properties of Interval-Valued Pythagorean Fuzzy Aggregation Operators: Interval-Valued

Pythagorean Fuzzy Aggregation Operations. Int. J. Intell. Syst. 2016, 31, 444–487. [CrossRef]
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