
ScienceDirect

Available online at www.sciencedirect.com

Procedia Structural Integrity 68 (2025) 839–844

2452-3216 © 2025 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of ECF24 organizers
10.1016/j.prostr.2025.06.139

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2025) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2025 The Authors. Published by ELSEVIER B.V.  
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of ECF24 organizers  

European Conference on Fracture - ECF24 

A new artificial neural network model for predicting fatigue limit 
and fracture toughness values of some stainless steels 

Dj. Ivkovića, D. Arsića*, A. Sedmakb, D. Adamovića, V. Mandića, M. Delića, A. Mitrovićb 
aFaculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia 

bFacuty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Belgrade, Serbia  

Abstract 

Aim of this paper is to present the possibility for application of Artificial Intelligence for determining fracture toughness and fatigue 
limit values of some grades of stainless steels. Experimental procedures for both, fracture toughness and fatigue limit determination 
are time consuming, thus application of artificial intelligence instead of long, time exhausting experiment could result in less time 
spent waiting on experimental results. 
For this purpose, two Artificial Neural Networks (ANN) with same architecture were created and applied. Above mentioned 
properties are determined for the austenitic stainless steel X5CrNiMo17-12-2 and ferritic stainless steel X6Cr17. Complete work 
regarding ANN was conducted in Mathworks MATLAB 2017 software using nntool module. After completed training of ANN 
when adequate regression levels were reached, simulations were conducted using chemical composition of X5CrNiMo17-12-2 and 
X6Cr17 steels. Obtained results were compared with existing data. Conclusion that was drawn is that ANN that predicts KIC values 
has greater precision than ANN for fatigue limit. Potential reason for that could be that input layer needs more input data to increase 
precision. 
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1. Introduction 

In the field of materials engineering, having accurate data for some of key material properties is of great importance 
for achieving adequate reliability and longevity of structures. Engineers when design steel structures need to pay up 
special attention to some standards which refer to mechanical properties of materials, EN 1990:2002; EN 1993-1-
1:2005; EN 1993-1-2:2005; EN 1993-1-3:2006; EN 1993-1-4:2006. When designing stainless steels structures, 
criterions are additionally set through following standards: EN 10088-1:2005, EN 10088-2:2005, EN 10088-3:2005, 
EN 10088-4:2009, EN 10088-5:2009. Tensile strength and yield stress are crucial properties for materials subjected 
to static working conditions, Jovanovic et al. (2017). If materials are exposed to dynamic loading conditions, impact 
toughness becomes the main material property to be assessed, as it represents material’s ability to absorb energy during 
sudden impacts. When material is subjected to cycle loads, fatigue limit of material becomes key property as it tells 
number of cycles under certain load that material can withstand, Milovanovic et al. (2022). In the last few decades, 
fracture toughness, a new material property is introduced and it serves to assess material’s resistance on crack 
propagation, thus assessing prevention of catastrophic failures, Sedmak (2003). All above mentioned properties are 
investigated experimentally and require great amount of resources and time to get spent. This specially refers to 
determining fatigue limit and fracture toughness, where testing a single sample can take hours. Application of artificial 
neural networks offers a new approach for faster gathering of information, through prediction of some material 
properties, thus less time and resources are spent, Ivković et al. (2024), Lisjak, D. (2004), Glavaš et al. (2007), Žmak, 
I. (2003). Property prediction is based on knowledge that is built in the network through network’s training, Basheer 
et al. (2000). In this paper neural network approach was applied to predict fatigue limit and fracture toughness of some 
stainless steels. 

2. Artificial neural networks, structures and training parameters 

As it was mentioned before, the topic of this paper is the application of artificial neural networks (ANN) for 
predicting fatigue limit as well as fracture toughness of some stainless-steel grades. For the purposes of the paper, two 
feed forward back propagation artificial neural networks were created in the Mathworks Matlab’s neural network 
module. Both neural networks were trained based on data that was available in the CES EDU PACK 2010. Input data 
was based on chemical composition of different stainless steel grades and output data consisted from fatigue limit and 
fracture toughness values of same steels used. Training was conducted with Bayesian regularization algorithm. 

Both ANN have three layers, input layer with 18 neurons, hidden layer with 10 neurons and output layer with 1 
neuron. Number of neurons in input layer is defined by the number of chemical elements that was inserted as input 
data. Number of neurons in hidden layer is default set as 10 and number of output layer is defined by the number of 
predicted values, in both cases. For both cases between layers tansigmoid transfer function was used. 

For each ANN separate training parameters were applied, so that adequate regression could be achieved (Fig. 1). 
For the ANN that was used for fatigue limit, training parameters are shown in Table 1 and for fracture toughness ANN 
parameters are shown in Table 2.  

    Table 1. Training parameters for fatigue limit ANN. 

Parameter Value 

Number of epochs 10000 

Time Infinite 

Goal 0.1 

Minimum gradient 0.00000001 

Maximum fail 0 

Momentum (mu) 0.5 

Decline momentum 2 

Incline momentum 10 

Maximal momentum 10000000000 
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Table 2. Training parameters for fracture toughness ANN. 

Parameter Value 

Number of epochs 10000000 

Time Infinite 

Goal 0.00000001 

Minimum gradient 0.0000001 

Maximum fail 0 

Momentum (mu) 0.005 

Decline momentum 1 

Incline momentum 10 

Maximal momentum 10000000000000 

 

a 

 

b 

 

Fig. 1 Regression diagrams (a) for fatigue limit ANN (b) for fracture toughness. 

With adequate regression values reached, ANN can be further used to predict fatigue limit and fracture toughness, 
applying chemical composition of two stainless steels. Chemical composition was inserted in the ANN and fatigue 
limit and fracture toughness are predicted and further compared with their real values, founded in the CES EDU PACK 
2010. Values obtained from ANN are compared with values founded in the Cambridge Educational System EDU 
PACK 2010 and are given in Tables 3 and 4. 
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Table 3 Fatigue limit values from software and ANN. 

 
Fatigue limit, MPa 

CES EDU PACK 2010 266 263 

ANN 240 237 

Steels X5CrNiMo 17-12-2 X6Cr17 

Table 4 Fracture toughness K1C values from software and ANN. 

 Fracture toughness K1C, MPa∙m1/2 

CES EDU PACK 2010 65 112 

ANN 64 104 

Steels X5CrNiMo 17-12-2 X6Cr17 

3. Discussion 

Fatigue limit values of steels X5CrNiMo 17-12-2 and X6Cr17, founded in the CES EDU PACK 2010 software are 
266 and 263 MPa, and values predicted by ANN are 240 and 237 MPa. Following results are displayed in Fig. 2. 
Comparing results from ANN with software values, it is noticeable that slight difference exists between the values. 
Calculated errors values in both cases are slightly less than 10%. 

Fracture toughness (K1C) values of stainless steels X5CrNiMo 17-12-2 and X6Cr17, founded in the CES EDU 
PACK 2010 software are 65 MPa∙m1/2 and 112 MPa∙m1/2. Values predicted by ANN are 64 and 104 MPa∙m1/2. 
Software and ANN values are displayed in Fig. 3. Comparing results from ANN with software values one can notice 
that correlation between obtained values is adequate. Calculated errors, for both steels are less than 10% and are lower 
than error values achieved in fatigue limit ANN. 

 
a 

 

b 

 

Fig. 2 Comparison of fatigue limit values founded in CES EDU PACK 2010 and values predicted by ANN (a) calculated error (b). 
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Fig. 3 Comparison of fracture toughness values founded in CES EDU PACK 2010 and values predicted by ANN (a) calculated error (b). 
. 

 Conclusion 

Materials engineering represents a key scientific field, as it provides wide specter of information about various 
materials and their properties. These properties are of great importance for constructors and it allows quality, reliability 
and longevity of products to be raised. Material testing requires a fair amount of resources as well as time. When 
fatigue limit and fracture mechanic tests are conducted, test time for a single sample can take hours. To be able to save 
some of the resources, artificial neural networks are used to predict values of material properties, based on selected 
input data. In this case, two ANN were created for fatigue limit and fracture toughness prediction. Property prediction 
was based on chemical composition of materials. After training of ANN, chemical composition of X5CrNiMo17-12-
2 and X6Cr17 was inserted, and fatigue limit and fracture toughness values were predicted. Obtained values were 
compared with values from CES EDU PACK 2010.  

The difference between predicted values and real values is less than 10%, so it could be concluded that following 
network model with described architecture and parameters can be used successfully for predicting mentioned 
properties of stainless-steel grades. The accuracy of network could be further improved through increasing number of 
input parameters and increasing number of data sets used for training. 
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